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A note on the oscillator group

Norbert Dörr∗

Abstract. In this note we give an alternative parametrization of the oscil-
lator algebra. We determine the semigroup of the oscillator group that is
infinitesimally generated by an invariant cone whose exponential image is not
dense in the semigroup.

1. An alternative parametrization for the oscillator algebra

Let M(2) be the universal covering group of the group of Euclidian motions of the
plane. Then M(2) may be realized as the group of 3× 3-matrices



eir c 0
0 e−ir 0
0 0 er


 , r ∈ R, c ∈ C.

If we write (c, r) for these matrices, the multiplication is given by

(c, r)·(c′, r′) = (eirc′ + e−ir
′
c, r + r′). (1)

The corresponding Lie algebra m(2) may be identified with C⊕R with Lie bracket

[(c, r), (c′, s′)] = (2i·det
(
r r′

c c′

)
, 0). (2)

We prefer this parametrization of M(2) because all one-parameter groups are
“flat”, i. e., they are contained in a two-dimensional subspace.

Lemma 1.1. Let M(2) be the group of Euclidian motions of the plane with
multiplication (1). Then the one-parameter groups are given by

ϕ(t) = (ρ· sin r, r), (3)

where ρ ∈ C.

Proof. This may be verified by direct computation.
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Let H be the Heisenberg group. It can be realized as R×C with multipli-
cation

(z, c)·(z′, c′) =
(
z + z′ +

1

2
Im(cc′), c′ + c

)
, (4)

where z, z′ ∈ R, c, c′ ∈ C. The Heisenberg algebra h = L(H) = R ⊕ C has Lie
bracket

[(z, c), (z′, c′)] =
(
Im(cc′), 0

)
(5)

for z, z′ ∈ R, c, c′ ∈ C.

We consider the four-dimensional oscillator group O4 with corresponding
Lie algebra o4 = L(O4). The oscillator group is the semidirect product of R and
the Heisenberg group H = R× C, where R acts by rotation on C. Motivated by
the parametrization of M(2) we can realize O4 in the following way.

Lemma 1.2. The oscillator group O4 admits the following parametrization:
O4 = R× C× R with multiplication

(z, c, r)·(z′, c′, r′) =
(
z + z′ +

1

2
Im(ei(r+r

′)cc′), eirc′ + e−ir
′
c, r + r′

)
(6)

for z, z′, r, r′ ∈ R, c, c′ ∈ C.

The Lie algebra o4 = L(O4) = R⊕ C⊕ R has Lie bracket

[(z, c, r), (z′, c′, r′)] =
(
Im(cc′), 2i·det

(
r r′

c c′

)
, 0
)

(7)

for z, z′, r, r′ ∈ R, c, c′ ∈ C.

In what follows, we explicitly compute the exponential function

exp: o4 → O4

of the oscillator group in this parametrization. The shape of the one-parameter-
groups in the motion group M(2) motivates the following definition. Set

Φ(t)
def
=
(
ϕ(t), c0· sin t, t

)
,

where c0 ∈ C. By a straightforward computation using (6), we get

(ϕ(t), c0· sin t, t)·(ϕ(u), c0· sin u, u) =

(ϕ(t) + ϕ(u) +
|c0|2

4

(
sin2 t sin(2u) + sin(2t) sin2 u

)
, c0· sin(t+ u), t+ u).

Thus we get the following functional equation for ϕ:

ϕ(t+ u) = ϕ(t) + ϕ(u) +
|c0|2

4
(sin2 t sin(2u) + sin(2t) sin2 u)

for all t, u ∈ R. If we devide both sides by u and let u tend to zero, we get the
differential equation

ϕ′(t) = ϕ′(0) +
|c0|2

2
sin2 t
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which integrates to

ϕ(t) = (ϕ′(0) +
|c0|2

4
)·t− |c0|2

8
sin(2t).

Thus we have

Φ(t) =
(
(z0 +

|c0|2
4

)·t− |c0|2
8

sin(2t), c0 sin t, t
)
, (8)

where z0 ∈ R, c0 ∈ C, and Φ′(0) = (z0, c0, 1). With these preparations we get the
following result.

Proposition 1.3. The exponential function exp: o4 → O4 of the oscillator
group is given by

exp(z, c, r) =





(
z +
|c|2
4r
− |c|

2

8r2
sin(2r), c·sin r

r
, r
)

for r 6= 0;

(z, c, 0) for r = 0.

Proof. This follows from (8) where we have only to take care to get the right
parameters. It is also sufficient to note that d

dt
|t=0 exp t·(z, c, r) = (z, c, r).

2. Invariant wedges in the oscillator algebra

We consider on o4 the symmetric, bilinear form q: o4 × o4 → R defined by

q((z, c, r), (z′, c′, r′))
def
= rz′ + r′z +

1

2
Re(cc′) (9)

for (z, c, r), (z′, c′, r′) ∈ o4 . The associated quadratic form is denoted by the same
letter, i. e.,

q(z, c, r)
def
= 2rz +

1

2
|c|2. (10)

Lemma 2.1. The symmetric, bilinear form q: o4 × o4 → R defined by (9) is
invariant, i. e., we have q([w1, w2], w3) = q(w1, [w2, w3]) for wj ∈ o4 , j = 1, 2, 3.

Proof. Let wj = (zj, cj, rj) ∈ o4 , j = 1, 2, 3. Then we have

q([w1, w2], w3) = q
(
(Im(c1c2), 2i·det

(
r1 r2
c1 c2

)
, 0), (z3, c3, r3)

)

= s3· Im(c1c2) + 1
2
Re(2i· det

(
r1 r2
c1 c2

)
c3)

= s3· Im(c1c2) + s1· Im(c2c3)− s2· Im(c1c3)

and
q(w1, [w2, w3]) = q

(
(z1, c1, r1), (Im(c2c3), 2i·det

(
r2 r3
c2 c3

)
, 0)
)

= s1· Im(c2c3) + 1
2
Re(2i·c1 det

(
r2 r3
c2 c3

)
)

= s1· Im(c2c3) + s3· Im(c1c2)− s2· Im(c1c3)

These two expressions are equal, as required.
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Definition 2.2. Denote by W the invariant Lorentz cone defined by the zero-
set of the invariant quadratic form q , i. e.,

W
def
= {(r, v, z) ∈ L | q(z, c, r) ≤ 0, r ≥ 0, z ≤ 0}. (11)

In what follows, we denote the closed semigroup that is generated by W
with

S
def
= 〈expW 〉. (12)

In the next paragraph we show that S is an infinitesimally generated semigroup
with tangent wedge L(S) = W . But first, we determine the exponential image
expW of W . We have

(z0, c0, 1) ∈ W ⇐⇒ z0 +
1

4
|c0|2 ≤ 0. (13)

We denote by Φz0,c0:R → O4 the one-parameter group generated by (z0, c0, 1).
Hence we have by Proposition 1.3

Φz0,c0
def
= exp t·(z0, c0, 1)

=
(
(z0 +

|c0|2
4

)·t− |c0|2
8

sin(2t), c0 sin t, t
)
.

Since (z0, c0, 1) + R−·(1, 0, 0) ⊆ W whenever (z0, c0, 1) ∈ W , the boundary of
expW is just the image of ∂W . Hence we have as “boundary curves” Φc0 of
expW

Φc0(t) =
(
−|c0|2

8
· sin(2t), c0 sin t, t

)
, t ≥ 0, (14)

i. e., the one-parameter semigroups Φz0,c0 with z0 = − |c0|2
4

.

In Figure 1 we see the projection of Φc0 into R×0×R, resp., 0×R·c0×R.

Figure 1: Projection of Φc0 into R× 0× R, resp., 0× R·c0 × R.
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Lemma 2.3. For the intersection of the exponential image of W with the

hyperplane Ht
def
= R× C× {t} the following holds.

(i) For t = k·π , k ∈ N:

(expW ) ∩Ht = R− × {0} × {k·π}.

(ii) For t 6= k·π , k ∈ N:

(expW ) ∩Ht =
{(
− sin(2t)

4(1− cos(2t))
·|c̃|2, c̃, t

) ∣∣∣ c̃ ∈ C
}

+ R− × {0} × {0}.

Proof. The case t = 0 is obvious, since exp(z, c, 0) = (z, c, 0), and (z, c, 0) ∈ W
if and only if z ≤ 0 and c = 0.

By Proposition 1.3, we have for t = k·π , k ∈ N \ {0},

exp(z, c, k·π) = (z +
|c|2
4k·π , 0, k·π).

Again, the fact, that (z, c, k·π) ∈ W if and only if z+ |c|2
4k·π ≤ 0, proves the assertion

in the case t = k·π .

For (z, c, t) ∈ W we have

exp(z, c, t) =
(
z +
|c|2
4t
− |c|

2

8t
sin(2t), c·sin t

t
, t
)
,

where z + |c|2
4t
≤ 0. Thus we have

(expW ) ∩Ht =
{(
−|c|

2

8t
sin(2t), c·sin t

t
, t
) ∣∣∣ c ∈ C

}
+ R− × {0} × {0}.

Set c̃ = c· sin t
t

. Then a straightforward calculation using sin2 t = 1
2
(1 − cos(2t))

proves the assertion.

For a fixed c̃ ∈ C we identify the two-dimensional subspace Ht,̃c

def
= R ×

R·c̃ × {t} ∩ Ht with E
def
= R × R·c̃. Then (expW ) ∩ Ht,̃c for t 6= k·π is just the

region of E below te graph of the function {(f(x), x) | f(x) = − sin(2t)|̃c|2
4(1−cos(2t))

·x2}.
For t = k·π it is the half-ray R1 × {0} (see Figure 2).

Figure 2: (expW ) ∩Ht,̃c .
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We have choosen the parametrization of O4 in such a way that the one-
parameter group exp(z, c, t) is entirely contained in the three-dimensional subspace
R × R·c × R. Since the image of W under the exponential function is invariant
under the action of Ad(exp(0, 0, r)), which induces a rotation in {0} × C × {0},
we can visualize expW in R× R·c× R as in Figure 3.

Figure 3: Intersection of expW with R× R·c× R.

3. The semigroup S = 〈expW 〉
In this section we consider the closed semigroup S = 〈expW 〉 generated by

W . We show that it is infinitesimally generated with tangent wedge L(S) = W .
It turns out that expW is not dense in S . Indeed, there are interior points in
S \ expW . This makes this example so important for the discussion of divisible
semigroups and Lie semialgebras in [HR].

Lemma 3.1. Let B ⊆ O4 defined by B
def
= R × C×] − π, π[. Then the

restriction of the exponential map

exp |B:B → B

is a diffeomorphism.

Proof. This follows from the explicit formula for the exponential map in Propo-
sition 1.3.

Lemma 3.2. Let W be the invariant cone of Definition 2.2. Then the in-
finitesimally generated semigroup S = 〈expW 〉 satisfies
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(i) L(S) = W .

(ii) With B of Lemma 3.1 we have

S ∩ B = (expW ) ∩ B.

Proof. Let C = {((z, c, v), (z′, c′, v′)) ∈ B × B | −π ≤ r, r′, r + r′ ≤ π}. Then
C = {(x, y) ∈ B ×B | exp x· exp y ∈ B}. By Proposition 3.1, we have

exp sx· exp ty ∈ expB für alle s, t ∈ [0, 1]

for all (x, y) ∈ C . Now [HHL] II.2.41 implies

exp x· exp y ∈ expW for all (x, y) ∈ C ∩ (W ×W ).

Since [π,+∞[×C × R is a semigroup ideal in R+ × C × R, this shows (ii). But
then (i) is obvious.

With these preparations we can explicitly describe the semigroup S =
〈expW 〉.

Proposition 3.3. Let O4 = R×C×R be the oscillator group in the parametri-
zation Lemma 1.2, and W the invariant Lorentz cone of Definition 2.2. Set
S = S1 ∪ S2 with

S1 =
{

(z, c, r) ∈ O4

∣∣∣ z ≤ − sin(2r)

4(1− cos(2r))
|c|2

}
∪ R− × {0} × {0}

and
S2 = [π,+∞[×C× R.

Then

(i) S = 〈expW 〉,

(ii) L(S) = W .

Proof. (i) First, we show S ⊆ S∗
def
= 〈expW 〉. By Proposition 3.2,

S1 = S∗ ∩B = (expW ) ∩ B (15)

holds. This implies S1 ⊆ S∗ . We have Φc(
π
2
) = exp π

2
·( |c|2

4
, c, 1) = (0, c, π

2
), and

therefore {0} × C × {π
2
} ⊆ S∗ . For r ∈ R+, z ∈ R− the relations (0, 0, r) =

exp(0, 0, r) ∈ S∗ and (z, 0, 0) = exp(z, 0, 0) ∈ S∗ hold. Because of

(π, v, 0)·(r, 0, 0) = (π + r, v, 0) (16)

and
(r, v, 0)·(0, 0, z) = (r, v, z) (17)

this implies R−×C× [π
2
,+∞[⊆ S∗ . By definition of S1 and Lemma 2.3, equation

(16) inplies S \ (R+ \ {0} × {0} × [π,+∞[) ⊆ S∗ .
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It remains to show, that all points of the form (z, 0, π) with z ∈ R+ \ {0}
are in S∗ . Consider the one-parametergroups Φc0 and Φe−2isc0 . Then we have

Φc0(t)·Φe−2isc0(t) =
(
−|c0|2

4
· sin(2t) +

1

2
sin 2(t− s)·|c0|2, (ei(t−2s) + e−it)·c0, 2t

)
.

In particular, for s− π
2

= t = t0 we get

Φc0(t0)·Φe−2it0c0(t0) = (−|c0|2
4
· sin(2t0), 0, 2t0) ∈ S∗.

Thus every element of the form (z, 0, π) with z ∈ R+ \{0} is approximable within
S∗ by a suitable choose of t0 >

π
2

and c0 ∈ C. Since S∗ is closed, this shows
S ⊆ S∗ .

For the proof of (i) it remains to show that S is a semigroup. Obviously,
SS2 ∪ S2S ⊆ S holds. By (15) and Proposition 3.2, we also have S1S1 ⊆ S . This
proves the assertion. Claim (ii) now follows from Lemma 3.2.

Proposition 3.3 shows, that the entire half-space [π,+∞[×C × R is con-
tained in S = 〈expW 〉, whereas expW misses open sets in [π,+∞[×C × R by
Lemma 2.3.
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