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Globality of invariant wedges
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Let G be a connected Lie group, g = L(G) its Lie algebra and exp :
g → G the corresponding exponential function. In Part I of this sequence we
have defined the tangent wedge of a subsemigroup S ⊆ G to be the set of
subtangent vectors L1(S) in the unit element 1 . Since this set is the same for
the closed semigroup S we will restrict our attention in the following to closed
subsemigroups of G . For a closed subsemigroup the tangent wedge L1(S) agrees
with the wedge

L(S) = {X ∈ g : exp(IR+X) ⊆ S}
of infinitesimal generators of S . We say that a closed subsemigroup S of G is a
Lie semigroup if it is reconstructable from its tangent wedge L(S), i. e. if

S = 〈exp L(S)〉.

We have also seen that L(S) is a Lie wedge in the Lie algebra g and that, in
general, not every Lie wedge W ⊆ g is the tangent wedge of a subsemigroup S
of G . Those who are will be called global in G.

Note that the subalgebras a of g which are global in G are exactly those
which are tangent to closed subgroups of G . Nevertheless there exists for every
subalgebra a of g a Lie group A such that a ∼= L(A) (Lie’s Third Theorem).

The situation in the semigroup case is more complicated. As we will see
in the following there exist Lie semialgebras W , even invariant wedges, which are
not global in any Lie group G with W ⊆ L(G), where the inclusion W → L(G)
is compatible with the local semigroup structure on a neighborhood of 0 in W
(cf. Part II of this sequence).

In this third part we will consider the globality problem for invariant Lie
semigroups, i. e. Lie semigroups which are invariant under all inner automor-
phisms of G . It follows directly from the definitions that the pairs (S,G), S an
invariant Lie semigroup in G , are in one-to-one correspondence with the pairs
(W,g), W an invariant wedge in g which is global in G . So the problem is
to characterize those invariant wedges W ⊆ g which are global in G . We will
mainly concentrate on simply connected Lie groups G because all the informa-
tion about the simply connected group associated with a given Lie algebra g
is contained in the algebraic structure of g , and we may reasonably hope that
in this case one can find algebraic and geometric characterizations of the global
wedges W ⊆ g .

If W is a subalgebra then it is an ideal of g and the answer is simple.
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Lemma 1. Let G be simply connected Lie group then every ideal a ⊆ g is
global in G .

Proof. This follows from the fact that normal analytic subgroups of simply
connected Lie groups are closed ([3, p.135]).

This lemma shows how we can reduce the problem.

Proposition 2. Let G be a simply connected Lie group, W ⊆ g an invariant
wedge, a := W−W , and H(W ) = W ∩(−W ) the edge of W . Then the following
assertions hold:

a) a is an ideal in g , W is an invariant wedge in a , the subgroup A :=
〈exp a〉 is closed and simply connected, and W is global in G if and only
if it is global in A .

b) H(W ) is an ideal in g , W/H(W ) is an invariant wedge in the Lie
algebra g/H(W ) , the normal subgroup H := 〈expH(W )〉 is closed, the
quotient group G/H is simply connected, and W is global in G if and
only if W/H(W ) is global in G/H .

Proof. [3, p.135], [6, Prop. III.9].

The Infinitesimal Part: Invariant Cones in Lie Algebras

According to the preceeding proposition we may restrict our attention to
the case where the invariant wedge W ⊆ g satisfies the following two additional
conditions:

1) W is generating, i.e. W −W = g . This is equivalent to say that the
interior intW of W is non-empty.

2) W is pointed, i.e. H(W ) = {0} .

Therefore the first step to the globaliy problems is a detailed analysis of
the infinitesimal situation. What can be said about the pairs (W,g), where W
is a pointed generating invariant cone in the Lie algebra g?

Indeed, the existence of a pointed generating invariant cone W has
strong structural consequences for the Lie algebra g as is shown by the following
theorem.

Theorem 3. Let W be a pointed generating invariant cone in a finite dimen-
sional real Lie algebra g . Then the following assertions hold:

a) g contains a compactly embedded Cartan algebra h .

b) For every compactly embedded Cartan algebra h we have that

intW = 〈ead g〉 inth(W ∩ h).

Proof. a) [2, Theo. III.2.14], b) [2, Theo. III.2.15].

As the example of the Lie algebra of the group of euclidean motions of the
plane shows, there exist Lie algebras with compactly embedded Cartan algebras
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which do not contain any pointed generating invariant cone. So one has to look
for additional properties of these Lie algebras. The main method to do this rests
on a real root decomposition of g with respect to a compactly embedded Cartan
algebra. Before we can state the Characterization Theorem we have to describe
briefly this root decomposition to give the necessary definitions.

Let us consider the adjoint action of a fixed compactly embedded Cartan
algebra h of a Lie algebra g . Then, since h is compactly embedded, the Lie
algebra decomposes into a direct sum of vector subspaces

g = h⊕
⊕
{g|ω| : ω ∈ h∗},

where g|ω| are the isotypical components of the h -action and

g|ω| = {X ∈ g :
[
H, [H,X]

]
= −ω(H)2X ∀H ∈ h}.

We write Ω for the set of all non-zero linear functionals ω on h for which
g|ω| 6= {0} . Then Ω = −Ω and we say that Ω+ is a positive system of roots
if there exists an open half space E in h∗ whose boundary does not meet Ω
and for which Ω+ = Ω ∩ E . To every choice of a positive system corresponds a
complex structure I on the root spaces such that

[H,X] = ω(H)IX ∀X ∈ g|ω|, H ∈ h, ω ∈ Ω+.

Let us denote the radical of the Lie algebra g with r . Then one finds
that [IX,X] is contained in the center Z(r) of r whenever X ∈ gω ∩ r ([2, Cor.
III.6.24]).

Definition 4. We say that a Lie algebra g with a compactly embedded Cartan
algebra h has strong cone potential if there exists a linear functional ν on Z(r)
and a positive system Ω+ of roots such that

〈ν, [IX,X]〉 > 0 ∀X ∈ gω ∩ r \ {0}, ω ∈ Ω+.

Theorem 5. (Characterization Theorem for Lie algebras with invariant cones)
A finite dimensional Lie algebra g contains a pointed generating invariant cone
W if and only if the following conditions are satisfied:

i) g ist not compact semisimple.

ii) The semisimple Lie algebra g/r contains only compact or hermitean
simple ideals.

iii) g has strong cone potential.

Proof. [9, Theorem III.36].

In the case of simple Lie algebras this theorem is already contained in
[16]. In [12] and [13] one finds explicit descriptions of the invariant cones in
hermitean simple Lie algebras and in [14] of the invariant cones in solvable Lie
algebras. Invariant cones in general Lie algebras have been studied in [2], [15],
[17], and [9].
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The Global Part: Invariant Lie Semigroups

As we have already mentioned above we will focus our attention mainly
on simply connected Lie groups. Therefore, in the whole section, G denotes a
simply connected Lie group.

In view of Proposition 2, we know that the question whether an invariant
wedge W with H(W ) 6= {0} is global or not may be reduced to the correspond-
ing problem for a pointed cone of lower dimension. So one first looks for a
converse of this in the sense that one tries to obtain globality information for an
invariant cone W from globality information for a cone V of lower dimension or,
equivalently, with higher dimensional edges. The main outgrowth of this idea is
given in the following theorem:

Theorem 6. (The Reduction Theorem) Let G be a simply connected Lie
group and W1 ⊆ W2 invariant wedges. Then in each of the two following cases
the globality of W2 in G implies the globality of W1 in G :

i) W1 ∩H(W2) ⊆ H(W1) .

ii) H(W2) is a nilpotent ideal.

Proof. The first part of the theorem is a special case Proposition IV.25 in
[9] (cf. [2, Cor. VI.5.2], [6, Prop. III.1]). It rests on the method of positive
functions which, based on ideas in [2, Chapter VI], is developed in [6].

The second part is Theorem VIII.7 in [9]. The main ingredients in its
proof are the method of positive functions, an extension of the Baker-Campbell-
Hausdorff multiplication to a uniform neighborhood of the nilpotent normal
subgroup expH(W2) (cf. [4]), and the fact that W1 is a Lie semialgebra.

Since the quotient of a Lie algebra g modulo its nilradical n is a reductive
Lie algebra, the second part of the Reduction Theorem may be used in some cases
to reduce the globality problem to the reductive case.

Lemma 7. Let W be a pointed generating invariant cone in the Lie algebra g ,
G the associated simply connected Lie group, n the nilradical of g and k the
sum of all compact ideals of g . Then a := n + k is an ideal of g , the wedge
V := W + a/a is a pointed generating invariant cone in g/a , and W is global
in G if V is global in G/〈exp a〉 .
Proof. ([8, Lemma VIII.8]) The main part of the proof consists in applications
of the geometric theory of invariant cones in Lie algebras and modules of compact
groups ([9, Sections I, III]). Then one uses the second part of the Reduction
Theorem.

After this partial reduction to reductive algebras we consider their build-
ing blocks, the simple ideals.

Definition 8. We say that a hermitean simple Lie algebra g is of tubular
type if for a Cartan decomposition g = k + p the symmetric domains G/ exp k
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are of tubular type (cf. [5]). Among the hermitean simple Lie algebras these are
the following classical algebras

su(n, n), so(n+ 2, 2), sp(n, IR), so∗(4n+ 4) for n ∈ IN

and the exceptional algebra e7(−25) of type E7 . Note that

sl(2, IR) ∼= su(1, 1) ∼= so(1, 2), and so(2, 2) ∼= sl(2, IR)2.

The globality question in simple Lie groups was already satisfatorily
answered by Ol’shanskĭı and Vinberg ([11], [Vi80]).

Theorem 9. (Ol’shanskĭı) Let G be a simply connected simple Lie group and
g its Lie algebra. Then one of the following two cases occurs:

i) If g is of tubular type then all invariant wedges W ⊆ g are global in G .

ii) If g is not of tubular type then there exist invariant cones in g which
are not global in G . Moreover, there exists an invariant cone W0 such
that an invariant cone W is global in G if and only if

W ⊆W0 or −W ⊆W0.

Now we apply the reduction idea.

Definition 10. We say that a Lie algebra g is of globality type if the
semisimple Lie algebra g/r contains only compact ideals or ideals of tubular
type.

Theorem 11. (The First Globality Theorem) Let G be a simply connected Lie
group and suppose that g is of globality type. Then every generating invariant
wedge W ⊆ g is global in G .

Proof. The proof given in [9, Theorem VIII.12] rests on the second part
of the reduction theorem and on a generalization of Ol’shanskĭı’s result to the
semisimple case ([9, Theorem VIII.10]).

Corollary 12. Let G be a simply connected solvable Lie group and W ⊆ g
an invariant wedge. Then W is global in G .

This result was also obtained by Gichev ([1]) who also gave very explicit
descriptions of the invariant semigroups which are generated by the invariant
cones.

The greatest disadvantage of the First Globality Theorem is that it says
nothing about Lie algebras which are not of globality type. It generalizes only
the first half of Ol’shanskĭı’s theorem. To get a generalization of the second part
one has to use techniques which are much more involved, namely the structure
theorem of Lie algebras with strong cone potential ([9, Theorem II.38]) which is
developed with the aid of Spindler’s universal construction of Lie algebras with
cone potential ([15]).

This leads to another reduction theorem:
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Theorem 13. (The Second Globality Theorem) Let W be a pointed gener-
ating invariant cone in g and s0 the maximal semisimple ideal of g . Then s0

is a direct summand which is complemented by its centralizer. Let π : g → s0

the projection homomorphism onto s0 . Then V := π(W ) is a pointed generating
invariant cone in s0 and W is global whenever V is global.

Corollary 14. Let W be a pointed generating invariant cone in the Lie algebra
g which contains no simple ideals. Then W is global in the associated simply
connected Lie group G .

Note that the condition that g contains no simple ideals means that no
ideal of a Levi subalgebra acts trivially on the radical. Therefore the corollary
applies only in the non-reductive case. These are often the most complicated Lie
algebras.

Together with Ol’shanskĭı’s theorem, the Second Globality Theorem can
be used for a derivation of the following generalization of the second part of
Theorem 9.

Theorem 15. (The Third Globality Theorem) Let G be a simply connected
Lie group and W a pointed generating invariant cone in g . Then there exists a
pointed generating invariant wedge V ⊆W which is global in G .

Continuous Orders on Lie Groups

The Third Globality Theorem permits a remarkable application to the
problem of the characterization of Lie groups with continuous group orders.

Definition 16. A partial order ≤ on a Lie group G is said to be a group
order if a ≤ b implies that

ga ≤ gb and ag ≤ bg ∀g ∈ G.

It is said to be continuous if the semigroup

S := {g ∈ G : 1 ≤ g}

of positive elements is closed and for every neighborhood U of 1 in G we have
that

S = 〈S ∩ U〉,

i.e. S is locally generated. We say that ≤ is non-degenerate if 1 is a cluster
point of the interior of S .

The connection to Lie semigroups is given by the following theorem.
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Theorem 17. For every continuous group order ≤ on G the semigroup of
positive elements is an invariant Lie semigroup with trivial group of units, and,
conversely, if S ⊆ G is an invariant Lie semigroup with H(S) = {1} then the
prescription x ≤ y if x−1y ∈ S defines a continuous group order ≤S on G such
that S is the semigroup of positive elements. The order ≤S is non-degenerate if
and only if the wedge L(S) is generating in L(G) .

Proof. Theorem II.12 and Corollary III.15 are in [8].

Combining Theorem 17 with Theorem 15 we obtain:

Theorem 18. A simply connected Lie group G admits a non-degenerate
continuous group order if and only if there exists a pointed generating invariant
cone in L(G) .

This result confirms the philosophy that every property of a simply
connected Lie group G is reflected in a property of the corresponding Lie algebra.
In view of Theorem 5 it yields a characterization of the simply connected Lie
groups with non-degenerate continuous group orders in terms of algebraic and
geometric properties of the Lie algebra.

If we drop the assumption that G is simply connected it is much more
difficult to obtain results of this type and the methods leading to them are more
technical. Nevertheless we have a general characterization of those solvable or
reductive Lie groups which admit non-degenerate continuous group orders ([10]).
In the solvable case our result extends these of Gichev ([1]) and in the reductive
case we have generalized the result of Vinberg that a simple Lie group G admits a
continuous non-trivial group order iff g is hermitean and the fundamental group
π1(G) is finite.
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[5] Korányi, A., and J. A. Wolf, Realization of Hermitean Symmetric Spaces
as Generalized Half Planes, Ann. Math. 82(1965), 332–350.

[6] Neeb, K.–H., The Duality Between Subsemigroups of Lie Groups and
Monotone Functions , Transactions of the Amer. Math. Soc., to appear.

[7] —, Globality in Semisimple Lie Groups, Annales de l’Institut Fourier, to
appear.

[8] —, On the Foundations of Lie Semigroups, submitted.



54 Neeb

[9] —, Invariant Subsemigroups of Lie groups, submitted.

[10] —, Invariant Orders on Lie Groups and Coverings of Ordered Homoge-
neous Spaces, submitted.
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