Partitionen einfach zusammenhängender auflösbarer Liegruppen

Peter Plaumann und Karl Strambach

Eine Partition einer (topologischen) Gruppe G ist eine Familie (abgeschlossener) Untergruppen, welche G bedeckt und deren Elemente paarweise trivialen Schnitt haben. In [5] haben wir alle Partitionen zusammenhängender Liegruppen beschrieben; es stellt sich heraus, daß jede Partition einer zusammenhängenden Liegruppe aus zusammenhängenden Untergruppen besteht. Enthält die Liegruppe G kompakte Elemente $\neq 1$, so besitzt G genau dann eine nichttriviale Partition, wenn G eine Frobeniusgruppe oder zu einer der einfachen Gruppen $SO_3(\mathbb{R})$, $PSL_2(\mathbb{R})$, $PSL_2(\mathbb{C})$ isomorph ist (vgl. [5], Satz I.6.3, Satz I.5.2). Wegen der Definition von Frobeniusgruppen in der Klasse der Liegruppen vergleiche man [4] (s. auch [5], I. §4). Da die einfach zusammenhängende Uberlagerung $PSL_2(\mathbb{R})$ der Gruppe $PSL_2(\mathbb{R})$ nicht als Faktor einer Gruppe mit Partition auftreten kann (vgl. [5], Satz I.6.3, I. S 4), kommen als partierbare kompaktfreie Liesche Gruppen nur einfach zusammenhängende auflösbare Gruppen in Frage. Da jede Liealgebra die Partition in ihre eindimensionalen Unteralgebren besitzt, läßt eine exponentielle Liegruppe G die Partition in Einparametergruppen zu, wofern dim G > 1 ist. Ist G eine einfach zusammenhängende auflösbare Liegruppe, welche nicht exponentiell ist, so haben wir in ([5], Satz I.2.9) gezeigt, daß die feinste Partition von G aus einem Normalteiler B der Dimension > 1und Einparametergruppen besteht — für nicht partierbare Gruppen ist natürlich B=G. Wir wollen in dieser Note zeigen, daß dieser Normalteiler B die Kodimension 1 in G hat und genau beschreiben, wie B zu den Störungen der Exponentialabbildung in G liegt. Mit letzterem wird die ungenaue Formulierung in Korollar I.2.10 aus [5] präzisiert. Unsere Methode besteht in der Beschreibung der Exponentialabbildung einre reellen einfach zusammenhängenden Liegruppe, wie sie von Dixmier [2] gegeben wurde. Diese Ergbebnisse hatten wir bereits in [5] verwendet, hier werfen wir aber einen genaueren Blick auf die in [2] beschriebene analytische Natur der Exponentialabbildung auf auflösbaren Liealgebren und benutzen die Rolle der "Ausnahmevarietäten" voll aus.

Zu jeder Partition \mathfrak{P} einer Gruppe G gehört eine Geometrie, eine Translationsstruktur $\Sigma_{\mathfrak{P}}$; Punkte von $\Sigma_{\mathfrak{P}}$ sind die Elemente von G, Geraden die Nebenklassen $\{Px \mid x \in G, P \in \mathfrak{P}\}$ und zwei Geraden P_1x_1 und P_2x_2 heißen parallel, wenn $P_1 = P_2$ ist. Die rechtsreguläre Darstellung von G bildet jede Gerade auf eine zu ihr parallele ab und wird die Translationsgruppen von $\Sigma_{\mathfrak{P}}$ genannt (s. [1, 2]). In einer Geometrie, die auf diese Weise aus einer Liegruppe entsteht, ist es eine natürliche Forderung, daß alle Geraden die gleiche Dimension d haben; eine solche Translationsstruktur möge homogen die Dimension d

heißen. Aus dem Satz der vorliegenden Note folgt, daß eine Liesche Translationsstruktur mit einer auflösbaren einfach zusammenhängenden Translationsgruppe G (vgl. [5], II. §2) höchstens dann homogen von Dimension > 1 sein kann, wenn G exponentiell ist (Korollar 4).

Wir danken den Teilnehmern des Seminars "Sophus Lie", insbesondere Herrn K.H. Hofmann, für die Diskussionen im Anschluß an unsere Vorträge; diese Gespräche haben die Entstehung dieser Note angeregt.

- Satz 1. Sei G eine einfach zusammenhängende auflösbare Liegruppe, die nicht exponentiell ist. Besitzt G eine triviale Partition, so ist diese eindeutig bestimmt; sie besteht aus genau einem Glied B der Kodimension 1 in G und lauter Einparametergruppen. Überdies gelten folgende Aussagen:
 - (i) B ist ein Normalteiler von G und es ist G semidirektes Produkt von B mit einer zu \mathbb{R} isomorphen Untergruppe.
 - (ii) Der Zentralisator von B in G ist in B enthalten.

Beweis. Sei \mathfrak{P} eine nichttriviale Partition der einfach zusammenhängenden auflösbaren Liegruppe G, die nicht exponentiell ist, und sei \mathfrak{P}_0 die feinste Partition von G. Nach Satz I.2.8 aus [5] bestehen \mathfrak{P} wie \mathfrak{P}_0 aus zusammenhängenden Gruppen und \mathfrak{P}_0 besteht aus einem Glied B mit dim B > 1, welches ein Normalteiler von G ist, sowie lauter Einparametergruppen ([5], Satz I.2.9).

Wir analysieren nun die Natur der Exponentialabbildung von der Liealgebra $\mathfrak{L}G$ nach G wie in [3]: Man betrachtet die Komplexifizierung $\widetilde{\mathfrak{L}G}$ und \widetilde{G} von $\mathfrak{L}G$ bzw. G. Für eine Wurzelform $\widetilde{\varphi}$ von $\widetilde{\mathfrak{L}G}$ sei $\mathfrak{L}G_{\widetilde{\varphi}}$ der Kern von $\widetilde{\varphi}$ und für $0 \neq l \in \mathbb{Z}$ sei $\widetilde{\mathfrak{L}G}_{\widetilde{\varphi},l}$ durch die Gleichung $\widetilde{\varphi}(x) = 2\pi i l$ gegeben. Dann enthält das Ideal $(\widetilde{\mathfrak{L}G})_{\widetilde{\varphi}}$ das Nilradikal von $\widetilde{\mathfrak{L}G}$. Die Vereinigung $\widetilde{\mathfrak{S}}$ der Nebenklassen $\widetilde{\mathfrak{L}G}_{\widetilde{\varphi},l}$ für alle Wurzelformen φ und alle $0 \neq l \in \mathbb{Z}$ wird die lineare Ausnahmevarietät von $\widetilde{\mathfrak{L}G}$ genannt ([3], p. 113). In der einfach zusammenhängenden komplexen Liegruppe \widetilde{G} sei \widetilde{N} das Nilradikal. Seien $\widetilde{\Omega}: \widetilde{\mathfrak{L}G} \to \widetilde{G}$ und $\widetilde{\omega}: \widetilde{\mathfrak{L}G}/\mathfrak{L}\widetilde{N} \to \widetilde{G}/\widetilde{N}$ die jeweiligen Exponentialabbildungen und seien $\widetilde{\pi}: \widetilde{G} \to \widetilde{G}/\widetilde{N}$ bzw. $D\widetilde{\pi}: \widetilde{\mathfrak{L}G} \to \widetilde{\mathfrak{L}G}/\mathfrak{L}\widetilde{N}$ die Restklassenprojektionen. Dann ist

$$\begin{array}{cccc} \widetilde{\mathfrak{L}G} & & & \widetilde{\Omega} & & & \widetilde{G} \\ \downarrow^{\widetilde{D}\widetilde{\pi}} \downarrow & & & & \downarrow^{\widetilde{\pi}} \\ \widetilde{\mathfrak{L}G}/\mathfrak{L}\widetilde{N} & & & & \widetilde{G}/\widetilde{N} \end{array}$$

ein kommutatives Diagramm. Man definiert die Ausnahmevarietät von \widetilde{G} durch $\widetilde{S} = \widetilde{\pi}^{\leftarrow} \widetilde{\omega}(D\widetilde{\pi})(\widetilde{\mathfrak{s}})$ ([3], p. 114). Die Ausnahmevarietät der reellen Liegruppe G ist dann die Menge $S = \widetilde{S} \cap G$. Man erhält S auch, wenn man zunächst $\mathfrak{S} = \widetilde{\mathfrak{S}} \cap \mathfrak{L}G$ bildet, als $S = \pi^{\leftarrow} \omega(D\pi)(\mathfrak{S})$, wobei $\pi, \omega, D\pi$ die entsprechenden Einschränkungen auf das Reelle sind ([3], p. 118).

Nach [3], Théorème 2.2° ist die Einschränkung der Exponentialabbildung \exp_G auf $(\mathfrak{L}G)\setminus\mathfrak{S}$ regulär. Sei $s\in\mathfrak{S}$. Es folgt aus [3], Théorème 2.3°, daß es ein Element $s\neq t\in\mathfrak{L}G$ gibt, für welches $\exp_G t=\exp_G s$ ist. Da G

einfach zusammenhängend ist, ist aber die Einschränkung von \exp_G auf den 1-dimensionalen Teilraum $\mathbb{R}s$ injektiv. Das Element $g = \exp_G s$ liegt also auf zwei verschiedenen Einparametergruppen, nämlich $\exp_G(\mathbb{R}s)$ und $\exp_G(\mathbb{R}t)$. Nennen wir solche Elemente Knoten von G, so ist also $S_1 = \exp_G \mathfrak{S}$ die Menge der Knoten von G. Entsprechend ist $R = \exp_G(\mathfrak{L}G \setminus \mathfrak{S})$ die Menge der Elemente von G, die auf genau einer Einparametergruppe liegen. Schießlich sei $S_2 = G \setminus \exp_G(\mathfrak{L}G)$; dann ist $S = S_1 \cup S_2$, denn nach [3], Théorème 2 ist S das Komplement von S in S.

Wie oben erwähnt, liegen in der feinsten Partition \mathfrak{P} von G alle Elemente außerhalb des eindeutig bestimmten Gliedes B von \mathfrak{P}_0 mit dim B>1 auf einer Einparameterguppe $F\in\mathfrak{P}_0$. Also enthält B die Menge S_2 und nicht nur die Menge S_1 , sondern auch diejenigen Einparametergruppen in G, die durch ein Element von S_1 gehen. Bezeichnet Σ die Menge dieser Einparametergruppen, so liegen S und Σ in B.

Ist $\dim G = n$, so ist $\dim S \leq n-2$ nach [3], p. 119. Ist F eine Einparametergruppe aus Σ , so ist $F \cap S = F \cap S_1$ diskret. Für die von $F \cup S$ erzeugte Untergruppe H gilt also $\dim H > \dim S \geq n-2$. Wegen $H \subseteq B$ ist also $\dim B \geq n-1$. Da \mathfrak{P}_0 nicht trivial sein sollte, folgt hieraus $\dim B = n-1$.

Es ist nun klar, daß $\mathfrak{P} = \mathfrak{P}_0$ ist und daß (i) gilt. Die Behauptung (ii) schließlich ist in [5], Satz I.2.9 enthalten.

Der in Satz 1 angesprochene Normalteiler B=B(G) enthält neben der Ausnahmevarietät S von G die Menge Σ der Einparameteruntergruppen, auf welchen ein Knoten, d.h. ein Element von S_1 liegt. Sei φ_2 die Menge der Wurzelformen zu 2-dimensionalen Hauptfaktoren von G. Ist $0 \neq l \in \mathbb{Z}$ und $\varphi \in \Phi_2$, so ist $G_{\varphi,l} \neq \emptyset$ (vgl. [3], p. 119, No. 1°, 2°, 3°) denn es haben $\mathfrak{L}G_{\varphi,l}$ und $G_{\varphi,l}$ die gleiche Dimension. Also ist $G_{\varphi,l}$ eine Nebenklasse $G_{\varphi} \cdot c$ mit $c \in S_1$. Wegen $S_1 \subseteq \bigcup \Sigma$, wird also B(G) von der Familie $\{G_{\varphi}|\varphi \in \varphi_2\} \cup \Sigma$ erzeugt. Nach [3, p. 119, l.c] ist $\dim G_{\varphi} \geq n-2$ für $\varphi \in \Phi_2$, und wegen $\bigcup \Sigma \not\subseteq \bigcup \{G_{\varphi}|\varphi \in \Phi_2\}$ ist $\dim B(G) \geq \max\{\dim G_{\varphi}|\varphi \in \varphi_2\}$. Somit existiert auf G eine nichttriviale Partition höchstens dann, wenn alle Varietäten $G_{\varphi,l}$ eine Dimension n-2 haben oder trivial sind. Wir nennen in einer beliebige einfach zusammenhängende auflösbare Liegruppe die Untergruppe B(G), die von der Familie $\{G_{\varphi,l}|0 \neq l \in \mathbb{Z}, \varphi \to \text{Wurzelform von } G\}$ die Ausnahmeuntergruppe von G. Wie wir gerade gesehen haben, gilt

Lemma 1. Die Ausnahmeuntergruppe einer einfach zusammenhängenden auflösbaren Liegruppe wird von den Zentralisatoren zweidimensionaler Hauptfaktoren und denjenigen Einparameteruntergruppen erzeugt, die einen Knoten enthalten.

Korollar 1. Genau dann besitzt eine einfach zusammenhängende auflösbare Liegruppe G, die nicht exponentiell ist, eine nichttriviale Partition, wenn G folgende Struktur hat:

- a) G ist semidirektes Produkt eines nichtexponentiellen Normalteilers B von Kodimension 1, welcher unteilbar ist, mit einer Untergruppe $E \cong \mathbb{R}$.
- b) E operiert so auf B, daß es auf den zweidimensionalen Hauptfaktoren nicht-triviale Skalarmultiplikationen induziert. In diesem Fall besteht die

einzige nichttriviale Partition von G aus B und den Einparameteruntergruppen von G außerhalb von B.

Beweis. Wenn G eine nichttriviale Partition besitzt, so folgt a) aus Satz 1. Sei nun U/V ein 2-dimensionaler Hauptfaktor von G. Dann ist zunächst $U \subseteq B$. Wegen $\dim U/V = 2$ gibt es in N eine Einparametergruppe S, welche auf U/V die Gruppe SO_2 induziert. Da G und damit $H = \overline{gp}\{E, S\}$ auflösbar ist, induziert H eine auflösbare Untergruppe von $GL_2(\mathbb{R})$ auf U/V, welche SO_2 enthält. Für die Wirkung von E auf U/V gibt es dann nur zwei Möglichkeiten:

- (j) E zentralisiert U/V.
- (ij) E induziert die volle Gruppe der Skalarmatrizen auf U/V.

Wir schließen nun (j) aus. Sei dazu φ die reelle Wurzelform der Liealgebra $\mathfrak{L}(G)$, die zu dem Hauptfaktor $\mathfrak{L}V/\mathfrak{L}U$ gehört. Dann liegt $\mathfrak{L}E$ im Kern von φ . Die Untergruppe E von G ist also im Erzeugnis der Ausnahmevarietät S von G und damit nach dem Zusatz zu Satz 1 in B enthalten. Also war G doch nicht partierbar.

Seien umgekehrt (a) und (b) für G erfüllt. Wir beweisen durch Induktion über die Kompositionslänge l(G), daß jedes Element von $x \in G \setminus B$ auf einer eindeutig bestimmten Einparametergruppe P_x liegt und daß $P_x \cap B = 1$ gilt. Induktionsanfang ist l(G) = 3, denn für kleinere Längen sind (a) und (b) nicht erfüllbar. Für l(G) = 3 ist dann G notwendig die Gruppe

$$\{(z, r, t) \mid z \in \mathbb{C}, \ r \in \mathbb{R}_+, \ t \in \mathbb{R}\}$$

mit der Multiplikation

$$(z_1, r_1, t_1) \cdot (z_2, r_2, t_2) = (z_1 + r_1 e^{it_1} z_2, r_1 r_2, t_1 + t_2)$$
,

und der Normalteiler B ist die Menge

$$\{(z,1,t) \mid z \in \mathbb{C}, \ t \in \mathbb{R}\}$$
.

Jedes Element $g \in G \setminus B$ ist von Form g = (z, a, t) mit $a \neq 1$. Dann ist aber $\sqrt{a} \, e^{it/2} \neq -1$. Also ist $\left((1 + \sqrt{a} \, e^{it/2})^{-1} z, \sqrt{a}, \frac{1}{2} t\right)$ die eindeutig bestimmte Quadratwurzel von g in G. Die Komplettierung der dyadischen Darstellung ergibt die Existenz der eindeutig bestimmten Einparametergruppe durch g.

Sei nun l(G)=r und sei die Behauptung für Gruppen kleiner Kompositionslänge bereits bewiesen. Sei M ein minimaler Normalteiler von G und sei $x\in G\backslash B$. Wäre $M\not\subseteq B$, so wäre $G=M\times B$, was b) widerspricht. Ist G/M exponentiell, so liegt die Nebenklasse $xM\in G/M$ in einer eindeutig bestimmten Einparameteruntergruppe F/M mit $F\cap B=M$. Ist dagegen G/M nicht exponentiell, so folgt die gleiche Aussage auf der Induktionsannahme. Nun ist M eine Vektorgruppe der Dimension ≤ 2 und es ist $F/M\cong \mathbb{R}$. Wegen b) ist F exponentiell. Das Element $x\in F$ liegt also auf einer eindeutig bestimmten Einparametergruppe $P\subseteq F$, für die natürlich $P\cap M=1$ gilt. Wegen $F\cap B=M$ folgt $P\cap B=1$.

Angenommen, ein Element $x \in G \setminus B$ läge auf zwei verschiedenen Einparametergruppen P_1 und P_2 . Nach [3, Théorème 2] gäbe es dann aber beliebig nahe bei x Elemente, die auf keiner Einparametergruppe liegen, was der Offenheit von $G \setminus B$ in G widerspräche. Damit ist die Induktionsbehauptung gezeigt, und G ist partierbar.

Aus dem obigen Korollar kann man ein Ergebnis herleiten, welches von Standpunkt des Geometers eher kurios ist:

Korollar 2. Besitzt eine einfach zusammenhängende auflösbare Liegruppe überhaupt eine nicht-triviale Partition, so auch eine Partition in einer Untergruppe von Kodimension 1 und lauter Einparametergruppen.

Beweis. Ist G exponentiell, so betrachte man eine entsprechende Partition der Liealgebra $\mathfrak{L}G$ und bilde sie mit der Exponentialabbildung nach G ab. Im anderen Fall ist die Behauptung in Korollar 1 enthalten.

Geometrisch von Interesse sind im Gegensatz zu dem Sachverhalt in Korollar 2 Partitionen, in denen alle Glieder die gleiche Dimension d haben. Wir nennen solche Partitionen homogen. Es gilt

Korollar 3. Eine einfach zusammenhängende auflösbare Liegruppe besitzt genau dann eine nichttriviale homogene Partition, wenn sie exponentiell ist.

Beweis. Für eine exponentielle Gruppe betrachte man die Partition in Einparametergruppen. Ist G nicht exponentiell, so besitzt G nach Korollar 1 keine homogene Partition.

Korollar 4. Sei G eine zusammenhängende Liegruppe, die nicht exponentiell ist. Genau dann gestattet G eine Partition in Untergruppen einer festen Dimension >1, wenn G eine Frobeniusgruppe ist, deren Frobeniuskomplemente entweder zu $\mathbb{R} \times \mathrm{SO}_2(\mathbb{R})$ oder zu $\mathbb{R} \times \mathrm{SU}_2(\mathbb{C})$ isomorph sind.

Beweis. Ist G kompaktfrei und besitzt eine nichttriviale Partition, so haben wir schon in der Einleitung bemerkt, daß G auflösbar sein muß. Wegen Korollar 3 scheidet dann diese Möglichkeit aus. Also enthält nichttriviale kompakte Untergruppen, und die Behauptung folgt dann aus [5], Korollar II.2.11.

Aus dem Beweis zu Satz 1 kann man schließlich noch eine Charakterisierung der Liealgebra der Ausnahmeuntergruppe B(G) in der Liealgebra $\mathfrak{L}G$ ablesen. Es ist B(G) die kleinste zusammenhängende Untergruppe von G, welche die Ausnahmevarietät S von G enthält. Sei Φ_2 die Menge der Wurzelformen zu 2-dimensionalen Kompositionsfaktoren der reellen Liealgebra $\mathfrak{L}G$ von G und Σ die Menge derjenigen Einparameteruntergruppen von G, welches einen Punkt des Exponentialbild der linearen Ausnahmevarietät \mathfrak{S} von $\mathfrak{L}G$ enthalten.

Die Menge $X=\{G_{\varphi} \mid \varphi \in \Phi_2\} \cup \bigcup \Sigma$ erzeugt einen Normalteiler A von G, welcher in B(G) liegt; wegen [3, Théorème 2] ist $\dim G/A \leq 1$, wie wir schon im Beweis von Satz 1 gesehen haben. Ist $B(G) \neq G$, so folgt sofort A=B(G). Ist aber B(G)=G, so ist G unpartierbar. Wäre $A \neq G$, so folgte aus Korollar 1, daß G semidirektes Produkt von A mit einer Einparametergruppe E ist, welche einen 2-dimensionalen Hauptfaktor V in A zentralisiert. Für die zugehörige Wurzelform φ wäre dann aber $E \subseteq G_{\varphi}$, woraus $E \subseteq A$ folgte. Somit wird G von X erzeugt. Für die Liealgebra $\mathfrak{L}G$ ergibt dies das folgende Korollar, das in trivialer Weise auch für exponentielle Liegruppen erfüllt ist.

Korollar 4. Sei $\mathfrak L$ eine auflösbare reelle Liealgebra, und sei Φ_2 die Menge der Wurzelformen zu den 2-dimensionalen Kompositonsfaktoren von $\mathfrak L$. Dann ist die Liealgebra, die von der Familie $\{\ker \varphi \mid \varphi \in \Phi_2\}$ zusammen mit der linearen Ausnahmevarietät $\mathfrak S$ erzeugt wird, die Liealgebra der Ausnahmeuntergruppe der zugehörigen einfach zusammenenhängenden Gruppe G.

References

- [1] André, J., Über Parallelstrukturen, I. Grundbegriffe., Math. Z. **76** (1961), 85–102.
- [2] —, Über Parallelstrukturen, II. Translationsstrukturen, Math. Z. **76** (1961), 155–163.
- [3] Dixmier, J., L'application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France 85 (1957), 313–321,.
- [4] Muchin, Ju. N., On topological Frobenius groups (Russian), in: Investigations in group theory, Collect. Artic. Sverdlowsk: Uralskij Nauchnyj Tsentr AN SSSR 1984, 120–130.
- [5] Plaumann, P. und K. Strambach, Partitionen Liescher und algebraischer Gruppen, Forum Math. 2 (1990), 523–578.

Mathematisches Institut der Universität Bismarckstr. 1 1/2 D-8520 Erlangen

Received 26. März 1991