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A method for the computation

of Clebsch-Gordan coefficients

Hartmut Schlosser

Clebsch-Gordan series, Clebsch-Gordan coefficients

Let G be a semisimple connected Lie group, g its Lie algebra, gC the
complexification of g . A finite dimensional irreducible representation of G (of
g , gC ) with highest weight m will be denoted by [m] . Let be [m′] and [m′′]
be two such representations with representation spaces V ′ and V ′′ . In general,
the tensor product [m′]⊗ [m′′] is a direct sum of irreducible representations [mi]
with the multiplicities ni :

[m′]⊗ [m′′] =
∑

i∈I
ni[mi] (Clebsch-Gordan series).

Furthermore, we will assume that for every irreducible representation [m] in the
representation space V is given a basis {g(m, p1, p2, . . .) : p1, p2, . . .} described
by parameters p1, p2, . . . which range over some intervals. This basis we shall
call a canonical basis for [m] in the following. (We do not give an exact defini-
tion of the canonical basis here). In V ′ ⊗ V ′′ we have two distinguished bases:
The product basis

{g(m′, p′1, p
′
2, . . .)⊗ g(m′′, p′′1 , p

′′
2 , . . .) : p′1, p

′
2, . . . , p

′′
1 , p
′′
2 , . . .}

and the basis consisting of the canonical bases of the irreducible constituents
[mi] :

{gji(mi, p1, p2, . . .) : i ∈ I, ji = 1, . . . , ni, p1, p2, . . .}

The connection between these bases is described by means of the so-called
Clebsch-Gordan coefficients CGC(. . .): gji(mi, p1, p2, ...) =

∑
CGC(m′,m′′,mi, ji; p

′
1, . . . , p

′′
1 , . . . , p1, . . .)g(m′, p′1, . . .)⊗ g(m′′, p′′1 , . . .).

So, in general we have to solve two problems:

I. The computation of the Clebsch-Gordan series (CG series).

II. The computation of the Clebsch-Gordan coefficients (CGC).
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Remarks to the computation of the CG series

In closed form CG series are known only in a few cases. For instance,
if G = SU(2) the irreducible representations are described by the numbers
l = 0, 1/2, 1, . . . and the CG series is given by the formula

(1) [l1]⊗ [l2] =

min{2l1,2l2}∑

k=0

[l1 + l2 − k].

The formula of Kostant-Steinberg gives a solution for arbitrary semisimple Lie
algebras gC : It is possible to compute the multiplicity ni of any irreducible
representation in a given tensor product by means of the Weyl group of gC . But
it is very hard to work with this formula (see [1]).

A well-known method is that of Littlewood-Richardson: The decompo-
sition of the tensor product is obtained by a graphical procedure working with
Young frames. For SU(n) and U(n), this procedure can be used to prove a
closed formula similar to (1) (see [3]); in these cases it is easy to calculate the
CG series with the aid of a computer.

For example, the irreducible representations D(p, q) of SU(3) are de-
scribed by two natural numbers p and q (the highest weight of D(p, q) is
(p+ q, q, 0)) and by the CG series which we get by

D(p1, q1)⊗D(p2, q2) =

i1∑

i=0

k1∑

k=0

l1∑

l=l0

D(p1 + p2 − i− 2k + l, q1 + q2 − i+ k − 2l)

i1 = min{p2, q1}, k1 = min{p1, p2 + q2 − i}, l1 = min{q1 + k − i, q2},

l0 = max{0, k + i− p2}.

A method for the computation of CGC

The classical CGC are the coefficients connected with the representations
of SU(2). Here a canonical basis for the irreducible representation [l] (l =
0, 1/2, 1, ...) can be characterized in the following way: Let

H =

(
1/2 0
0 −1/2

)

be a basis of the Cartan subalgebra of sl(2,C); the normed eigenvectors of [l](H)
build a canonical basis for [l] (these vectors are determined by this condition up
to a factor of absolute value 1; we choose this factor equal to 1). We denote the
basis by {g(l, µ) : µ = 0, . . . , 2l} . Here g(l, 0) is the highest vector. In many
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papers the parameter µ ranges over the eigenvalues −l,−l + 1, . . . , l of [l](H).
The CGC are given by the closed formula

CGC(l1, l2, k;µ1, µ2, µ) =

√√√√
(

2l1
µ1

)(
2l2
µ2

)(
2l1
k

)(
2l2
k

)
(

2(l1+l2−k)
µ

)(
2(l1+l2)−k+1

k

)
k∑

h=0

(−1)h
(
k
h

)(
µ1

h

)(
µ2

k−h
)

(
2l1
h

)(
2l2
k−h
)

(2) (k = 0, ...,min{2l1, 2l2}).

This or an analogous formula can be proved by various methods. A possible way
is the following: We look at the matrices

A12 =

(
0 1
0 0

)
,

A21 =

(
0 0
1 0

)

of sl(2, C) and identify A12 with [l](A12) (A21 with [l](A21)); by

(3) g(l, µ+ 1) =

√√√√
(

2l
µ

)
(

2l
µ+1

) · 1

µ+ 1
A21g(l, µ)

we get a recursive relation; the initial vector is the highest vector g(l, 0) of [l]
which can be described by

(4) A21
(
g(l, 0)

)
= 0.

If a highest vector g(l1 + l2−k, 0) is computed by (4) as an element of the tensor
space we can use (3) to compute a canonical basis in terms of the product vectors.
Now (2) is an explicit solution of the recursive relation (3)(see [4]). The method
can be generalized to a numerical computation of CGC of other groups. For this
purpose we assume that a canonical basis g0, g1, . . . , gs with highest vector g0 is
introduced by parameters for every irreducible representation of a given group G
and the action of the root vectors Ai , Bi (i = 1, . . . , n) is known (for instance
by the Gelfand-Zetlin formulas). Let Ai(Bi) be root vectors corresponding to
negative (positive) roots. We get all elements of the canonical basis by a suitable
application of the Ai on g0 . g0 is characterized by Bi(g0) = 0, i = 1, . . . , n (see
[1]). If the vector g0 is given we have to look for an algorithm such that gj+1

can be calculated in the form

(5) gj+1 = c(i, j)Aigj +
∑

h<j

chgh.

More specifically, suppose that we are given a tensor product [m′] ⊗ [m′′] of
representations, and let [mi] be an irreducible constituent with multiplicity ni .
The possible highest vectors g0 of [mi] are linear combinations of some product
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vectors; these product vectors are determined by the highest weight of [mi] ,
which is a weight of [m′] ⊗ [m′′] . We apply Bi to the linear combinations of
these product vectors with unknown coefficients and obtain from Bi(g0) = 0 a
set of homogeneous linear equations for these coefficients. The space of solutions
has dimension ni and so for ni > 1 the vector g0 must be choosen so as to
satisfy further conditions. One possibility for such a choice is described in the
next section for SU(3).

Now we assume that a highest vector g0 of [mi] is given as a linear
combination of product vectors:

g0 =
∑

h

chg1h ⊗ g2h

(the ch are CGC by definition). Let Ai be a suitable root vector such that

g1 = cAi(g0) = c
∑

chAi(g1h ⊗ g2h) = c
∑

ch
(
(Aig1h)⊗ g2h + g1h ⊗ (Aig2h)

)
.

Because Aig1h and Aig2h are known by assumption we get g1 as a linear
combination of product vectors. The coefficients are the CGC of g1 . Similarly
we pass from gj to gj+1 by (5) and an analogous calculation. A few years ago
the procedure was programmed for the group SU(3) with the aid of the computer
algebra system reduce (see [2]).

Computation of highest vectors in the case SU(3)

We have three operators Ai : A21, A31, A23 and three operators Bi :
A12, A13, A32. The operators A21, A12 act analogously to the case of SU(2).
So a subgroup SU(2) of SU(3) is selected.

In general, in the CG series [m′] ⊗ [m′′] =
∑
ni[mi] of SU(3) we have

ni > 1. It is necessary to formulate additional properties for the selection of
highest vectors g0 as solutions of Bi(g0) = 0. We observe:

(i) The irreducible representation [m′ +m′′] is selected from the irreducible
constituents [mi] : It has the multiplicity 1; the set of weights of [m′+m′′]
is identical with the set of weights of [m′]⊗ [m′′] .

(ii) The canonical basis of an arbitrary representation space of SU(3) pro-
vides a layer structure; the layer structure of [m′+m′′] can be transferred
in a natural way to the product basis.

This gives solutions of A12(g0) = 0 which are similar to the SU(2)-
solutions (2); these solutions are joined with the layer structure of the product
basis and they are compatible with A13(g0) = 0, A32(g0) = 0. So we have
a special way to solve the system Bi(g0) = 0, and the solutions are related
naturally to the subgroup SU(2). The exact description is given in [5].
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