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The Divisibility Problem for
subsemigroups of Lie groups

K. H. Hofmann and W. A. F. Ruppert

An element d of a semigroup S is called divisible if it has roots of arbitrary
order; that is, for every n ∈ N there is an element dn in S such that dnn = d . If
the elements dn can be taken in a prescribed subset D of S then d is said to
be divisible in D .

In the algebraic as well as in the topological theory of groups and semi-
groups divisibility is the major basic concept which allows the introduction of
a linear structure by defining an exponential function: If an element is divisible
then there is usually a good chance to find a (rational or, by continuous exten-
sion, real) one-parameter semigroup passing through it; combining ‘sufficiently
many’ such one-parameter semigroups gives rise to an exponential function. The
solution of Hilbert’s fifth problem and the theory of divisible compact topological
semigroups are familiar examples for the successfull application of these ideas.

In the Lie theory of semigroups new aspects of divisibility show up: For
closed subsemigroups of Lie groups the exponential image of a zero neighbor-
hood in the tangent wedge is in general not a neighborhood of the identity, hence
divisibility of the whole semigroup— though known to imply surjectivity of the
exponential function— does not a priori imply local divisibility. Also, if the tan-
gent wedge of a closed subsemigroup is a Lie semialgebra, or, equivalently, if it
generates a locally divisible local semigroup in some Campbell-Hausdorff neigh-
borhood in the Lie algebra, then it does not folllow a priori that the semigroup
itself is locally divisible.

The “Divisibility Problem,” hithereto still open, asks whether the tan-
gent wedge of a closed divisible subsemigroup in a connected Lie group is a Lie
semialgebra.

The aim of the subsequent notes is to give a short introduction to the so
far existing divisibility theory for subsemigroups of Lie groups, and to present,
in condensed and abridged form, a few results recently obtained by the authors.

1. Local and global divisibility for subsemigroups of Lie groups

We first recapitulate the essential concepts and facts. Unless specified otherwise
we use the notation and terminology of [3]; all unexplained terms can be looked
up there.
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As in [3], we let the local Lie theory of semigroups take place in the Lie
algebra rather than in the Lie group: we work inside a given Campbell-Hausdorff
neighborhood B , that is, a star-shaped zero neighborhood in the Lie algebra, so
that triple products with respect to the Campbell-Hausdorff multiplication ∗ are
defined.

We say that a subset S of B is a local semigroup with respect to B
if 0 ∈ S and (S ∗ S) ∩ B ⊆ S . The tangent wedge L(S) of S is defined
to be the set W of all subtangent vectors of S at 0; this set is a Lie wedge,
i.e. it is a closed convex cone and invariant under the action of ead x for any
x ∈ H(W ): = W ∩ −W . (Note that any two local semigroups in the same germ
have the same tangent wedge.)

One of the fundamental results of Lie theory says that every Lie wedge W
is the tangent wedge of a local semigroup. Furthermore, every local semigroup
S in g with L(S) = W has interior points in the smallest Lie algebra g(W )
containing W , regardless whether W has interior points in g(W ) or not. Thus
for many purposes (in particular, in dealing with the Divisibility Problem) it will
cause no loss of generality if we assume that g = g(W ).

If, on the other hand, W is a wedge in g such that for some Campbell-
Hausdorff neighborhood B the intersection W ∩ B is a local semigroup with
respect to B then W is called a semialgebra. The wedge W is called an
invariant wedge if it is invariant under the maps ead x , for all x ∈ g (not only
for x ∈ H(W )). It can be shown that invariant wedges are semialgebras.

Suppose that S is a preanalytic subsemigroup of a Lie group G ; that is,
the subgroup G(S) generated by S in G is analytic. Then for any Campbell-
Hausdorff neighborhood B on which the exponential map is injective the set
exp−1(S ∩ expB) is a local semigroup with respect to B . By a slight abuse of
notation we also write L(S) for the tangent wedge of this local semigroup and
call it the tangent wedge of S . If S is closed in G(S) (in particular, if S is
closed in G) then L(S) = {x ∈ g | expx ∈ S} .

A preanalytic subsemigroup S of G is called strictly infinitesimally
generated if it is generated (as a subsemigroup of G) by exp L(S). If S is
strictly infinitesimally generated then it is preanalytic and the Lie algebra of
G(S) is generated (as a Lie algebra) by L(S).

A local semigroup S with respect to a Campbell-Hausdorff neighborhood
B is called strictly infinitesimally generated if it is locally generated by L(S)∩B .
Note that if S is a strictly infinitesimally generated subsemigroup in the Lie
group G and B is a Campbell-Hausdorff neighborhood in g then the induced
local semigroup exp−1(S ∩ expB) need not be strictly infinitesimally generated.

A closed [local] semigroup S is infinitesimally generated if it contains a
dense strictly infinitesimally generated [local] subsemigroup.

Let us now turn to divisibility.

1.1. Definition. (i) A subset D of a local or global semigroup is called
divisible in itself, or divisible for short, if each of its elements is divisible in D .
A divisible semigroup is sometimes also called a globally divisible semigroup, for
emphasis.
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(ii) A subset D of a Lie group with 1 ∈ D is called locally divisible if 1
has a neighborhood basis in D consisting of divisible subsets. Similarly, a subset
C of a Campbell-Hausdorff neighborhood B in the Lie algebra g with 0 ∈ C
is called locally divisible if 0 has a neighborhood basis in C which consists of
divisible subsets.

Note that local divisibility does not mean simply that there exists a
divisible neighborhood of the identity. Also, it is not clear from the onset that
the semigroup S must be locally divisible if the tangent wedge of S generates
a locally divisible local semigroup with respect to some Campbell-Hausdorff
neighborhood.

The reason for this kind of subtleties lies in the fact that we actually
use the concept ‘local’ in two different settings: in the semigroup setting (‘lo-
cal’ with respect to a subset of a Lie group), and in the setting of local semi-
groups generated by the tangent wedge (‘local’ with respect to a subset of a
Campbell-Hausdorff neighborhood B in a Lie algebra, ‘growing’ by successive
multiplication as far as B reaches).

Recall that a Lie group is called exponential if the exponential function
is surjective, that is, if every point lies on a one-paramter subgroup. In [7] a Lie
group G is called weakly exponential if the image under the exponential function
is dense in G . We adapt these definitions to subsets of semigroups, only replacing
the term ‘weakly exponential’ by ‘densely exponential’).

1.2. Definition. Let A be a subset of G .

(i) A point a ∈ A is said to be exponential in A if there is an element
x ∈ g such that expx = a and exp[0, 1]·x ⊆ A .

(ii) If every element of A is exponential in A then A is said to be
exponential. If the exponential elements of A are dense in A then we say that
A is densely exponential.

(iii) Suppose that A is closed and contains the identity. Then A is said
to be locally exponential if there exists a basis of exponential 1 -neighborhoods
in A .

On the level of Lie algebras, a set M ⊆ g is locally exponential if it
contains 0 and has a neighborhood base at 0 consisting of star-shaped sets.
Thus a local semigroup S is locally exponential if and only if the intersections
of its Lie wedge W with the Campbell-Hausdorff neighborhoods of 0 form a
neighborhood basis of 0 in S .

The following result provides the basis for the structure theory of semi-
algebras (Hofmann and Lawson [6] (1988), cf. also [3], Theorem IV.1.31, on
p. 295):

1.3. Theorem. For a local semigroup S with Lie wedge W the following
assertions are equivalent:

(a) S is locally divisible;

(b) there exists at least one Campbell-Hausdorff neighborhood B such that
S ∩ B is locally divisible;
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(c) S is locally exponential;

(d) W is a semialgebra, i. e., there exists a Campbell Hausdorff neighborhood
B such that (B ∩W ) ∗ (B ∩W ) ⊆W ;

(e) for all Campbell-Hausdorff neighborhoods B we have (B∩W )∗(B∩W ) ⊆
W ;

(f) for every point x ∈ W we have [x, Tx] ⊆ Tx , where Tx denotes the
tangent space of W at x .

Note that the above assertion (f) implies that the vector subspace V =
W −W spanned by W is a Lie subalgebra of g (since Tx = W −W = V for all
points x in the algebraic interior of W ). Thus if G = G(S) then W is generating
in g , that is, g = W −W . In this case assertion (f) is also equivalent to

(f ′ ) for every C1 -point in the boundary of W we have [x, Tx] ⊆ Tx .

An immediate consequence of the above result is that the tangent wedge of a
closed submonoid S of a connected Lie group is a semialgebra if S is locally
divisible. Karl Hermann Neeb [9] has shown that the converse holds if, in
addition, S is infinitesimally generated.

Similar to the local case globally divisible closed semigroups are expo-
nential (Hofmann and Lawson [5] (1983), cf. [3], Theorem V.6.5, on p. 460):

1.4. Theorem. A closed subsemigroup of a connected Lie group is globally
divisible if and only if it is exponential.

In view of this result the following problem seems to be natural— in fact
at first glance one would suspect that Theorem 1.4 already furnishes all essential
facts needed for a solution:

Problem 1:

(i) Is the Lie wedge of a closed divisible subsemigroup a semialgebra?

(ii) Are closed divisible subsemigroups of connected Lie groups locally divisi-
ble?

Obviously, if the answer to question (ii) is ‘yes’ then also (i) is settled in the
affirmative.

In 1983 Hofmann and Lawson indeed have given an affirmative answer
to question (i) for a special class of closed divisible subsemigroups. This class
comprises the closed divisible submonoids with trivial group of units, and, in
addition, those which are subsemigroups of connected Lie groups with trivial
maximal compact subgroups ([6]). Let us recall the formulation of the results by
Hofmann and Lawson as recorded in [3] (Theorem V.6.10, on p. 462):

1.5. Definition. Let G be Lie group with Lie algebra g . A wedge W in
g disperses in G if there exists an open neighborhood B of 0 in g such that
B ∩W = B ∩ exp−1(expW ).
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Fig.1: Implications between divisibility properties

1.6. Theorem. Let S be a closed divisible subsemigroup of a Lie group G
with group of units H(S) and suppose that there exists an open neighborhood
U of the identity such that any compact connected subgroup of G is contained
in H(S) whenever it is contained in the tube UH(S) . Then the tangent wedge
L(S) of S is a Lie semialgebra which disperses in G .

But in fact, under the given assumptions, Theorem 1.6 also yields an
affirmative answer to question (ii). We only have to apply the following obser-
vation (note that for divisible closed semigroups the condition in Definition 1.5
reads as B ∩W = B ∩ exp−1 S , by Theorem 1.4).

1.7. Lemma. Let S be a closed subsemigroup of a connected Lie group G .
If the tangent wedge W = L(S) of S satisfies B ∩W = B ∩ exp−1 S for some
0-neighborhood B then S is locally divisible.

Proof. Note that the relation B ∩W = B ∩ exp−1 S holds for any smaller
neighborhood as well, so we may assume that B is a Campbell-Hausdorff neigh-
borhood on which exp is injective. Write expB for the restriction of the expo-
nential function to B . Then

exp−1
B (expB ∩ S) = B ∩ exp−1

B (S) = {b ∈ B | expB(b) ∈ S} = B ∩ exp−1 S =

= B ∩W,

thus (expB)∩ S = exp(B ∩W ) is divisible. Since the exponential images of the
Campbell-Hausdorff neighborhoods form a neighborhood basis at 1 this implies
the assertion.

However, the general case is still unsettled, and it has turned out in the
meantime that the problems involved are surprizingly hard. This fact seems to
indicate that at the heart of this problem there are important structural features
of ‘Lie semigroups’ which, at the time being, are not even touched by the existing
theory.
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It seems highly probable that the solution of Problem 1 will also require
(or at least furnish) the answer to the following questions:

Problem 2:

(i) Does local divisibility follow from global divisibility without the assump-
tion that the semigroup S in question is closed?

(ii) Is a closed and densely exponential subsemigroup of a Lie group locally
divisible ?

In addition to the results by Lawson and Hofmann, let us now an-
nounce, without proof, a few facts further backing the conjecture that the answer
to question (ii) in the above Problem 1 is affirmative. (The proofs of these results
will be published later.) Each of the statements (i)–(iii) below is well known to
hold for semialgebras W .

1.8. Theorem. Let S be a densely exponential subsemigroup of a connected
Lie group G such that S has interior points with respect to G . Then the following
assertions hold:

(i) The Lie wedge W of S has interior points with respect to the Lie algebra
g of G .

(ii) The edge H(W ) = W ∩ −W of the wedge W contains an ideal n such
that the quotient algebra g/n has abelain Cartan subalgebras.

(iii) If S is reduced, that is, if it does not contain a non-trivial connected
normal subgroup of G then for every element x ∈ W the spectrum of
adx is contained in R ∪ iR .

(iv) A connected Lie group G is said to be compact-free if its maximal com-
pact subgroup is the singleton {1} ; it is called almost compact-free if it
contains a compact normal subgroup N such that G/N is compact-free
(or, equivalently, if it contains only one maximal compact subgroup). If
G is almost compact-free and solvable then the tangent wedge of S is a
semialgebra and disperses.

Furthermore, it can be shown that in the situation of Theorem 1.8 the
Lie algebra g must have a very special structure; the essential points are very
close to known features of Lie algebras containing proper semialgebras with
interior points. A detailed description of these features can be found in Anselm
Eggert’s dissertation [2].

2. Examples

We close our discussion with some examples.

2.1. Example. The abelian case. Let G be a connected abelian Lie group.
Then the exponential function g → G is a covering homomorphism. Obviously,
every wedge in g is a semialgebra. But it is not clear whether every closed
divisible subsemigroup is locally divisible. It is not difficult to see that the
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exponential image of a wedge W ⊆ g is a closed subsemigroup of G if and only
if span(ker exp) ∩ W = span

(
(ker exp) ∩ W ∩ −W

)
¿From this fact it can be

deduced that every closed divisible subsemigroup of G is locally divisible; but
the proof is definitely not trivial, even in this ‘easy’ case. After the reduction to
the case where S does not contain a non-trivial compact subgroup, the proof of
this fact amounts to showing that if W is a wedge in some real vector space V
and Γ is a lattice in V , whose span meets W only in the zero element, then we
can always find a zero neighborhood B in V such that B∩W + Γ = B∩W This
neighborhood depends on the mesh size of Γ as well as on the geometry of
the wedge W and its position relative to Γ. Thus, even for lattices with wide
interstices the neighborhood B might have to be choosen very small.

2.2. Example. Subsemigroups of the Heisenberg group. Let g be the
three dimensional Heisenberg algebra, i.e. the real vector space R3 , endowed
with the Lie bracket [(a, b, c), (a′, b′, c′)] = (0, 0, ab′ − a′b). We consider the
Heisenberg group G as the space g , endowed with the Campbell-Hausdorff
multiplication x ∗ y = x + y + 1

2 [x, y] . Every semialgebra in g either contains
the center g′ = {(0, 0, c) | c ∈ R} of g or has the form R+·x or R·x , with
x ∈ g . With respect to the ∗ -multiplication each semialgebra in g is a closed
divisible subsemigroup of G , and there are no others (cf. the assertion of Theorem
1.8(iii)). It is an easy exercise to show that the familiar ‘Heisenberg beak’, the
infinitesimally generated closed semigroup {(a, b, c) ∈ G | |c| ≤ 1

2ab} , is not
divisible.

2.3. Example. The simply connected covering of the motion group.
For our next set of examples we choose g to be the semidirect product g = CoR ,
where C denotes the set of complex numbers, considered as a real vector space
with commutative Lie brackets, and [(a, b), (c, d)] = (i(ad− bc), 0). This algebra
is isomorphic with the motion algebra, the Lie algebra belonging to the group
of all Euclidean motions of the plane. We let G be the associated simply
connected Lie group, G = {(z, t) | z ∈ C, t ∈ R} , with the multiplication
rule (z, t)(z′, t′) = (z+ eitz′, t+ t′). The group G is densely exponential but not
exponential; in fact, a point p ∈ G lies on a one-parameter subgroup if and only
if it is not contained in the set {(z, kπ) ∈ G | z 6= 0, k ∈ Z \ {0}} .

The half space W = {(x, y) ∈ g | x ∈ C, y ≥ 0} is an invariant
wedge, hence a semialgebra, and its exponential image expW is a non-closed
exponential subset of G . The semigroup S = expW = {(z, t) | t ≥ 0} is a
densely exponential subsemigroup of G . Thus ‘densely exponential’ does not
imply ‘exponential’ (cf. Fig.1).

All other semialgebras in g are of dimension one or zero; the group G
does not contain closed divisible subsemigroups of dimension greater than one.
The only densely exponential subsemigroups of G are S,−S and the exponential
subsemigroups.

2.4. Example. An invariant solvable example. Let G be the semidirect
product Co(R × T), where T: = {t ∈ C | ‖t‖ = 1} , and multiplication follows
the rule

(z, r, t)(z′, r′, t′) = (z + e−irtz′, r + r′, tt′).
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The Lie algebra of G can be defined on the real vector space C ⊕ R ⊕ R with
Lie brackets

[(ζ, α, β), (ζ ′, α′, β′)] = (i(−α+ β)ζ ′ − i(−α′ + β′)ζ, 0, 0)

and exponential function

exp(ζ, α, β) =

{
(−iζ ei(β−α)−1

β−α , α,−ieiβ) if α 6= β

(ζ, α,−ieiα) if α = β.

We let A be the closed normal subgroup {(z, r, 0) | z ∈ C, r ∈ R} and write a
for its Lie algebra. Then A is a copy of the simply connected covering group of
the motion group, hence is not exponential. However the group G is exponential
(it is not simply connected).

We define S = {(z, r, t) | z ∈ C, r ≥ 0, t ∈ T} and note that S = expW
with W = L(S) = {(ζ, α, β) | ζ ∈ C, r ≥ 0, β ∈ R} . Thus S is a closed divisible
subsemigroup of G . Moreover the wedge W is a half space whose bounding
hyperplane is an ideal, hence is invariant, and so is the intersection W ∩a . Note,
however, that the intersection S∩A is not divisible: indeed, the points (z, 2kπ, 0)
with z 6= 0, k ∈ Z \ {0} are not in the exponential image of a .

2.5. Example. Examples connected with sl(2,R) . In this set of examples
we consider a connected Lie group G with Lie algebra g = sl(2,R). Let us write
k for the Cartan-Killing form on g .

According to the ‘Second Classification Theorem for Low Dimensional
Semialgebras’ ([3], Theorem II.3.7, p. 109, cf. also Proposition V.4.21), p. 418)
every generating Lie semialgebra is the intersection of half spaces bounded by a
conjugate of the solvable subalgebra {w ∈ g | k(x,w) = 0} , where x denotes the
nilpotent matrix

(
0
0

1
0

)
. The invariant wedges in g are precisely the two halves

of the standard Lorentzian double cone C = {x ∈ g | k(x, x) ≤ 0} and the
trivial ones, g and {0} . We single out one of the two halves of C by defining
K = {

(
a
c
b
−a
)
∈ C | b ≥ 0} .

By a result of Karl H. Neeb [8] we know that a generating Lie wedge
in g is the tangent wedge of a subsemigroup of the simply connected covering

group ˜Sl(2,R) if and only if it lies in a half space bounded by a tangent plane
of K .

Furthermore, the calculations of [3], p. 415ff, show that

G \ exp g =
⋃

z∈Z\{1}
z exp(g \ C)

where Z denotes the centre of G . It follows that no proper generating wedge in
g which meets the interior of either K or −K can be the Lie wedge of a densely
exponential subsemigroup. Thus if W is a generating wedge in g with W =
L(S), for some densely exponential subsemigroup S of G , then W ⊆ g \C , so
W is conjugate to a subset of the wedge sl(2)+ := {

(
a
c
b
−a
)
| a ∈ R, b ≥ 0, c ≥ 0} .

Note that sl(2)+ is the tangent wedge of the closed semigroup of all matrices in
Sl(2,R) with non-negative entries.
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If G is simply connected then expK generates a closed invariant sub-
semigroup with inner points in G , but this subsemigroup is not divisible.

Furthermore, if 1 6= g ∈ exp(g \ C) then there is exactly one element
x ∈ g with g = expx . Thus, if S is a densely exponential proper subsemigroup
of G with interior points then to every point s ∈ S there is exactly one element
w ∈ g with expw = s . Since exp is regular at all points of g \ C this implies
that for such semigroups S the map L(S) → G,w 7→ expw , is an imbedding.
It follows that every closed divisible subsemigroup of G is locally divisible and
that every generating Lie semialgebra not meeting the interior of the standard
double cone is the tangent wedge of a closed divisible subsemigroup of G .
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