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Extension of Positive Definite Functions
on Lie Groups

Jürgen Friedrich

The aim of this paper is to give a survey of results and questions concern-
ing the problem of extending a continuous positive definite function from an open
neighborhood of the neutral element of a Lie group to the whole group retain-
ing positive definiteness. Whereas most positive results concern abelian groups,
there are methods which carry over to non-commutative groups and which may
prove useful to treat the extension problem in this case.

1. Definitions and Historical Remarks

Let G denote a Lie group, V a symmetric open neighbourhood of the
neutral element e of G , H a Hilbert space, and B(H) the Banach space of
bounded operators in H . A function F :V 2 = V −1V → B(H) is said to be
positive definite (p.d.), if

(1)
n∑

j,k=1

〈F (x−1
k xj)ξj, ξk〉 ≥ 0

for all n ∈ N , x1, . . . xn , and ξ1, . . . , ξn ∈ H . If the Hilbert space H is one-
dimensional, we may and shall identify B(H) and C . Thus we have the following
definition for positive definiteness of a scalar-valued function f :

n∑

j,k=1

λjλkf(x−1
k xj) ≥ 0

for all n ∈ N , x1, . . . xn ∈ V , and λ1, . . . , λn ∈ C .

If G is specified to be the real line R , then V = (−a, a) with some a ,
0 < a ≤ ∞ , and the positive definiteness of f on (−2a, 2a) means that

n∑

j,k=1

λjλkf(xj − xk) ≥ 0

for all n ∈ N , |xj | ≤ a , j = 1, . . . , n , and λ1, . . . , λn ∈ C .

In the following we will be interested mostly in continuous positive def-
inite functions. Therefore we state the following property, which easily may be
obtained from the definition with n = 3 (cf. e.g. [11]):
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Proposition 1. For a positive definite (operator-valued) function F on the
open set V −1V the following are equivalent:

(i) The function F is weakly continuous at the neutral element e of G , i.e.,
the mapping x→ 〈F (x)ϕ, ψ〉 is continuous at e for all ϕ, ψ ∈ H .

(ii) F is uniformly strongly continuous on V −1V , i.e., the mapping x →
F (x)ϕ is uniformly continuous for all ϕ ∈ H .

Thus there is no danger of confusion if we denote a positive definite
function satisfying the conditions of this proposition as a continuous positive
definite (c.p.d.) function.

Examples 2. (i) One can show that the functions fb , 1 ≤ b ≤ ∞ , defined by

f∞(x) = max(0, 1−|x|) and fb(x) = max(0, 1−min{|x−bk| : k ∈ N}), 1 ≤ b <∞

are p.d. functions on the real line.

(ii) The function f(x) = e−
x2

2 is positive definite. A well known theorem
of Bochner states that any c.p.d. function on the real line is the Fourier transform
of a non-negative finite Borel measure on R [7].

(iii) Suppose that U is a strongly continuous unitary representation of
the Lie group G in the Hilbert space H . Consider another Hilbert space K and
a bounded linear mapping A:K → H . Then F defined by F (x) = A∗U(x)A is
a c.p.d. function (with values in B(K)). Note that any c.p.d. function on G is
of that kind.

In 1940, M. G. Krein [19] posed the question whether any c.p.d. func-
tion on an interval (−2a, 2a), 0 < a , has a c.p.d. extension to the whole real
line. He answered it in the affirmative and gave a description of all possible
extensions for the case that they are not unique. Example 2(i) above shows that
non-uniqueness is possible. Krein used an extension theorem for positive linear
functionals in his proof. A direct proof was given by Raikov in [26]. Arte-
menko showed that also discontinuous p.d. functions on an interval admit a p.d.
extension to the real line [2], reprinted in [3, 4]. This fact can also be proved
by using a Krein-Rutman extension property. The corresponding problem for
operator-valued functions seems to be open:

Problem. Suppose that the function F : (−2a, 2a) → B(H) is discontinuous
and positive definite, and that dimH > 1. Does there exist a p.d. extension to
the entire real line?

Other questions (not being discussed here) concern measurability of p.d.
extensions [9, 29].

Whereas p.d. functions on intervals do always admit a p.d. extension,
this is not true for p.d. functions given on a square in R2 [27]. The crucial point
in the proof of this fact is that there are nonnegative polynomials in two real
variables, which are not representable as sums of squares of polynomials. Later



Friedrich 227

on Rudin also showed [28] that an extension is possible if the function is given
on a disk around zero and if it is rotationally invariant.

As reported in [20], another positive result was already obtained by
Livshic in 1945 [21], but was not published in a journal: Any c.p.d. function
on (−2a, 2a) × R admits a p.d. extension to the plane. The proof uses opera-
tor methods. This result was generalized by Levin and Ovcharenko [20] to
discontinuous p.d. functions.

Akutovich [1] and Devinatz [8] described the uniqueness of the exten-
sion of a scalar p.d. function from an interval in terms of the self-adjointness of
a certain operator. Berezanskij and Gorbachuk [6] characterized all exten-
sions of a c.p.d. function on (−2a, 2a)×R to R2 via commutation properties of
a certain family of operators. A description of all extensions of operator-valued
c.p.d. functions was given in [12].

A nice survey on p.d. functions is [32].

In the following section we will discuss how Hilbert spaces and operators
therein are involved in the extension problem.

2. The Gelfand-Naimark-Segal Construction

First we state the fact that a weakly continuous function F :V −1V →
B(H) is p.d. if and only if

∫

V

∫

V

〈F (x−1y)ϕ(x), ϕ(y)〉dx dy ≥ 0

for all continuous functions ϕ:V → H with compact support in V . Here dx
denotes a left invariant Haar measure on G . For scalar valued functions F this
property follows from (1) by approximating the measure ϕ(x)dx by measures
with finite support in the vague topology. The opposite direction follows from
the fact that any measure with finite support can be approximated by measures
of the form ϕ(x)dx in the vague topology, where ϕ is as above. Using a some
extra technique, a similar argument can be used in the general case.

Now we construct a Hilbert space K as follows. We start with the linear
space K of all continuous functions ϕ:V → H with compact support in V . On
K we define a sesquilinear form [·, ·] by

(2) [ϕ, ψ] =

∫

V

∫

V

〈F (x−1y)ϕ, ψ〉dx dy.

This sesquilinear form is positive semidefinite because of the positive
definiteness of F . Let N = {ϕ ∈ K : [ϕ, ϕ] = 0} and let K0 denote the quotient
space K/N . The Cauchy-Schwarz inequality yields that the sesquilinear form is
constant on equivalence classes . Thus it defines an inner product on K0 . Now the
Hilbert space K is defined to be the completion of K0 w.r.t. the corresponding
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norm. For simplicity of notation we will not distinguish vectors in K and their
equivalence classes. Similarly, we retain the notation for the inner product.

Suppose now that V = G . Then the mapping U(z) defined on ϕ ∈ K0

by (U(z)ϕ)(x) = ϕ(z−1x), x ∈ G , and then extended to the whole space K
by continuity, is unitary because of (2) and the left invariance of Haar measure.
Moreover, the continuity of F implies the strong continuity of the mapping
z → U(z), i.e., U is a unitary representation of G .

Let δ denote the unit point measure concentrated at e ∈ G and ξ ∈ H an
arbitrary vector. If {ϕn}∞n=1 is a sequence of non-negative functions such that the
measures ϕ(x)dx tend to δ , then it follows from (2) that [U(x)(ϕ(·)ξ), (ϕ(·)ξ)]
converges to 〈F (x)ξ, ξ〉 , which means that F may be recovered from U .

For V 6= G , the above construction is impossible, since the linear space
K is not translation invariant in that case. There remains the possibility of
defining an infinitesimal representation ρ of G .

In order to explain this procedure, let g denote the Lie algebra of G
and E(g) the enveloping algebra of g . The enveloping algebra carries a natural
involution which is defined by X∗ = −X , X ∈ g .

Now we define a ∗ -representation ρ of E(g) by operators on a certain
vector subspace D(ρ) of K as follows: The vector space D(ρ) shall consist of
(the classes of) all infinitely differentiable H -valued functions on V with compact
support. We define

(∗) (ρ(X)ϕ)(x) =
d

dt
ϕ(exp(−tX)x)

∣∣∣∣
t=0

for X ∈ g and ϕ ∈ D(ρ).

The mapping ρ preserves brackets and thus extends uniquely to a ∗ -representat-
ion of the ∗ -algebra E(g) by the universal property of E(g).

If V = G and U is the unitary representation defined above, then U
and ρ are connected via

ρ(X)ϕ =
d

dt
U(exp(tX))ϕ

∣∣∣∣
t=0

, X ∈ g, ϕ ∈ D(ρ).

If a unitary representation U and a ∗ -representation ρ are connected as in (3),
we call ρ the derived representation of U and write ρ = dU . We will say that ρ
is extendible, if it can be represented as a restriction of a derived representation
in a possibly larger Hilbert space. The action of any such extension (if there
is one) in the original Hilbert space is completely determined by ρ , i.e., their
differences appear only in the extension space (cf. [12]). Thus we have the
following situation (cf. e.g. [18]):

Proposition 3. A c.p.d. function F :V −1V → B(H) has a p.d. extension to
the whole group if and only if ρ is extendible.

Criteria for extendibility of ∗ -representations were given e.g. in [25] and
[16].

Thus we have arrived at the more general problem of extendibility of ∗ -
representations of enveloping algebras. There seem to be essentially two methods
to treat this situation.
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The first one establishes an equivalence of extendibility and a certain
positivity of ρ , called complete strong positivity, which was considered first by
Powers in [25]. In fact Powers considered extendibility within the same
Hilbert space. The extendibility problem in the sense defined above was treated
by Jørgensen [16]; see also [31], Chapter 11). To translate these results into the
extension problem for p.d. functions, we have to carry over the corresponding
definitions which mean a stronger positivity property for F .

A matrix (Eij)
∞
i,j=1 of infinitely differentiable functions on G is said to

be of positive type, if

n∑

i,j=1

m∑

k,l=1

λikλjlEij(x
−1
ik xjl) ≥ 0

for all natural numbers n,m , all xik ∈ G , and all complex numbers λik ,
i = 1, . . . , n , k = 1, . . . ,m .

Suppose that π(a) is the differential operator corresponding to a ∈ E(g)
and acting on differentiable functions on G . Note that π is defined as an algebra
homomorphism and by

(π(X)h)(x) =
d

dt
h(exp(−tX)x)

∣∣∣∣
t=0

, X ∈ g.

A matrix (aij)
∞
ij=1 with entries in E(g) (only finitely many of them being

different from zero) is said to be strongly positive, if

∞∑

i=1

∞∑

j=1

(π(aij)Eij)(e) ≥ 0

for all matrices (Eij)
∞
i,j=1 of positive type.

Consider a scalar p.d. function F = f on V −1V . It is said to be
completely strongly positive, if

∞∑

i,j=1

[π(aij)ϕi, ϕj] ≥ 0

for all infinitely differentiable functions ϕi , i = 1, 2, . . . with compact support in
V . The form [.,.] is as in (2).

Now we are ready to state the following characterization of extendibility
of (scalar) p.d. functions which is nice but seems not to be appropriate for the
solution of concrete extension problems.

Proposition 4. The p.d. function f is extendible if and only if it is completely
strongly positive.

A second method for extending positive definite functions is based on
the following theorem (cf. [16, 30]).



230 Friedrich

Proposition 5. Suppose that g is abelian and admits a decomposition g =
span(X)⊕ g0 , X ∈ g such that the restriction of the ∗-representation ρ of E(g)
to E(g0) is integrable. Then ρ is extendible.

This result may be applied to p.d. functions to give the following result
[14]:

Proposition 6. If G is an abelian topological group and F an operator-valued
c.p.d. function on (−2a, 2a)×G , then F is extendible to the whole group R×G .

This result can also be obtained from Sz.-Nagy’s dilation theory, e.g.
from Prop.9.2, Chapter I, in [33] (see [14]), which also leads to uniqueness of the
extension under certain additional assumptions.

3. Integral Representations

A generalized version of Bochner’s theorem says that any c.p.d. (scalar)
function f on a locally compact abelian group G admits an integral representa-
tion of the form

(5) f(x) =

∫

Γ

[γ, x]µ(dγ),

where Γ is the dual group of G , [γ, x] the value of the character γ at x ∈ G ,
and µ a non-negative finite Borel measure on Γ. This is the origin of another
idea for the extension of c.p.d. functions. If G is an additively written locally
compact abelian group, and if f :V − V → C is c.p.d., then we try to find an
integral representation for f as in (5). As a by-product, we obtain an extension
of f defined by (5) outside V − V . A particular result in Nussbaum’s papers
[23] and [24] is that any c.p.d. rotation-invariant function on the unit ball in
Rn has such an integral representation. In particular, this gives another proof
of Rudin’s result in [28]. With a suitable generalization of the technique we
obtained the following result [11]:

Proposition 7. Let G0 denote a locally compact abelian group, G the group
Rn × G0 , and V = {s ∈ Rn : ‖s‖ < a} × G0 . Then a c.p.d. operator-valued
function F on V −V has a c.p.d. extension to the whole group G , if n=1 or if
F is invariant w.r.t. rotations in Rn .

We want to sketch the idea of the proof in the case of a c.p.d. function
f : (−2a, 2a)→ C . First we apply the GNS-construction as described in Section
2. If X is a basis vector of the one-dimensional Lie algebra g , the operator
A = iρ(X), acting by Aϕ = −iϕ′ is symmetric. Let A denote any self-adjoint
extension of it in a possibly larger Hilbert space K ⊇ K . Then K decomposes
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into a direct integral consistent with the action of A :

K =

∫ ⊕

R

K(λ)µ(dλ)

Aϕ =

∫ ⊕

R

λϕ(λ)µ(dλ).

Since a δ -sequence of functions with compact support in (−a, a) converges in K
(due to continuity of f ), we may consider the δ -distribution as a vector in K .
Thus we obtain a positive definite extension via

f(t) = 〈exp(−itA)δ, δ〉 =

∫

R

e−itλ|δ(λ)|2µ(dλ).

For the technically rather complicated matter of direct integrals of Hilbert spaces
we refer to [10]. To make the steps correctly, one needs essentially a certain
continuity of the generalized eigenfunction decomposition ϕ → ϕ(λ), which is
stated in the so-called nuclear spectral theorem (cf. [31], Theorem 12.2.1). (The
first paper in that direction is probably [15], see also [22] and [5].)

This method of integral decomposition seems to be the only one up to
now which leads to positive results in the non-commutative case, too. At the
end of this paper we shall briefly describe corresponding results from [17]. We
consider the Heisenberg group G = C× R with the composition law

(z, x)(w, y) = (z + w, x+ y + 2Im(zw)).

Let V = {(z, x) ∈ G : |z| < 1
2} and consider a scalar c.p.d. function f on

V −1V = 2V which is invariant w.r.t. rotations (z, x)→ (αz, x), |α| = 1.

Proposition 8. Under these assumptions there is a p.d. kernel k on G such
that

f(x−1y) = k(x, y), x, y ∈ V.
If k may be chosen to be analytic, k(e, ·) is a c.p.d. function extending f to the
whole group.
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