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A short course on the Lie theory of semigroups I

Karl H. Hofmann

This group of three brief lectures* addresses an audience with some
knowledge of the classical theory of Lie groups and Lie algebras, namely, the
Seminar Sophus Lie which was initiated by the Universities of Erlangen, Greif-
swald, and Leipzig and the Darmstadt Institute of Technology and which has
its first meeting, most fittingly, at the University of Leipzig where Sophus Lie
spent the years of 1886 through 1898, the formative years of what we call Lie
theory. The lectures outline the development, in the last decade of Lie’s program
for multiplicatively closed subsets of Lie groups. These are called semigroups and
were already considered by Sophus Lie himself. He had not much more use for
them than demonstrating through their simplest examples that the existence of
an identity element and inverses would not follow from the assumptions he made
to define what he called a group [5]. Today we have several fields of mathemat-
ical research in which they occur naturally. As an example we name the areas
of (i) nonlinear control (Sussmann theory of controllability on manifolds), (ii)
manifolds with a partial order (causality, chronogeometry, geometry), and (iii)
representation theory of Lie groups (Ol’shanskĭı theory).

In the meantime we are interested here in explaining as many aspects as
possible on the foundations of a Lie theory of semigroups: How far do Sophus
Lie’s ideas carry us in this direction? What are the characteristic problems left
open at this time? (The monograph [4] represents the status of the theory up to
about 1988, the collection [6] goes a bit beyond, and new results have become
available since.)

Lie’s mechanism: analysis versus algebra

The basis of success for Lie’s program of classification of Lie groups is
the assignment of the Lie algebra g = L(G) to a Lie group G ; this assignment L
is an equivalence of categories from the category of simply connected Lie groups
to the category of Lie algebras. The exponential function expG: L(G)→ G is a
natural smooth function. For each morphism f :G → H of Lie groups one has
expH ◦L(f) = f ◦ expG , a commutative diagram. (All objects in sight will be
finite dimensional; for an occasionally more general approach see [4].) One has
several ways of concretely working with g .

Number One: We can take for g the Lie subalgebra of all left-invariant

* The lectures were given in German
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vector fields on G in the Lie algebra V(G) of all smooth vector fields on G .
Evaluation at 1 defines an isomorphism of vector spaces g → T (G)1 . The
curve t 7→ exp t·X:R → G is the unique trajectory x:R → G such that
ẋ(t) = X

(
x(t)

)
∈ T (G)x(t) .

Number Two: We take g = T (G)1 , the tangent space at the origin; for
each g ∈ G , the left tranlsation λg:G → G , λg(x) = gx defines a left invariant

vector field X̃ ∈ V(G) via X̃(g) = dλg(1)(X). The assignment X 7→ X̃ is an
isomorphism of vector spaces of g onto the vector space of all left invariant vector
fields on G . The Lie algebra structure can then be transported from the range
to g and the exponential function can be defined as before.

Number Three: We let g denote the set Hom(R, G) of all morphisms of
topological groups R→ G , define exp: g→ G by expX = X(1). Then exp has
a local inverse log at 1 and g carries the structure of a Lie algebra such that
r·X = X(r),

X + Y = lim
t→0

1

t
· log

(
(exp t·X)(exp t·Y )

)

and

[X,Y ] = lim
1

t2
· log[exp t·X, exp t·Y ], [g, h] = ghg−1h−1 in G.

Moreover, if X ∗ Y = X + Y + 1
2 ·[X,Y ] + · · ·+ Hn(X,Y ) + · · · is the Baker–

Campbell–Hausdorff–Dynkin series then, with this local multiplication ∗ ,
also called CH-multiplication exp(X ∗ Y ) = expX expY for all X and Y suffi-
ciently close to 0 in g .

It is not exactly a trivial matter to verify everything needed to establish
the equivalence of the third approach with the other two. If the assertions of
Number Three are postulated it is not too hard to get to the other two set-ups,
the reverse is harder. In the following we shall primarily adopt the second and
the third view point. In particular, we shall associate with every subset S ⊆ G
clustering at 1 a set of subtangent vectors L(S) at the origin via

L(S) = {X ∈ g : (∃Xn ∈ G)(∃rn > 0)X = lim rn·Xn and expXn ∈ S }.

Lie’s machine: From analysis to algebra

If S is a subgroup of G , then L(S) is always a subalgebra of g . What
if S is merely a subsemigroup?

Definition 1.1. (i) A wedge or closed convex cone in a finite dimensional
vector space g is a topologically closed subset w with r·w ∈ w for r ≥ 0 and
w + w = w . The largest vector subspace w ∩ −w of a wedge will be called the
edge of the wedge and will be written h(w). We say that w is a pointed cone if
h(w) = {0} .

(ii) If x is an element of a wedge w we let wx = W + R·x denote the set
of subtangent vectors to w at x and tx(w) = h(wx) the set of tangent vectors
to w at x .
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(iii) A Lie wedge w in a Lie algebra g is a wedge such that

ead xw = w for all x ∈ h(w).

A Lie wedge w is said to be split if g is the direct sum h(w)⊕ q with an h(w)-
submodule q (i. e., a vector subspace satisfying [h(w), q] ⊆ q).

One observes at once that a split Lie wedge is a direct sum w = h(w)⊕ c
where c = q ∩w is a pointed cone. The name “Lie wedge” is justified by

Proposition 1.2. If S is a subsemigroup of G with 1 ∈ S , then L(S) is a
Lie wedge.

(See e. g. [4].)

The representation theoretical condition 1.1(iii) for a Lie wedge can be
transformed in a geometrical one:

Proposition 1.3. A wedge w in a Lie algebra g is a Lie wedge if and only if

[x, h(w)] ⊆ tx(w) for all x ∈ w.

Thus Lie’s machine produces, from the input of a semigroup in the group,
not only a purely algebraic object but one in which both algebra and convex
geometry play a role.

Of course, every subalgebra of g is a Lie wedge. A little less trivially,
but still clearly, a Lie wedge which is also a vector space is a subalgebra.

For the present discussion these cases are degenerate and we turn to
genuine wedges.1 On the other hand, there are the following extreme cases
among the genuine wedges:

Extreme Case 1. w is a pointed cone in a Lie algebra g . Every such cone is
a Lie wedge by default.

Extreme Case 2. w is a half-space (bounded by a hyperplane). Such a wedge
is a Lie wedge if and only if the boundary h(w) is a subalgebra. Conversely, if
h is any hyperplane subalgebra of g then the two half spaces bounded by h are
half-space Lie wedges.

Both of these extreme cases are illustrations of what might occur. There
is no restriction on pointed cones whatsoever. Half-space Lie wedges occur as
frequently as hyperplane subalgebras. One can classify these in every given
Lie algebra g . Their intersection is a characteristic ideal ∆(g) so that every
hyperplane subalgebra h contains ∆(g) and h 7→ h/∆(g) is a bijection between
the respective sets of hyperplane subalgebras. The factor algebra g/∆(g) is a
direct sum of a certain metabelian Lie algebra r and a finite number of copies

1 The distinction is substantial from a topological point of view: If one intersects an

n -dimensional vector subspace with the unit sphere (with respect to some norm) one obtains a

sphere Sn−1 . If one intersects a genuine n -dimensional wedge with the unit sphere one obtains

an n−1 cell homeomorphic to In , I=[0,1] .
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of sl(2,R). The radical r has a structure which one can describe in terms of the
so-called base roots, i. e. nonzero linear functionals α: g → R vanishing on r′ .
Indeed if B is the finite set of all of these then r = h⊕r′ where the Cartan algebra
h of r is abelian and the commutator algebra r′ is the direct sum

⊕
α∈B mα of

abelian ideals mα such that [x,m] = 〈α, x〉·m for all x ∈ r and m ∈ mα .
A hyperplane subalgebra of r either contains r′ or is any hyperplane meeting
mα in a hyperplane for some α and contains mβ for β 6= α . A hyperplane
subalgebra of g/∆(g) meets r in a hyperplane subalgebra and contains all the
sl(2)–summands, or else it contains r and all but one sl(2) summands, meeting
this last one in one of the well-known plane-subalgebras of sl(2,R). (These are
the planes which are tangent to the double cone of the vectors κ(X,X) ≤ 0 with
the Cartan-Killing form κ of (2,R).) The simplest kind of Lie algebra of the
type of r consist of the block matrices



r·En−1




r1,
...

rn−1




0 0


 , r1, . . . , rn−1, r ∈ R.

together with abelian algebras these algebras are called almost abelian algebras.

The intersection of a family of Lie wedges is again a Lie wedge. Hence
intersecting a bunch of half-space Lie wedges is again a Lie wedge; this supplies
us with a class of Lie wedges which, accordingly, we consider as well-understood.
Let us call them special Lie wedges for the sake of the argument. (They are also
called intersection algebras. Of course, all wedges containing the commutator
algebra [g, g] are special; in fact we call them trivial Lie wedges. In any almost
abelian Lie algebra every wedge is special.

Why are special Lie wedges special? On a Lie algebra g we have an
open convex symmetric neighborhood B of zero on which the CH-multiplication
∗:B×B → g is defined. If h is a Lie subalgebra, then (h∩B)∗(h∩B) ⊆ h . Is this
still true when we take a Lie wedge w instead of a Lie algebra h? The answer
is yes (for any B on which we can ∗ -multiply) if we take a half-space Lie wedge,
and consequently this remains true for all special Lie wedges. However, if one
begins to inspect pointed cones w in a Lie algebra g one recognizes quickly, that
it is very rarely the case that w is closed under the local ∗ -multiplication. The
simplest non-abelian Lie algebra which is not almost abelian is the Heisenberg
algebra g = span(P,Q,E) with [P,Q] = E (and zero brackets otherwise). Let
G denote the Lie group defined on g by the globally defined CH-multiplication
(X,Y ) 7→ X + Y + 1

2 [X,Y ] . The identity function g → G is the exponential
function. The set S = {x·P +y·Q+z·E : 0 ≤ x, y, |z| ≤ 1

2xy} is a subsemigroup
of G with L(S) = R+·P + R+·Q , R+ = [0,∞[ . Because of x·P ∗ y·Q =
x·P + y·Q + 1

2xy·E every element of S is a product of two elements of L(S).
Thus (S ∩ B) ∗ (S ∩ B) ⊆ L(S) for no neighborhood B of 0 and L(S) is not
special. (This example and numerous others are discussed in [4].) The special Lie
wedges suggest a class of Lie wedges which are described through the following
definition
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Definition 1.4. A wedge w in a Lie algebra g is called a Lie semialgebra if
there is a neighborhood B of 0 in g such that the multiplication ∗ is defined on
B × B and that (w ∩B) ∗ (w ∩B) ⊆ w .

For Lie semialgebras, too a geometric description is available.

Proposition 1.5. A wedge w in a Lie algebra g is a Lie semialgebra if and
only if

[x, tx(w)] ⊆ tx(w) for all x ∈ w.

It is a remarkable fact that Lie semialgebras can be classified, whereas
we are far away from a classification of Lie wedges in general. More about this
in the lecture by Eggert!

Finally Lie’s machine yields from the input of a normal subgroup N of
a Lie group G an ideal L(N) of L(G). One way of describing ideals is saying
that a vector subspace i of a Lie algebra g is an ideal if and only if it is invariant
under all inner automorphisms:

eadX i = i for all X ∈ G.

If we are given a semigroup S ⊆ G which is invariant under all inner
automorphisms of G , then w = L(S) is invariant under all inner automorphisms
eadX of g = L(G). This calls for a definition.

Definition 1.6. A wedge w in a Lie algebra g is calledinvariant if

eadXw = w for all X ∈ g.

The geometric characterisation of invariant wedges is as follows:

Proposition 1.7. A wedge w in a Lie algebra g is invariant if and only if

[x, g] ⊆ tx(w) for all x ∈ w

A vector space is an invariant wedge if and only if it is an ideal. Invariant
wedges are, in essence classified; more on this in the lectures by Neeb and
Zimmermann! (See also [4].)

Lie’s machine: From algebra and convex geometry to analysis

Even in classical Lie theory, the reverse operation is harder. In essence
this is Lie’s Third Fundamental Theorem: For every Lie algebra g there is a
Lie group G such that L(G) ∼= g . This, in particular, yields the Corollary: If
G is a Lie group and h a subalgebra of g = L(G) , then there is an analytic
subgroup H of G with L(H) = h . In fact, the most efficient proof today leads
via Ado’s Theorem—saying that every Lie algebra has a faithful representation
in gl(n) = L

(
Gl(n)

)
—and via the Corollary to Lie’s Third Theorem. A Lie

wedge w has, in and as of itself no independent existence. It exists in a Lie
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algebra g . The best we can do in removing redundancy is to require that g is
generated as a Lie algebra by w . Thus we consider pairs (g,w) consisting of a
Lie algebra g and a Lie wedge w generating g . If g = L(G) with a Lie group
G and with a subsemigroup S such that w = L(S) and exp w ⊆ S then S
has dense interior intS which satisfies S(intS) ∪ (intS)S ⊆ S an—important
result which essentially comes from control theory. We aim for what would be
a natural generalisation of the Corollary to Lie’s Third Theorem: Given a Lie
wedge w generating the Lie algebra g and a Lie group G with L(G) = g then
we find a subsemigroup S of G such that L(S) = w . This is false most of the
time as one recognizes most strikingly for any compact semisimple Lie algebra
g and any pointed (hence Lie

)
wedge with inner points in g . Any connected

Lie group G with L(G) ∼= g is compact. If S is a subsemigroup of G with
L(S) = w then S is closed subsemigroup of a compact group and therefore is a
group; since it has nonempty interior it agrees with G . Hence S is dense in G
whence L(S) = g . But even in the Lie algebra g of Lie groups diffeomorphic
to Rn such as the Heisenberg group G there are pointed wedges w for which
there is no semigroup S in G such that L(S) = w (see [4].) The frame of mind
in which these phenomena are to be treated is that of nonlinear control theory.
Before we go on to formulate what should be the right version of Lie’s Third
Theorem for semigroups we record that a local version is correct for semigroups.
Historically, Lie’s own formulation had to be a mere local version, too, because
his theory was local while his examples were global.

Proposition 1.5. If w is a Lie wedge in the Lie algebra g of a Lie group G ,
then there is an open neighborhood U of 1 in G and a subset S ⊆ U satisfying
the following conditions:

(i) 1 ∈ S and SS ∩ U ⊆ S
(ii) L(S) = w .

(For a proof see e. g. [4].)

Definition 1.6. A set S ⊆ G satisfying (i) and (ii) is called a local subsemi-
group of G with respect to U .

The following conjecture is consistent with what we know today:

Conjecture 1.6. For every pair (g,w) consisting of a Lie algebra and a Lie
wedge w generating g as a Lie algebra there are

(i) a (simply connected) Lie group G with L(G) = g ,

(ii) a pathwise connected (and simply connected) topological semigroup S ,
and

(iii) a continuous morphism of semigroups with identity p:S → G and

(iv) open identity neighborhoods U and V of S and G , respectively, such
that

(a) p|U :U → p(U) is a homeomorphism and p(U) is a local sub-
semigroup of G with respect to V .

(b) L
(
p(U)

)
= w .
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Proposition 1.7. (W. Weiss) If w is pointed then Conjecture 1.6 is correct.

Very little is known beyond this general result. Better progress was
made regarding the question when for a given Lie group G , and for a given Lie
wedge w in g = L(G) there exists a semigroup S in G such that L(S) = w .
Such wedges w ⊆ g we call global with respect to G and simply global if G is
simply connected. First results are to be found in [4], and better insights are due
to Neeb. As a first orientation we can formulate the following necessary and
sufficient condition:

Proposition 1.8. A Lie wedge w ⊆ L(G) is global with respect to a connected
Lie group G if and only if the analytic subgroup H with L(H) = h(w) is closed
and there is a smooth function τ :G → R such that for all X ∈ w \ h(W ) and
all g ∈ G the number 〈dτ(g), dλg(1)(X)〉 is positive.

Such functions τ are also called strictly positive. Their geometric signifi-
cance is as follows: One may say that the homogeneous space M = G/H carries
a causal structure defined by the transport via the left action of G on M of the
pointed cone w/h(W ) to each tangent space T (M)gH , yielding a unique pointed
cone θ(gH) in this tangent space. The fact that w is a Lie wedge is exactly
adequate for this formalism to work. The prescription of strictly positive func-
tions on G as specified above and that of strictly positive functions on M are
one and the same thing; on M one could call such a function a global time since
every “time like” curve t 7→ x(t): [t0, T ] → M with ẋ(t) ∈ θ

(
x(t)

)
then can be

assigned an eigentime τ
(
x(t)

)
= τ

(
x(t0)

)
+
∫ t
t0
〈dτ
(
x(s)

)
, ẋ(s)〉 ds which allows a

reparametrisation of the curve to an equivalent curve ξ: [τ
(
x(t0)

)
, τ
(
x(T )

)
]→M

given by ξ(r) = x
(
(τ ◦ x)−1(r)

)
with τ

(
ξ(r)

)
= r .

Special Lie wedges are always global since half-space Lie wedges are
global and the property of globality is compatible with the formation of inter-
sections. Invariant wedges are not always global. Neeb’s lecture will contain
more on this. The issue of globality of invariant cones will settle the question of
globality of Lie semialgebras.

An observation on Lie’s Third Theorem

Concerning the consideration of pairs (g,w) one should observe that the
statement that w generates g sometimes imposes undesireable restrictions. Let
us discuss this aspect briefly, illustrated in the context of split wedges w = c + h
with g = q + h and c = w ∩ q , h = h(w).

We form the semidirect sum g×ad h with ad: h → Der(g) given by
ad(X)(Y ) = [X,Y ] . In other words, on g × h we consider the componentwise
vector spaces structure and the bracket given by

(1) [(X,Y ), (X ′, Y ′)] = ([X,X ′] + ad(Y )(X ′)− ad(Y ′)(X), [Y, Y ′]).

The we have a surjective morphism of Lie algebras σ: g×ad h→ g with kernel

ker(σ) = {(−Y, Y ) : Y ∈ h} ∼= h.
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If Y ∈ h then ad(0, Y ) on g×ad h is (adY, adY ) by (1) and thus ead(0,Y ) =

(eadY , eadY ). It follows that g# def
= q × h is a subalgebra of g×h such that

σ|g#: g# → g is an isomorphism on account of ker(σ) ∩ (q× h) = {(0, 0)} . Fur-

thermore, the wedge w# def
= c × h ⊆ g×ad h is a Lie wedge. The restriction

and corestriction σ|w#: w# → w is an isomorphism, so that (g#,w#) ∼= (g,w).
However, Weiss’ Theorem given us a topological semigroup T and a homomor-
phism p:T → G such that for suitable open identity neighborhoods f(U) is a
local subsemigroup of G with respect to V and that L

(
p(U)

)
= c . If Weiss’

construction allows us to choose T in such a fashion that H acts continuously
on T as a group of continuous automorphisms via α:H → Aut(T ) such that
p
(
α(h)(t)

)
= hp(t)h−1 —which is certainly the case if h is compactly embedded

into g , i. e., if 〈ead h〉 is relatively compact in Aut(g)—then S = T ×αH is a
semigroup such that P :S → G×IH , I(h)(g) = hgh−1 , P (t, h) =

(
p(t), h

)
is

a homomorphism mapping U ×H homeomorphically onto its image p(U)×H .
such that P (U × U ′) is a local subsemigroup of G×IH with respect to V × U ′
for a suitable identity neighborhood U ′ of H . Thus the Conjecture 1.6 holds for
w# ⊆ g×ad h whereas we have at present no way of asserting that it holds for
w# ⊆ g# , that is, for w ⊆ g .

The main open problem in the domain of Lie’s fundamental theorems
for semigroups is a general proof or refutation of Conjecture 1.6.
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