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Non-Commutative Covariant Differential Calculi
on Quantum Spaces and Quantum Groups
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1. Introduction

There are two alternative fundamental approaches to the field of quantum
groups. The first one is based on a deformation of the universal enveloping
algebra, while the second one works with deformations of function algebras on
the group. Here we shall adopt the second view point and we think of a “quantum
group” as a q -deformation of some classical matrix group. (Fundamental papers
for this approach are [4] and [10, 11, 12]. A very elementary introduction was
given by the author in [7].) Then it is quite natural to ask for a generalization of
the classical differential calculus, say on matrix groups, to quantum groups. A
general framework for a bicovariant differential calculus on quantum groups was
developed by S. L. Woronowicz [12] following general ideas of A. Connes [2].
Concrete examples of such calculi were constructed in: [10] (the 3D-calculus on
SUq(2) which is left-covariant, but not bicovariant), [12] (the bicovariant 4D± -
calculus on SUq(2)), [9] and [6] (left-covariant calculus on Cnq ), [8] (left-covariant
calculus on GLq(2)), and [3] (bicovariant calculi on SUq(n) and SOq(n)).

The proofs for the results mentioned in Sections 3 and 4 will be given in
a forthcoming paper of the author.

2. Covariant Differential Calculi on Quantum Spaces

Throughout this paper we assume that all algebras are over the complex
field C and admit a unit element denoted by 1. Algebra homomorphisms are
always meant to be unit preserving. Let X be an algebra.

Definition 2.1. A first order differential calculus (or briefly, a differential
calculus) over X is a pair (Γ, d), where Γ is a bimodule for X and d:X → Γ is
a linear mapping such that d(xy) = dx·y + x·dy for x, y ∈ X , and where Γ is
the linear span of elements x·dy whith x, y ∈ X .

Definition 2.2. Two differential calculi (Γ1, d1) and (Γ2, d2) over X are said
to be isomorphic if there exists a bimodule isomorphism ψ: Γ1 → Γ2 such that
ψ(d1x) = d2x for all x ∈ X .
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The above Definition 2.1 is adopted from the following classical picture:
Suppose M is a compact smooth manifold. Let Γ be the space C∞

(
T ∗(M)

)
of

sections of the cotangent bundle and let d be the exterior derivative. Then (Γ, d)
is a differential calculus over the algebra X = C∞(M). Sometimes it is more
convenient to work with a smaller algebra X which is invariant under d . For
instance, if M is a matrix group, one could take the coordinate algebra for X .
Having this classical example in mind, we consider the bimodule Γ in Definition
2.1. as a non-commutative variant of the space of first order differential forms.

Now let A be a Hopf algebra. The comultiplication, the counit and the
antipode of A are denoted by ∆, ε , and κ , respectively.

Definition 2.3. A left quantum space (or briefly, a quantum space) for A is
an algebra X together with an algebra homomorphism ϕ:X → A⊗X such that
(id⊗ ϕ)ϕ = (∆⊗ id)ϕ and (ε⊗ id)ϕ = id. Also, ϕ is called the action of A on
X .

In other words, ϕ has to be both an algebra homomorphism and a
coalgebra homomorphism or, equivalently, ϕ is an algebra homomorphism, and
X is a left comodule for A . We may think of a “quantum space” X as a
“homogenous space” where the “quantum group” A acts.

Definition 2.4. Let X be a quantum space for A with action ϕ . A differential
calculus (Γ, d) over X is said to be left-covariant with respect to A if there exists
a linear mapping ϕ: Γ→ A⊗ Γ such that:

(i) (id⊗ ϕ)ϕ = (∆⊗ id)ϕ and (ε⊗ id)ϕ = id.

(ii) ϕ(xω) = ϕ(x)ϕ(ω) and ϕ(ωx) = ϕ(ω)ϕ(x) for x ∈ X , ω ∈ Γ.

(iii) ϕ · d = (id⊗d)ϕ .

Let us briefly discuss the conditions (i)-(iii) in Definition 2.4. Condition
(i) means only that Γ is a left comodule for the Hopf algebra A , that is, the
“quantum group A acts on the space Γ of differential forms”. (ii) says that this
action ϕ of A on Γ is compatible with the action ϕ of A on X . A bimodule Γ
of the quantum space X together with a linear mapping ϕ: Γ→ A⊗Γ satisfying
(i) and (ii) is called a left-covariant bimodule. Finally, (iii) means that the action
ϕ is compactible with the differentiation d . Condition (iii) is the requirement
that the following diagram is commutative:

x
d

−−−−−−−−−→ Γ
ϕ

y
yϕ

A⊗X −−−−−−−−−→
id⊗d

A⊗ Γ.

We check that the mapping ϕ occuring in Definition 2.4 is uniquely
determined by ϕ and d . For an arbitrary form ω =

∑
n xn·dyn ∈ Γ we have

(1) ϕ(ω) = ϕ(
∑

n

xn·dyn) =
∑

n

ϕ(xn)(ϕ·d)(yn) =
∑

ϕ(xn)(id⊗d)ϕ(yn)

and the right-hand side of (1) depends only on d and ϕ .

A characterization of the left-covariance which avoids use of the action
ϕ is given by
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Proposition 2.5. A differential calculus (Γ, d) over a quantum space X for
A is left-covariant with respect to A if and only if

∑
n xn·dyn = 0 always implies

that
∑
n ϕ(xn)(id⊗ d)ϕ(yn) = 0 .

The necessity of this condition is clear by (1). The proof of the sufficiency (in the
case X = A , ϕ = ∆) is given in [12], Section 2. Note that in [12] the condition
in Proposition 2.5 is used to define the left-covariance.

The definitions of a right quantum space, a right-covariant bimodule and
a right-invariant differential calculus are similar. In the latter case (iii) has to be
replaced by ϕ·d = (d⊗ id)ϕ .

Clearly, the quantum group A itself is both a left quantum space and
a right quantum space for A with the action ϕ = ∆. (The corresponding
conditions in Definition 2.3 are valid by the Hopf algebra axioms for A .) With
this action, we can speak about left- or right-covariant differential calculi on A .
A differential calculus on A is called bicovariant if it is left-covariant and right-
covariant. Similarly, a bicovariant bimodule of A is a bimodule which is both
left- and right-covariant.

3. Two Examples:
The Quantum Hyperboloid and the Quantum Plane

Let δ be a fixed complex number. Let Xq,δ denote the universal algebra
with unit 1 and two generators satisfying the relation xy − qyx = δ·1. That
is, Xq,δ is the quotient C〈x, y〉/(xy − qyx − δ·1) of the free algebra with unit
C〈x, y〉 generated by x and y modulo the two-sided ideal (xy − qyx − δ·1) of
this algebra which is generated by the element xy − qyx− δ·1. In the case that
δ = 0, the algebra Xq,δ is nothing but the quantum plane C2

q discussed already
in [7]. If δ 6= 0, we shall call Xq,δ the quantum hyperboloid.

For arbitrary δ ∈ C , the algebra Xq,δ is a (left) quantum space for the
quantum group SLq(2), where its action ϕ is given by the “matrix multiplica-
tion”, i.e., ϕ(x) = a⊗x+b⊗y and ϕ(y) = c⊗x+d⊗y . More precisely, ϕ has to
be extended to an algebra homomorphism of Xq,δ into SLq(2)⊗Xq,δ . It is not
difficult to check that ϕ is well-defined, i.e., ϕ(x)ϕ(y)−qϕ(y)ϕ(x)−δ(1⊗1) = 0
if xy − qyx− δ·1 = 0.

It should be noted that the cases δ 6= 0 and δ = 0 are different in several
respects. We mention one of them. If we set q = 1, then C2

q = Xq,0 is just the
polynomial algebra C[x, y] in two commuting variables x and y . That is, for
q = 1 and δ = 0 we get the coordinate algebra of a “classical (commutative)
space”. However, if δ 6= 0, then q = 1 does not give a “classical space”. For
instance, for δ = 1 and q = 1, the algebra Xq,δ is the Weyl algebra.

Motivated by the classical situation we shall restrict ourselves to differ-
ential calculi (Γ, d) for which the following is true:

(∗) {dx, dy} is a basis for the left module Γ.
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We discuss the two cases δ 6= 0 and δ = 0 separately.

Example 1. The quantum hyperboloid Xq,δ with δ 6= 0.

First suppose that if q 6= 1, then qm 6= 1 for m = 2, 3. Then there exist precisely
two non-isomorphic differential calculi (Γ, d) on Xq,δ which are left-covariant
with respect to SLq(2) and satisfy the assumption (∗). The corresponding
formulae describing Γ are:

x·dx = p dx·x+ (1− p−1)δ−1ωinvx
2,

y·dy = p dy·y + (1− p−1)δ−1ωinvy
2,

x·dy = (p− p−1q−1) dx·y + p−1 dy·x+ (1− p−1)δ−1ωinvxy,

y·dx = p−1 dx·y + (p− qp−1) dy·x+ (1− p−1)δ−1ωinvyx,

where
ωinv := dx·y − qdy·x and p := ±(q1/2 + q−1/2)− 1.

In the proof of this statement one has to decompose tensor product rep-
resentations of SLq(2). Here one has similar results as for the classical SL(2,C)
if q is not a root of unity. This is the point where the assumption concerning q
is used. It is interesting that there are more left-covariant differential calculi if
q = 1

2
(−1±

√
3i). Then for arbitrary non-zero α ∈ C there exists a left-covariant

differential calculus over Xq,δ which satisfics (∗). The corresponding formulae
are:

x·dx = αdx·x+ α̃ωinvx
2,

y·dy = αdy·y + α̃ωinvy
2,

x·dy = (α− α−1q−1) dx·y + α−1 dy·x+ α̃ωinvxy,

y·dx = α−1 dx·y + (α− qα−1) dy·x+ α̃ωinvyx,

where
α̃ := −(α+ α−1 + 1)δ−1.

Example 2. The quantum plane C2
q .

Suppose that qm 6= 1 for all m ∈ N if q 6= 1. Then for each α ∈ C there is a
left-covariant differential calculus over C2

q with respect to SLq(2) which statisfies
assumption (∗):

x·dx = q2 dx·x+ αωinvx
2,

y·dy = q2 dy·y + αωinvy
2,

x·dy = q dy·x+ (q2 − 1) dx·y + αωinvxy,

y·dx = q dx·y + αωinvyx.

Further, other left-covariant differential calculi over C2
q satisfying (∗)

are obtained if we replace in the above formulas q by q−1 , x by y and y by x .
These are all differential calculi over C2

q with the described properties.

Of particular interest are the two calculi which are obtained if we set
α = 0. These calculi were introduced independently in [9] and in [6]. Another
approach to the differential calculus on C2

q (or more generally, on Cnq ) was given
by [5].
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4. Bicovariant Bimodules over a Quantum Group

If (Γ, d) is a bicovariant differential calculus over a quantum group A ,
then Γ is, in particular, a bicovariant bimodule. The structure of such modules
has been completely characterized by Woronowicz [12], cf. Theorem 2.4. We
state this result in the following theorem. Its formulation uses convolutions of
elements x of the Hopf algebra A and of linear functionals f on A which are

defined by f ∗ x def
= (id⊗f)∆(x) and x ∗ f def

= (f ⊗ id)∆(x), respectively.

Theorem 4.1. Suppose Γ is a bicovariant bimodule for a Hopf algebra A . Let
ϕL and ϕR denote the left resp.right actions of A on Γ and let (ωi)i∈I be a basis
of the vector space Γinv := {ω ∈ Γ : ϕL(ω) = 1 ⊗ ω} of left-invariant elements
in Γ . Then there exist linear functionals fij , i, j ∈ I , on A and elements Rij ,
i, j ∈ I , of A such that for all x, y ∈ A and i, j ∈ I :

(2) ωix =
∑
j(fij ∗ x)ωj ,

(3) ϕR(ωi) =
∑
j ωj ⊗ Rji ,

(4) fij(xy) =
∑
k fik(x)fkj(y), fij(1) = δij ,

(5) ∆(Rij) =
∑
k Rik ⊗ Rkj, ε(Rij) = δij ,

(6)
∑
k Rki(x ∗ fkj) =

∑
k(fik ∗ x)Rjk .

Further, (ωi)i∈I is a left module basis of Γ .

Conversely, if functionals fij on A and elements Rij of A are given

such that (4)-(6) is satisfied and if (ωi)i∈I is a basis of a certain vector space Γ̃ ,

then there exists a unique bicovariant bimodule Γ such that Γ̃ = Γinv , (2) and
(3) hold.

We add a few comments. (4) and (5) have nice algebraic interpretations:
(4) says that the mapping x 7→

(
fij(x)

)
is a representation of the algebra A on

the vector space Γinv and (5) means that (Rij) is the matrix for a representation
of the coalgebra A . Conditions (6) expresses a compatibility requirement for the
right and the left actions.

5. Bicovariant Differential Calculi
on Quantum Groups of Type Bn , Cn , and Dn

In this section we let A denote the Hopf algebra for one of the quantum
groups Bn , Cn , or Dn as defined in [4], Subsection 1.4. These quantum
groups are q -deformations of the classical matrix groups SO(n + 1), SO(2n)
and Sp(n). As an algebra, A is the quotient C〈uij : i, j = 1, . . . , N〉/J of the

free algebra generated by N 2 elements uij , i, j = 1, . . . , N by the two-sided ideal

J generated by the matrix elements of R̂(u⊗ u)− (u⊗ u)R̂ , u(cutc−1)− I , and

cutc−1u − I . Here R is the so-called R -matrix and R̂ arises from R through
the “flip operator” for the tensor product. Further, u denotes the matrix (uij)
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and c is another invertible N ×N matrix. Its concrete form is not needed here.
Let b = (bij) denote the inverse of c.

We consider a bicovariant differential calculus (Γ, d) over A which sat-
isfies the following “natural” assumption:

(∗) {duij; i, j = 1, ..., N} is a basis of the left module Γ.

Set ω(ij) =
∑

r,s b
i
rκ(urs)du

s
j for i, j ∈ {1, . . . , N}. Small calculations show that

ϕL(ω(ij)) = 1⊗ ω(ij) and ϕR(ω(ij)) =
∑
kl ωkl ⊗ uki ulj . The first equality means

that ω(ij) is left-invariant, i.e., ω(ij) ∈ Γinv . From (∗) it follows easily that the
N2 elements ω(ij) form a basis of Γinv . The second equality shows that the

elements R(kl),(ij) in Section 4 are uki u
l
j , i.e., R(kl)(ij) is the matrix element of

the tensor product representation u ⊗ u . (Note that our indices are now pairs
of numbers such as (ij), (kl).) Let f(ij),(kl) be the linear functionals on A from
Theorem 4.1 and put

(7) T rklijs := f(ij),(kl)(u
r
s), i, j, k, l, r, s = 1, . . . , N .

Then T ≡ (T rklijs ) belongs to End(CN ⊗ CN ⊗ CN ).

Theorem 5.1. If (Γ, d) is a bicovariant differential calculus over A satisfying
(∗) , then we have:

(8) T (u⊗ u⊗ u) = (u⊗ u⊗ u)T ,

(9) R̂12 T234 T123 = T234 T123 R̂34 ,

(10) T ·(c−1
3 P132Tc3)t3 = (c−1

3 P132Tc3)t3 ·T = I .

Conversely, if a mapping T ∈ End(CN ⊗ CN ⊗ CN ) fulfills the three
conditions (8)–(10), then there exists a unique bicovariant differential calculus
over A such that (∗) and (7) are satisfied.

In other words, this theorem characterizes the bicovariant differential
calculi over A satisfying (∗) in terms of the linear mapping T . The crucial
condition therein is, of course, (8). It is derived from condition (6) in Theorem
4.1, Condition (8) says that the mapping T belongs to the intertwining space
M := Mor(u⊗u⊗u, u⊗u⊗u). This space is a finite dimensional algebra whose
structure is known. It is a quotient of the so-called Birman-Wenzl-Murakami
algebra (see, for instance, [1]), a q -deformed version of the classical Brauer
algebra.

Let us look at the simplest case A = D1 . It is known (cf. [4]) that the
Hopf algebra of D1 for q is isomorph to the Hopf algebra of SLq2(2) and so of
SUq2(2) if q is real and q2 < 1. Thus it suffices to consider the case of SLq(2).
Suppose that q is not a non-trivial root of unity. Then the tensor product
u ⊗ u ⊗ u of the fundamental representation u = d 1

2
decomposes as d1 1

2
⊕ 2d 1

2

similarly as in the classical case q = 1. Hence dimM = 5. More precisely, the
algebra is a quotient of the Hecke algebra H3(q) by a one-dimensional ideal.

Let us come back to the construction and classification of bicovariant
differential calculi over A . It is not difficult to check that the four endomor-
phism T := R̂12R̂

−1
23 , R̂−1

12 R̂23 , R̂12R̂23 , R̂−1
12 R̂

−1
23 satisfy the conditions (8)-(10).
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Therefore, by Theorem 5.1, each of the mappings yields a bicovariant differential
calculus over A . It turns out that the first and the second endhomorphism give
isomorphic differential calculi. But if q2 6= 1 then R̂−1

12 R̂23 , R̂12R̂23 and R̂−1
12 R̂

−1
23

define non-isomorphic differential calculi. In case q2 = 1 we have R̂ = R̂−1 , so
that four mappings coincide and define the same differential calculus.

Here is a natural question: Are the four mappings T defined above all
solutions of (8)-(10)?

I conjecture that this is true. In proving this the concrete structure of
the intertwining space Mor(u⊗ u⊗ u, u⊗ u⊗ u) will be certainly helpful.



132 Schmüdgen
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