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Symmetric spaces and convex cones

Norbert Dörr

1. Introduction

We recall some notation and basic facts concerning convex cones in Lie
algebras. An excellent source of reference is the monograph [5], which tells the
story of convex cones and their relation to Lie semigroups.

A wedge W in a finite dimensional real vector space is a topologically closed
set, which is invariant under multiplication with non-negative scalars and under
addition. In particular, a wedge in this sense is convex. The smallest vector

subspace H(W )
def
= W ∩ −W contained in W is called the edge of the wedge. A

wedge is called pointed, if H(W ) = {0}. Sometimes we call a pointed wedge a
pointed cone. A wedge W is said to be generating if it linearly spans the underlying
vector space.

The subtangent wedge of a point x ∈ W may be defined as

Lx(W )
def
= W − R+·x,

and the tangent space as Tx(W )
def
= Lx(W ) ∩ −Lx(W ).

Let W be a wedge in a finite dimensional Lie algebra. We distinguish
between several invariance properties. A wedge W is called a Lie wedge if
eadH(W )W = W , and an invariant wedge if ead gW = W . A wedge is a Lie semi-
algebra if there exists a CH-neigborhood B , such that (W ∩ B) ∗ (W ∩ B) ⊆ W
holds. Here ∗ denotes the Campbell-Hausdorff multiplication. We have the fol-
lowing hierarchy of wedges and their geometric characterization: a wedge W in a
finite dimensional Lie algebra g is

a Lie wedge ⇐⇒ [H(W ), x] ⊆ Tx(W )
a Lie semialgebra ⇐⇒ [Tx(W ), x] ⊆ Tx(W )
an invariant wedge ⇐⇒ [g, x] ⊆ Tx(W )

for all x ∈ W (resp., x ∈ C1(W ), if W is generating). We have the implications

invariant wedge ⇒ Lie semialgebra ⇒ Lie wedge.

For further details we refer to [5].

2. Symmetric Spaces and symmetric Lie algebras
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Definition 2.1. If τ̂ :G → G is an involutive Lie group automorphism we
denote by Gτ̂ the set of fixed points under τ̂ . A symmetric space is a triple
(G,H, τ̂ ) where G is a connected Lie group and H is a closed subgroup satisfying
(Gτ̂ )0 ⊆ H ⊆ Gτ̂ .

If G is simply connected, then H is connected and the homogeneous space

M
def
= G/H is simply connected. The group G acts on M via µg(xH) = gxH ,

g ∈ G, xH ∈M . As usual, we denote by π:G→M the canonical projection. The
involution τ̂ induces in M a symmetry at ξ = xH as follows. Define sε , ε = H by
sε ◦ π = π ◦ τ̂ and sξ = µg ◦ sε ◦ µg−1 , where µg(ε) = ξ . Beside other properties, ξ

is an isolated fixed point of the involution sξ . The assignment ξ → Q(ξ)
def
= sξ ◦ sε

is called the quadratic representation of M .

Example 2.2. (i) Let G be a connected Lie group and define τ̂ :G×G→ G×G
by τ̂(g, g′) = (g′, g). The set of fixed points is the diagonal ∆(G) = {(g, g) | g ∈
G}, which is a closed subgroup of G×G. Hence (G×G,∆(G), τ̂) is a symmetric
space.

(ii) Let G be a connected Lie group. Assume that τ̂ denotes the complex
conjugation of the complexification GC = G⊗C. Then (GC, G, τ̂) is a symmetric
space.

Definition 2.3. A symmetric Lie algebra is a triple (g, h, τ) where g is a Lie
algebra, τ : g → g is an involutive Lie algebra automorphism, and h is the set of
fixed elements.

In this paper we prefer an equivalent notation. A Lie algebra g = h⊕q is a
symmetric Lie algebra if and only if h is a subalgebra and q is an h-module with
[q, q] ⊆ h. In fact h, resp., q are just the eigenspaces of τ for the eigenvalue +1,
resp., −1.

Every symmetric space (G,H, τ̂ ) determines a unique symmetric Lie alge-
bra via the functor which assigns to a Lie group its Lie algebra. That is, g = L(G),
h = L(H) and τ = dτ̂(1). Conversely, if G is a simply connected Lie group with
Lie algebra L(G) = g and g = h⊕ q is a symmetric Lie algebra, then the analytic
subgroup H of G with Lie algebra L(H) = h, and the lift τ̂ of τ , define on G
the structure of a symmetric space (G,H, τ̂) determing (g, h, τ).

Lemma 2.4. (i) The map

g/h
∼=−→ T (M)gH , X + h 7→ dµg(ε) ◦ dπ(1)(X)

defines an isomorphism of vectorspaces of g/h onto the tangent space of M
at gH .

(ii) The map

q
∼=−→ T (M)gH , X 7→ dµg(ε) ◦ dπ(1)(X)

defines an isomorphism of vectorspaces of q onto the tangent space of M at
gH .
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Definition 2.5. The exponential function of M is defined by Exp: q → M ,
Exp = π ◦ exp.

3. Ordered symmetric spaces

In all that follows let (G,H, τ̂) with M = G/H be a symmetric space and
g = h⊕ q the associated symmetric Lie algebra.

Definition 3.1. A causal structure on M is a G-invariant cone field Θ, i. e.,
for every ξ ∈ M there exists a cone Θ(ξ) ⊆ Tξ(M) such that Θ(µg(xH)) =
dµg(x)Θ(xH) holds for all g ∈ G.

If we identify Tε(M) with g/h ∼= q via Lemma 2.4, the relation µh(ε) = ε
for every h ∈ H implies dµh(ε)(X + h) = (Ad(h)X) + h. In particular, the
cone Θ(ε) is of the form dπ(1)(W ) with a wedge W = h ⊕ C in g satisfying
Ad(H)C = C . Conversely, every wedge W = h ⊕ C with ead hC = C defines a
causal structure on M .

Definition 3.2. On M there is defined a causal order as follows: ξ ≺ η if and
only if there exists an absulutely continuous curve α: [t0, t1]→M with α(t0) = ξ ,
α(t1) = η and α′(t) ∈ Θ(α(t)). A curve with these properties is called a causal
curve.

With ≺ also its closure � is an order on M , and we have ξ � η if and
only if η ∈ {ζ | ξ ≺ ζ}. The manifold M is called globally causal if � is a partial
order.

A G-invariant partial order on M defines an order on G given by x ≤ y if
and only if xH � yH , and a semigroup of positivity S≤ = {x ∈ G | 1 ≤ x}. In
[6] it is shown that the closure of the conal order on M given by the wedge field
Θ(xH) = dµx(ε) ◦ dπ(1)W , where W = h⊕ C with C pointed and generating, is
a partial order if and only if the wedge W is global in the sense of [5], i. e., if and
only if W = L(〈expW 〉). For the details and the definition of the tangent wedge
L(S) of a Lie semigroup S we refer again to [5].

Of particular interest is the case where the set S = expC·H is a closed
semigroup of G.

Example 3.3. Consider the symmetric space (GC, G, τ̂ ) of Example 2.2 (ii).

The corresponding symmetric Lie algebra is gC = g ⊕ i·g. Set W
def
= g ⊕ i·C

where C is a pointed, generating invariant cone of g. Then W has the desired
properties. In [7], Ol’shanskii showed that for semisimple g, the wedge W is
global and that S = (exp iC)·G is a closed semigroup of GC , which plays an
important role in representation theory. In [1], the analogous result is proved
for solvable g and for a more general case, in which the wedge W , however, is
supposed to satisfy an additional condition.

In general two main questions arise. Does there exist a classification of
wedges W = h ⊕ C with Ad(H)C = C ? When does such a wedge happen to
be global? The following is a first step in achieving a partial answer of the first
problem.
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4. Ol’shanskĭı wedges in symmetric Lie algebras

In view of the preceding remarks we have the following definition.

Definition 4.1. A wedge W in a symmetric Lie algebra g = h ⊕ q is an
Ol’shanskĭı wedge, if there is a wedge C ⊆ q such that W = h ⊕ C and the
following holds:

(1) ead hC = C .

(2) There is a Campbell-Hausdorff-neighborhood B in g such that

g(adx)Lx(W ) = Lx(W )

for all x ∈ C ∩B .

Condition (1) implies that C−C and H(C) are h-modules. Then W−W =
h⊕ (C − C) is a symmetric subalgebra of g, in which W obviously is generating.
Therefore, we may often restrict our attention to the case where W is generating.

Let W = h⊕C be an Ol’shanskĭı wedge in a symmetric Lie algebra g = h⊕q

and w = h + c ∈ W . Then for the subtangent wedges and tangent spaces of W ,
resp., C we have

Lw(W ) = h⊕ Lc(C) und Tw(W ) = h⊕ Tc(C).

Furthermore, if W is generating, then w ∈ C1(W ) if and only if c ∈ C1(C).

Theorem 4.2. (Characterization Theorem for Ol’shanskĭı Wedges)For a
wedge W = h ⊕ C in a symmetric Lie algebra g = h ⊕ q the following condi-
tions are equivalent:

(1) W is an Ol’shanskĭı wedge.

(2) W is a Lie wedge.

(3) ead hC = C .

(4) g(ad c)Lc(W ) ⊆ Lc(W ) for all c ∈ C ∩ B with a suitable CH-neighborhood
B ⊆ g.

(5) [h, c] ⊆ Tc(C) for all c ∈ C .

If C is generating in q, then these conditions are equivalent to

(5′) [h, c] ⊆ Tc(C) for all c ∈ C .

In particular, this shows that conditions (1) and (2) of Definition 4.1 are
equivalent.

In order to establish a classification of Ol’shanskĭı wedges, we proceed as in
the classification of Lie semialgebras. The idea is, first to look at low dimensional
examples, and afterwards to find some restriction of the structure in the general
case by use of these test subalgebras. In [3] this is done for three-dimensional
symmetric Lie algebras, almost abelian Lie algebras and for the oscillator algebra.
In the case of a nilpotent symmetric Lie algebra we can say even more.
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Lemma 4.3. Let g = h ⊕ q be a symmetric Lie algebra and W = h ⊕ C an
Ol’shanskĭı wedge. Let i denote the largest ideal of g contained in W . Then i is
a symmetric ideal, i. e., i = ih ⊕ iq . In particular, if W contains any ideal of g,
then it contains also a symmetric one.

Definition 4.4. An Ol’shanskĭı wedge W = h ⊕ C is called reduced, if W is
generating and does not contain any non-zero ideals of g. If W is an Ol’shanskĭı
wedge, we denote by iW the largest symmetric ideal of W −W that is contained
in W .

If i = ih ⊕ iq is a symmetric ideal in a symmetric Lie algebra g = h ⊕ q,
we endow the factor space g = g/i with a structure of a symmetric Lie algebra
g = h ⊕ q in a canonical way. The quotient map sends h onto h, which is
isomorphic to h/ih , and it maps q onto q, which can be identified with q/iq .
With this preparations we can define the reduction W/iW of an Ol’shanskĭı wedge
W , since by Lemma 4.3 the ideal iW is symmetric.

Lemma 4.5. Let g = h⊕ q be a symmetric Lie algebra and W an Ol’shanskĭı
wedge. Then W/iW is a reduced Ol’shanskĭı wedge in (W −W )/iW .

Definition 4.6. An Ol’shanskĭı wedge W = h⊕C in a symmetric Lie algebra
g = h⊕ q is called q-trivial, if [[q, q], q] ⊆ C holds.

Proposition 4.7. Let W = h ⊕ C be a generating Ol’shanskĭı wedge in a
symmetric Lie algebra g = h⊕ q. Then the following conditions are equivalent:

(1) W is q-trivial in g.

(2) The reduction W/iW is q/iW -trivial in g/iW .

(3) [q/iW , q/iW ] = {0} and W/iW is q/iW -pointed.

(4) [q/iW , q/iW ] = {0}.

Let g = h⊕ q be a symmetric Lie algebra. We define

q[0] = q, . . . , q[m+1] = [q, q[m]], m ∈ N.

If n is even, then q[n] ⊆ q is an h-submodule, and if n is odd, q[n] is an ideal of
h.

Definition 4.8. A symmetric Lie algebra g = h ⊕ q is called q-nilpotent, if
q[n] = {0} for a suitable n ∈ N.

With this preparations we have the following result, which gives a also
complete classification in nilpotent symmetric Lie algebras.
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Theorem 4.9. (q-Triviality Theorem — The q-Nilpotency Theorem) Let g =
h ⊕ q be a q-nilpotent symmetric Lie algebra. Then every generating Ol’shanskĭı
wedge in g is q-trivial.

Corollary 4.10. Let n = nh ⊕ nq be a nilpotent symmetric subalgebra of a
symmetric Lie algebra g = h⊕ q and W = h⊕ C a generating Ol’shanskĭı wedge
with n ∩ intW 6= Ø. Then [[nq, nq], nq] ⊆ H(C) holds.

The idea is to apply Corollary 4.10 to symmetric Cartan algebras which
intersect intW . In [4] and [8] it is proved, that symmetric Cartan algebras in
arbitrary symmetric Lie algebras do exist. The classification of invariant cones
shows, what important tool Cartan algebras may be. Perhaps, they happen to be
of nearly the same importance in our situation.

Invariant Ol’shanskĭı wedges and Ol’shanskĭı semialgebras

If W = h ⊕ C is not only an Ol’shanskĭı wedge, but also satisfies further
invariance properties, such as being invariant or being a Lie semialgebra, we can
give a complete desription of the structure of the underlying Lie algebra.

Definition 4.11. An Ol’shanskĭı wedge W in a symmetric Lie algebra g is an
Ol’shanskĭı semialgebra, resp., an invariant Ol’shanskĭı wedge if and only if W is
a Lie semialgebra, resp., an invariant wedge.

Recall that a wedge W in a Lie algebra g is called trivial if and only if the
commutator algebra is contained in W .

Proposition 4.12. For a wedge W = h ⊕ C in a symmetric Lie algebra
g = h⊕ q the following conditions are equivalent:

(1) Tx(W ) is an ideal for all x ∈ W .

(2) W is an invariant Ol’shanskĭı wedge.

(3) [q, h] ⊆ H(C).

(4) H(W ) is an ideal in g.

(5) W is trivial.

If C is pointed, then these conditions are equivalent to

(3′) [q, h] = {0}.

(4′) h is an ideal of g.

This proposition tells us that invariant Ol’shanskĭı wedges occur very rarely.
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Theorem 4.13. (Classification of symmetric Lie algebras with invariant Ol’-
shanskĭı wedges) Let q be a vectorspace and h a Lie algebra with centre z(h).

Further, let κ: q× q→ z(h) be a skew-symmetric, bilinear map. Then gκ
def
= h⊕ q

with the bracket
[(h, q), (h′, q′)] = (κ(q, q′) + [h, h′], 0)

for q, q′ ∈ q, h, h′ ∈ h is a Lie algebra for which the following holds:

(1) h is an ideal in gκ .

(2) [q, q] ⊆ z(h).

For any pointed wedge C ⊆ q the wedge W = h ⊕ C is an invariant Ol’shanskĭı
wedge in gκ .

Conversely, if g = h⊕ q is a symmetric Lie algebra supporting an invariant
Ol’shanskĭı wedge W = h ⊕ C with C pointed, then g is isomorphic to gκ with
κ(q, q′) = [q, q′] for q, q′ ∈ q.

This gives a complete classification of symmetric Lie algebras supporting
an invariant Ol’shankĭı wedge W = h⊕ C with C pointed.

Proposition 4.14. For a wedge W = h ⊕ C in a symmetric Lie algebra
g = h⊕ q the following conditions are equivalent:

(1) Tx(W ) is a subalgebra for all x ∈ W .

(2) W is an Ol’shanskĭı semialgebra.

(3) Tc(C) is an h-module for all c ∈ C .

If the wedge C is generating, these conditions are equivalent to

(3’) Tc(C) is an h-module for all c ∈ C1(C).

Theorem 4.15. (The Decomposition Theorem for Ol’shanskĭı Semialgebras)
Let W = h ⊕ C be an Ol’shanskĭı semialgebra in a symmetric Lie algebra g =
h ⊕ q and assume C is pointed and generating. Then the h-module q has a
decomposition

q = q0 ⊕ q+ with q+ =
∑

α∈Ω

qα,

where Ω ⊆ ĥ \ {0}. Further, the following holds:

(i) The weight spaces are given by

q0 = {x ∈ q | [h, x] = 0 for h ∈ h}
=

⋂
{Tc(C) | c ∈ C1(C), αc 6= 0}.

qα = {x ∈ q | [h, x] = α(h)x for h ∈ h}
=

⋂
{Tc(C) | c ∈ C1(C), αc 6= α}.
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(ii) W is the intersection of hyperplane Ol’shanskĭı semialgebras and an invari-
ant Ol’shanskĭı wedge. More precisely,

W = W0 ∩
⋂

α∈Ω

Wα,

where W0 = h⊕ C̃0 is invariant and Wα = h⊕ C̃α are semialgebras.

(iii) The wedge W is adapted to the root decomposition in (i). There exist pointed
generating cones C0 in q0 and Cα in qα such that

W = h⊕ C0 ⊕
∑

α∈Ω

Cα.

With this result, we are able to classify all symmetric Lie algebras sup-
porting generating Ol’shanskĭı semialgebras in the same way as we classified Lie
algebras supporting invariant Ol’shanskĭı wedges in Theorem 4.13.

A generating Lie semialgebra W is called reduced, if the edge H(W ) con-
tains no non-trivial ideal of g. In the case of symmetric Lie algebras which contain
reduced Ol’shanskĭı semialgebras, we can say even more.

Theorem 4.16. If the symmetric Lie algebra g = h ⊕ q supports a reduced
Ol’shanskĭı semialgebra W = h ⊕ C , then g = sl(2,R)m ⊕ r with r′′ = {0} and
[rq, rq] = {0} where rq = r ∩ q. There exist generating Ol’shanskĭı semialgebras
Ws ⊆ sl(2,R)m and Wr ⊆ r such that W = Ws ⊕Wr .
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[2] —, Ol’shanskĭı wedges in symmetric Lie algebras, 1991, preliminary ver-
sion.
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