A method for the computation of Clebsch-Gordan coefficients

Hartmut Schlosser

Clebsch-Gordan series, Clebsch-Gordan coefficients

Let G be a semisimple connected Lie group, \mathfrak{g} its Lie algebra, $\mathfrak{g}_{\mathbb{C}}$ the complexification of \mathfrak{g}. A finite dimensional irreducible representation of G (of $\mathfrak{g}, \mathfrak{g}_{\mathbb{C}}$) with highest weight m will be denoted by $[m]$. Let be $\left[m^{\prime}\right]$ and $\left[m^{\prime \prime}\right]$ be two such representations with representation spaces V^{\prime} and $V^{\prime \prime}$. In general, the tensor product $\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]$ is a direct sum of irreducible representations $\left[m_{i}\right.$] with the multiplicities n_{i} :

$$
\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]=\sum_{i \in I} n_{i}\left[m_{i}\right] \quad \text { (Clebsch-Gordan series). }
$$

Furthermore, we will assume that for every irreducible representation [m] in the representation space V is given a basis $\left\{g\left(m, p_{1}, p_{2}, \ldots\right): p_{1}, p_{2}, \ldots\right\}$ described by parameters p_{1}, p_{2}, \ldots which range over some intervals. This basis we shall call a canonical basis for $[m]$ in the following. (We do not give an exact definition of the canonical basis here). In $V^{\prime} \otimes V^{\prime \prime}$ we have two distinguished bases: The product basis

$$
\left\{g\left(m^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right) \otimes g\left(m^{\prime \prime}, p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots\right): p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots\right\}
$$

and the basis consisting of the canonical bases of the irreducible constituents $\left[m_{i}\right]$:

$$
\left\{g^{j_{i}}\left(m_{i}, p_{1}, p_{2}, \ldots\right): i \in I, j_{i}=1, \ldots, n_{i}, p_{1}, p_{2}, \ldots\right\}
$$

The connection between these bases is described by means of the so-called Clebsch-Gordan coefficients CGC(...): $g^{j_{i}}\left(m_{i}, p_{1}, p_{2}, \ldots\right)=$

$$
\sum \operatorname{CGC}\left(m^{\prime}, m^{\prime \prime}, m_{i}, j_{i} ; p_{1}^{\prime}, \ldots, p_{1}^{\prime \prime}, \ldots, p_{1}, \ldots\right) g\left(m^{\prime}, p_{1}^{\prime}, \ldots\right) \otimes g\left(m^{\prime \prime}, p_{1}^{\prime \prime}, \ldots\right)
$$

So, in general we have to solve two problems:
I. The computation of the Clebsch-Gordan series (CG series).
II. The computation of the Clebsch-Gordan coefficients (CGC).

Remarks to the computation of the CG series

In closed form CG series are known only in a few cases. For instance, if $G=\mathrm{SU}(2)$ the irreducible representations are described by the numbers $l=0,1 / 2,1, \ldots$ and the CG series is given by the formula

$$
\begin{equation*}
\left[l_{1}\right] \otimes\left[l_{2}\right]=\sum_{k=0}^{\min \left\{2 l_{1}, 2 l_{2}\right\}}\left[l_{1}+l_{2}-k\right] . \tag{1}
\end{equation*}
$$

The formula of Kostant-Steinberg gives a solution for arbitrary semisimple Lie algebras $\mathfrak{g}_{\mathbb{C}}$: It is possible to compute the multiplicity n_{i} of any irreducible representation in a given tensor product by means of the Weyl group of g_{C}. But it is very hard to work with this formula (see [1]).

A well-known method is that of Littlewood-Richardson: The decomposition of the tensor product is obtained by a graphical procedure working with Young frames. For $\mathrm{SU}(n)$ and $\mathrm{U}(n)$, this procedure can be used to prove a closed formula similar to (1) (see [3]); in these cases it is easy to calculate the CG series with the aid of a computer.

For example, the irreducible representations $D(p, q)$ of $\mathrm{SU}(3)$ are described by two natural numbers p and q (the highest weight of $D(p, q)$ is $(p+q, q, 0))$ and by the CG series which we get by

$$
\begin{gathered}
D\left(p_{1}, q_{1}\right) \otimes D\left(p_{2}, q_{2}\right)=\sum_{i=0}^{i_{1}} \sum_{k=0}^{k_{1}} \sum_{l=l_{0}}^{l_{1}} D\left(p_{1}+p_{2}-i-2 k+l, q_{1}+q_{2}-i+k-2 l\right) \\
i_{1}=\min \left\{p_{2}, q_{1}\right\}, k_{1}=\min \left\{p_{1}, p_{2}+q_{2}-i\right\}, l_{1}=\min \left\{q_{1}+k-i, q_{2}\right\} \\
l_{0}=\max \left\{0, k+i-p_{2}\right\}
\end{gathered}
$$

A method for the computation of CGC

The classical CGC are the coefficients connected with the representations of $\mathrm{SU}(2)$. Here a canonical basis for the irreducible representation $[l] \quad(l=$ $0,1 / 2,1, \ldots$) can be characterized in the following way: Let

$$
H=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right)
$$

be a basis of the Cartan subalgebra of $\mathfrak{s l}(2, \mathbb{C})$; the normed eigenvectors of $[l](H)$ build a canonical basis for [l] (these vectors are determined by this condition up to a factor of absolute value 1 ; we choose this factor equal to 1). We denote the basis by $\{g(l, \mu): \mu=0, \ldots, 2 l\}$. Here $g(l, 0)$ is the highest vector. In many
papers the parameter μ ranges over the eigenvalues $-l,-l+1, \ldots, l$ of $[l](H)$. The CGC are given by the closed formula

$$
\begin{align*}
& \operatorname{CGC}\left(l_{1}, l_{2}, k ; \mu_{1}, \mu_{2}, \mu\right)=\sqrt{\frac{\binom{2 l_{1}}{\mu_{1}}\binom{2 l_{2}}{\mu_{2}}\binom{2 l_{1}}{k}\binom{2 l_{2}}{k}}{\binom{2\left(l_{1}+l_{2}-k\right)}{\mu}\binom{2\left(l_{1}+l_{2}\right)-k+1}{k}} \sum_{h=0}^{k} \frac{(-1)^{h}\binom{k}{h}}{\binom{\mu_{1}}{h}\binom{\mu_{2}}{k-h}}\binom{2 l_{1}}{h}\binom{2 l_{2}}{k-h}} \\
& (2) \quad\left(k=0, \ldots, \min \left\{2 l_{1}, 2 l_{2}\right\}\right) . \tag{2}
\end{align*}
$$

This or an analogous formula can be proved by various methods. A possible way is the following: We look at the matrices

$$
\begin{aligned}
& A 12=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
& A 21=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

of $\mathfrak{s l}(2, C)$ and identify $A 12$ with $[l](A 12)$ ($A 21$ with $[l](A 21))$; by

$$
\begin{equation*}
g(l, \mu+1)=\sqrt{\frac{\binom{2 l}{\mu}}{\binom{2 l}{\mu+1}}} \cdot \frac{1}{\mu+1} A 21 g(l, \mu) \tag{3}
\end{equation*}
$$

we get a recursive relation; the initial vector is the highest vector $g(l, 0)$ of $[l]$ which can be described by

$$
\begin{equation*}
A 21(g(l, 0))=0 \tag{4}
\end{equation*}
$$

If a highest vector $g\left(l_{1}+l_{2}-k, 0\right)$ is computed by (4) as an element of the tensor space we can use (3) to compute a canonical basis in terms of the product vectors. Now (2) is an explicit solution of the recursive relation (3)(see [4]). The method can be generalized to a numerical computation of CGC of other groups. For this purpose we assume that a canonical basis $g_{0}, g_{1}, \ldots, g_{s}$ with highest vector g_{0} is introduced by parameters for every irreducible representation of a given group G and the action of the root vectors $A_{i}, B_{i}(i=1, \ldots, n)$ is known (for instance by the Gelfand-Zetlin formulas). Let $A_{i}\left(B_{i}\right)$ be root vectors corresponding to negative (positive) roots. We get all elements of the canonical basis by a suitable application of the A_{i} on $g_{0} \cdot g_{0}$ is characterized by $B_{i}\left(g_{0}\right)=0, i=1, \ldots, n$ (see [1]). If the vector g_{0} is given we have to look for an algorithm such that g_{j+1} can be calculated in the form

$$
\begin{equation*}
g_{j+1}=c(i, j) A_{i} g_{j}+\sum_{h<j} c_{h} g_{h} . \tag{5}
\end{equation*}
$$

More specifically, suppose that we are given a tensor product $\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]$ of representations, and let $\left[m_{i}\right]$ be an irreducible constituent with multiplicity n_{i}. The possible highest vectors g_{0} of $\left[m_{i}\right]$ are linear combinations of some product
vectors; these product vectors are determined by the highest weight of $\left[m_{i}\right]$, which is a weight of $\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]$. We apply B_{i} to the linear combinations of these product vectors with unknown coefficients and obtain from $B_{i}\left(g_{0}\right)=0$ a set of homogeneous linear equations for these coefficients. The space of solutions has dimension n_{i} and so for $n_{i}>1$ the vector g_{0} must be choosen so as to satisfy further conditions. One possibility for such a choice is described in the next section for $\mathrm{SU}(3)$.

Now we assume that a highest vector g_{0} of $\left[m_{i}\right]$ is given as a linear combination of product vectors:

$$
g_{0}=\sum_{h} c_{h} g_{1 h} \otimes g_{2 h}
$$

(the c_{h} are CGC by definition). Let A_{i} be a suitable root vector such that
$g_{1}=c A_{i}\left(g_{0}\right)=c \sum c_{h} A_{i}\left(g_{1 h} \otimes g_{2 h}\right)=c \sum c_{h}\left(\left(A_{i} g_{1 h}\right) \otimes g_{2 h}+g_{1 h} \otimes\left(A_{i} g_{2 h}\right)\right)$.
Because $A_{i} g_{1 h}$ and $A_{i} g_{2 h}$ are known by assumption we get g_{1} as a linear combination of product vectors. The coefficients are the CGC of g_{1}. Similarly we pass from g_{j} to g_{j+1} by (5) and an analogous calculation. A few years ago the procedure was programmed for the group $\mathrm{SU}(3)$ with the aid of the computer algebra system REDUCE (see [2]).

Computation of highest vectors in the case $\operatorname{SU}(3)$

We have three operators $A_{i}: A 21, A 31, A 23$ and three operators B_{i} : $A 12, A 13, A 32$. The operators $A 21, A 12$ act analogously to the case of $\mathrm{SU}(2)$. So a subgroup $\mathrm{SU}(2)$ of $\mathrm{SU}(3)$ is selected.

In general, in the CG series $\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]=\sum n_{i}\left[m_{i}\right]$ of $\mathrm{SU}(3)$ we have $n_{i}>1$. It is necessary to formulate additional properties for the selection of highest vectors g_{0} as solutions of $B_{i}\left(g_{0}\right)=0$. We observe:
(i) The irreducible representation $\left[m^{\prime}+m^{\prime \prime}\right]$ is selected from the irreducible constituents $\left[m_{i}\right]$: It has the multiplicity 1 ; the set of weights of $\left[m^{\prime}+m^{\prime \prime}\right]$ is identical with the set of weights of $\left[m^{\prime}\right] \otimes\left[m^{\prime \prime}\right]$.
(ii) The canonical basis of an arbitrary representation space of $S U(3)$ provides a layer structure; the layer structure of $\left[m^{\prime}+m^{\prime \prime}\right]$ can be transferred in a natural way to the product basis.

This gives solutions of $A 12\left(g_{0}\right)=0$ which are similar to the $\mathrm{SU}(2)$ solutions (2); these solutions are joined with the layer structure of the product basis and they are compatible with $A 13\left(g_{0}\right)=0, A 32\left(g_{0}\right)=0$. So we have a special way to solve the system $B_{i}\left(g_{0}\right)=0$, and the solutions are related naturally to the subgroup $\mathrm{SU}(2)$. The exact description is given in [5].

References

[1] Baruth, A. D. and R. Raczka, "Theory of group representations and applications", PWN, Warszawa 1977.
[2] Lassner, W. and H. Schlosser, Computation of the Clebsch-Gordan coefficients of $\mathrm{SU}(3)$ by a computer program written at Reduce, Trudy meshdunar. soweschtsch. po anal. wytschisl. na EWM i ich primeniju w teor. fis., Dubna, 17.-20. 9. 1985, 327-338.
[3] Schlosser, H., A closed formula for the decomposition of the Kronecker product of irreducible representations of $\mathrm{SU}(n)$, Math. Nachr. 134 (1987), 237-243.
[4] -, Zur Berechnung der Clebsch-Gordan-Koeffizienten halbeinfacher Liescher Gruppen, I. Ein allgemeines Verfahren; Anwendung auf die Gruppe SU (2), Beiträge zur Algebra und Geometrie 24 (1987), 29-40.
[5] -, Zur Berechnung der Clebsch-Gordan-Koeffizienten halbeinfacher Liescher Gruppen, II. Die Berechnung der Clebsch-Gordan-Koeffizienten der SU (3), Beiträge zur Algebra und Geometrie 25 (1987), 5-23.

Fachrichtungen Mathematik/Informatik
Ernst Moritz Arndt-Universität
Jahnstrasse 15a
O-2200 Greifswald

Received February 18, 1991

