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On complex Lie algebras with a simple real form

S. S. L. Darmstadt

The following observations, motivated by a question of Lawson’s [1],
does not seem to be readily accessible in the literature.

Let a denote a complex Lie algebra and g a real subalgebra. Then g+ig
and g∩ ig are complex subalgebras. If X ∈ g then [X, g∩ ig] ⊆ [X, g]∩ i[X, g] ⊆
g ∩ ig . Then [iX, g ∩ ig] = i[X, g ∩ ig] ⊆ i(g ∩ ig) = g ∩ ig . Thus g ∩ ig is an
ideal of g + ig .

Remark 1. If g is simple, then either g = g ∩ ig , i.e., ig = g and g is a
complex subalgebra, or else g ∩ ig = {0} , i.e. g + ig = g ⊕ ig ∼= C ⊗ g is the
complexification of g embedded into a .

Lemma 2. Assume g1⊕ ig1
∼= C⊗ g1 and g2⊕ ig2

∼= C⊗ g2 , and suppose that
there is a morphism f : g1 → g2 of real Lie algebras. Then F : g1⊕ig1 → g2⊕ig2 ,
F (X + iY ) = f(X) + if(Y ) is a morphism of complex algebras.

Proof. Compute or observe that under the isomorphisms gj + igj ∼= C ⊗ gj
the map F corresponds to the map idC⊗f :C⊗ g1 → C⊗ g2 !

If a is the complexification of a real simple Lie algebra g which itself is
the underlying real vector space of a complex Lie algebra then a = g⊕ ig has a
real involution τ given by τ(X + iY ) = X − iY which is a complex conjugate
automorphism of a , satisfying τ(iZ) = −iτ(Z) for all Z ∈ a . The complex
Lie algebra a is isomorphic to the direct sum g+ ⊕ g− of two simple complex
ideals which are conjugate complex (i.e., g− = τ(g+)). These may nevertheless
be isomorphic as complex algebras. Each real isomorphism f : g+ → g− gives a
subalgebra gf = {X ⊕ f(X): X ∈ g+} which is isomorphic to g+ ∼= g . We call
these graph subalgebras of a . If we define σ: g+ → g− by σ(X) = τ(X), i.e., by
restricting and corestricting τ , then g = gσ . The graph subalgebra gf is complex
if and only if f : g+ → g− is a complex isomorphism. A real automorphism of a
will be called special if it leaves the ideals g± invariant.

Lemma 3. For two graph subalgebras gf and gg there is a special real auto-
morphism F of a with F (gf ) = gg . If f = σ and gg is complex, then F is
neither complex nor complex conjugate.

Proof. We note that gf−1: g− → g− is an automorphism α of g− , and
g = α◦f . We define a special automorphism F : a→ a by F (X⊕Y ) = X⊕α(Y ).
Now we have gg = {X ⊕ g(X): X ∈ g+} = {X ⊕ α(f(X)): X ∈ g+} =
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F{X ⊕ f(X): X ∈ g} = F (gf ). Suppose that f = σ and that g is complex,
then F |g+ = idg+ is complex and F |g− = α is complex conjugate. Thus F is
neither complex nor complex conjugate.

Proposition 4. Let a be a complex Lie algebra with a simple real form g
and a real subalgebra g∗ which is isomorphic to g . Then one of the following
mutually exclusive cases occurs:

(A) There is a complex automorphism F : a→ a with F (g) = g∗ .

(B) a is not simple, and there is a special real autmorphism F : a→ a which
is neither complex nor complex conjugate with F (g) = g∗ .

(C) a is not simple, and g∗ is one of the two unique ideals g+ or g−

with a = g+ ⊕ g− . There is no isomorphism of a mapping g to g∗ ,
but the projection onto g∗ is a complex endomorphism of a mapping g
isomorphically onto g∗ .

Proof. Since g∗ ∼= g , the real subalgebra g∗ is simple. By Remark 1, we have
two cases: Case (i): g∗ ⊕ ig∗ . Case (ii): ig∗ = g∗ .

In Case (i), Lemma 2 shows the existence of an endomorphism F of a
with F (g) = g∗ . If a is simple, then F must be an automorphism. If a = g+⊕g−

then the complex endomorphism F must respect the two summands. If it were
zero on one of the summands, then g would have to be contained in the other,
but g is contained in neither. Hence F is an automorphism and we are in Case
(A).

In Case (ii), because of g ∼= g∗ , the algebra a is the complexification of
the underlying real algebra of a complex simple Lie algebra and is therefore of
the form g = g+ ⊕ g− according to remarks preceding Lemma 3. The following
mutually exclusive cases occur: (a) g∗ = g+ . (b) g∗ = g− . (c) g∗ is a complex
graph subalgebra. In Cases (a) and (b) we have Case (C) of the Proposition.
Then g∗ is an ideal while g is not. Hence no real or complex automorphism of
a maps g onto g∗ . In Case (c) we apply Lemma 3 to the two graph subalgebras
g = gσ and g∗ and find ourselves in Case (B) of the Proposition.

Corollary 5. If a is a simple complex Lie algebra and g a real form, and
if g∗ is a real subalgebra of a which is isomorphic to g then there is a complex
automorphism of a mapping g onto g∗ .

We remark, that the automorphism group Aut(g) of a complex simple
Lie algebra is a semidirect product of the normal connected subgroup Int(g) =
〈eadX : X ∈ g〉 of inner automorphisms by a finite group E , namely, the auto-
morphism group of a basis of a root system. The group E is of order 2 for An ,
n > 1, Dn , n 6= 4, E6 and of order 3 for D4 , and it is trivial in all other cases.
(See [3] or [2], notably p. 298.)

Corollary 6. Let A be a complex simple and simply connected Lie group with
complex conjugation κ , and let G denote the real form of elements fixed under
κ . Let H denote any real analytic subgroup of A whose Lie algebra is isomorphic



Darmstadt 245

to g = L(G) . Then H is conjugate to G under a complex automorphism of A .
In particular, A is closed and isomorphic to H .

Proof. The Lie algebra a of A is the complexification of g and is simple.
Hence we are in Case (A) of Proposition 4 and find a complex automorphism
F : a → a with F (g) = h . We have Aut g = (Inn g)×E = Ad(G)×E with a
finite group E or order 1,2, or 3 according to the list above. Since A is simply
connected, there is a unique automorphism f :A → A inducing F . The group
H is connected (see e.g. [2], p. 214, Theorem 9). The analytic groups H and
f(G) have the same Lie algebra and are both connected. Hence they agree.

If the group of automorphisms of a fixing g as a whole contains an
automorphism which is not inner, or if there are no outer automorphisms of a
then the group of inner automorphisms acts transitively on the set of subalgebras
isomorphic to g . The algebra sl(nC) (realizing type An−1 ) for instance admits
a non-inner involution of the form X 7→ −X> which leaves sl(n,R) invariant. A
similar statement holds for Dn , n odd, and E6 (see [2], 297f.) In such cases, in
Corollary 6, the groups G and H are conjugate under an inner automorphism.
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