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Abstract

The paper deals with two simply connected solvable four-dimensional Lie
groups M; and M. The first group is a direct product of the nilpotent Heisen-
berg Lie group and the one-dimensional Lie group. The second one is a direct
product of the two-dimensional non-abelian Lie group and the two-dimensional
abelian Lie group. Applying Methods of [4, 6] we investigate the causal structure
of left-invariant Lorentzian metrics on M; [8] and My [7]. Here we focus our
attention on one concrete metric on M; and on a certain one-parameter family
9q, ¢ > 0 of metrics on My. We have proved in [7, 8] these Lorentzian spaces
to be geodesically complete, satisfying the causality condition with a violation
of uniform stable causality. In the present paper, we prove these spaces to be
future distinguishing (that involves, because of their homogeneity, also the con-
ditions of past distinguishing, strong causality, stable causality and continuity
of causality). This result is of interest in causality theory since in accordance
with [9], respectively, [5] the chronological (respectively, causal) structure of such
spaces codes their conformal structure. It also characterizes the structure of the
subsemigroup I, respectively, J* which defines the chronological, respectively,
causal structure of the considered Lorentzian Lie group.

For all unfamiliar definitions, the reader is referred to [1, 6].

1. General method to prove future distinguishability
of a Lorentzian Lie group

Assume M to be a solvable connected Lie group and fix a symmetric non-
degenerated form of Lorentzian signature +,...,+, — in the Lie algebra L of M.
After the choice of future cone K+ in L the group M becomes a Lorentzian Lie
group, or LLG for short. If an ideal [L, L] is lightlike, i.e., its intersection with
K™ is a single ray lying in 0K, then such an LLG M satisfies the causality
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condition [6, Theorem 4.2]. If the intersection of Kt and [L, L] is {0}, then
M is uniformly stably causal [6, Theorem 4.1], hence distinguishing. We may,
therefore, restrict our attention to the case K+ N[L, L] = ¢ where ¢ is a light
ray in L.

Suppose that the hyperplane N contains ¢ and is a support hyperplane
of K*. Introduce in M a canonical coordinate system (x1,...,x,) of the
second type associated with N. Then the Lie subgroup corresponding to N
is characterized by the equation x, = 0.

A Lorentzian manifold M with a prescribed time orientation is said to be
future distinguishing (see [1], p. 24) if for any z, y € M the assumption I} = I.f
implies = y, where I, respectively, I, as usual, denotes the chronological
future, respectively, past of x. If x = 1 then we shall simply write ™ instead
of I etc. Also the causal future, respectively, past, of x will be denoted by
JI, respectively, J (and JT, respectively, J~ if z = 1.). We want to make
use of a result due to R. Penrose: If M fails to be future distinguishing, then
Condition (e) of his Theorem 4.31 from [10] is valid. The latter condition deals
with a certain light geodesic v. Suppose now that our LLG M fails to be future
distinguishing. It follows from the proof of Theorem 4.2 of [6] that the v above
corresponds to /.

We recall Condition (e) itself:
For any w,v € v with v <wv, if u < z and y < v, then y < x.
We may assume without loss of generality that 1 € .

Lemma . -+ is entirely contained in It NI1-.

Proof. In Condition (e) we take u=1,veyNJt. Let 1 <z, ie, x €T
and y < v, ie., y€ I, . Let y tend to v in I, and let = tend to 1 in I*. This

choice is possible, since ve I, C I, , 1€ J C I+. Taking into consideration

the continuous dependence of I;E on the point y itself, we deduce v € I—. ]
We return to M and the canonical coordinates (z1,...,x,). Let
x = z(t) denote a future timelike curve A issuing from 1 = (0,...,0). The

subsemigroup I, the chronological future of 1, consists of the points on all
such A. Observe that the component z, of the product z = z -y equals z,, +y,, .
Thus the coordinate x,, of the point z(t) is increasing while we move along A
from 1 to the future. But the above lemma states that it must somehow reach
the vicinity of v~ = J~ N~.

Let exp denote the exponential map (in the geometrical sense) defined
on some neighborhood U of 1. When ¢ > 0 is sufficiently small, the points x(t)
“concentrate near” exp K. They can return to v~ only above such a “level”
Zn , at or below which there are conjugate points to 1 along null geodesics issuing
from 1. Therefore the we have following result.

Theorem 1. If, under the assumptions above, in a certain slice U def {r:0<
Tn < €} there are no points conjugate to 1 along future null geodesics issuing
from 1, and if the set of all points on all lightlike future geodesics from 1 1in
U divides U into two components, then the Lorentzian Lie group M is future
distinguishing. [ ]
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We note that similar arguments have been used in [5] in the course of
proving the future distinguishability of a certain class of Lorentzian symmetric
spaces.

Note added in 1992. In [2] the authors introduced the notion of strict
causality. For homogeneous Lorentzian spaces this concept agrees with that of
distinguishability (see e.g. [4, 6]). In particular, the Lorentzian in the present
article as well as the symmetric spaces in [5] are strictly causal.

We also avail ourselves the opportunity of pointing out that, in the
English translation [5] of our article “Prescribing the conformal geometry...”
the formula labelled (3) was inadvertantly omitted. It should read

n—2 n—2
(3) ds® = Z dx? — 2dx, _1dv, — (Z )\155‘12) dz?
i=1

=1

2. Future distinguishability of the space M;
The Lie algebra L; = L(Mj) can be defined by the commutation rule

[ea, €2] = e1. (1)

We can realize M; as R* with multiplication z = z - y given by
z=(T1+y1 — Taya, T2+ Y2, T3+ Y3, Ta+Ya). (2)

We fix a Lorentzian form g = (g;;) with gi3 = g31 = ga2 = gaa =1 in
L, and extend it to M; via left translation to get a homogeneous Lorentzian
manifold. We also fix the future cone K+ = {a € Ly : a® <0, a3 > 0} and use
for this LLG the same notation M; as for the Lie group itself.

It was proved in [8] that M; fails to be uniformly stably causal whence
it is causal with I'™ C {z : xz3 > 0}.

To apply Theorem 1 we find the points conjugate to 1 along future light
geodesics issuing from 1.

In the system (2) the equations for a geodesic x = x(t) passing through
1 with the initial tangent vector a € L, are as follows:

Ty = ay + azrs — ayvs,

To = az + azra, (3)
T3 = as,

Ty = —a3T2 + ay,

with the initial conditions #(0) = 1. The geodesic (3) is lightlike iff its initial
tangent vector a is lightlike, i.e. satisfies a? = 0.

We need ds? = g;;dz'dx? in the coordinate basis. The matrix g = (gi;)
is equal to BTGB, where B = A~! and A = 8;1 is the derivative of the left
translation L, at 1. We now compute the Christoffel symbols

i g Ogm,j 4 Ogmk _ 99k
gk 2 \ Oxp 0z 0Ty )’

(4)
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where (¢"™) = g~'. The non-zero components are:
F%s = F:IJ,Q = —%7 F%4 = F}LQ =5
1 1
F34 - F4213 = DX F23 - 1132 ~— 9 (5)

The non-zero connection one-forms I' = F;k dz* are:
TR P SO S L A L R
2 2 2 T3 2 AT g ’
1 1 1 1
I‘23 = ——dz*, T? = —=da3, I‘42 = —d23, T4 = —da?
2 2 2 2

The components R] wm Of the curvature tensor R may be found from the

m

equality 6"‘]- = %dmm Adz* where curvature two-forms Qij = dl"ij +1I, AV AP
Non-zero of them are:

oL dz? A dx3 ol zodz3 A dzt ol dz3 A dx?
2=~y Vs=—F > Vua=——71T
4 4 4
o dr?Adzd dz3 A dx?

The Jacobi field y = y(t) along the geodesic v given by z = z(t) is
found as the solution of the system
D2y
—+R =0 7
L+ Ry 8)i =0, (7
where D/dt is the covariant derivative along ~.

From the 3rd equation of (7) we extract ys = 0 since we are searching
for only those Jacobi fields which become zero at 1 (i.e. when ¢t = 0), and at
least at one additional point of v with ¢ > 0. Let us also consider the three
other equations. The second and third of them form the subsystem

U2 —aszys =0,

. . 8
ys +azy2 =0, (8)

which can be easily integrated to yield yo W, Ys = M

where we write S, C for sinast and cosast, respectively, and where )\1, Ao are
integration constants. These solutions also fulfil the initial conditions y5(0) =
y4(0) =0.

Such a Jacobi field is orthogonal to the tangent vector of the geodesic ~y
[1, p. 294]. The component y;(t), therefore, may be found from the equation

0= (y,&) = y1a3 + T2y2 + 2x2ysas + T4y .

Note that there is only one null-geodesic through 1 with a3 = 0. It
coincides with a one-parameter subgroup, is contained in 7' = {z: x5 = 0}, and
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has no points conjugate to 1 along itself. That is why our Jacobi field becomes
zero iff 3 = wk with k € Z. Therefore, the slice 0 < x3 < 7 has no points
conjugate to 1 along null geodesics. Thus the first hypothesis of Theorem 1 is
satisfied. In order to verify the second we note that the equations (3) are readily
integrated and have the following solutions for az # 0:

We set C(t) = cosast, S(t) = sinast, Sa(t) = sin(2ast) and Ca(t) =
cos(2agt). Then we have

(wi(tar,. .. a0) = G+ G (Ca(t) — 20(8)+
2442 2_ 2 2
(a1 + )t + == 92(t) — S(),
(a1, 04) 4 zy(tiay,. .. a0) = 2 (1 - O(t) + 25(2),

xB(t;ah .. .,CL4) = CLgt,
\ x4(t;a17 .. .,CL4> - U«_2(C(t) - 1) + %S(t)

as

The function f: Ly — My, f(a1,as2,a3,a4) = x(as;aq,as,1,as) maps a
suitable open subset V in L; diffeomorphically onto the slice & in M;. Let
~T denote the future geodesic ray from the identity in the direction of e;. The
f maps the portion K+ \ v of the boundary of the light cone onto the set
OI™ NU of all points on all light like geodesics in . Since KT \ v divides
Y into two components, then I NI separates U into two components. Thus
the hypotheses of Theorem 1 are satisfied and we obtain the following result:

Theorem 2. A Lorentzian Lie group M is future distinguishing (hence also
strongly causal, stably causal, causally continuous in view of homogeneity). ]

3. Future distinguishability of the spaces My = Ms(q).
The Lie algebra Lo = L(Ms;) is defined via

[es,e1] = €7 . (9)
The Lie group M, itself is R* with z = -y given by
2= (x1 + 1™, T2+ y2, T3+ Y3, Ta+ys) . (10)

The commutation rule for its Lie algebra in this coordinate system is
exactly (9). We fix a Lorentzian form

0 1 0 0
_ (1 -1 00
9710 0o 1 0

0 0 0 ¢

at 1 = (0,0,0,0) and extend it to My via left translations. We thus get for
every q > 0 a homogeneous Lorentzian space, also denoted by M,. It is proved
in [7] that My is not uniformly stably causal. If a future cone in Ly is fixed by
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Kt ={a€Ly: a®> <0, ay >0}, then I is entirely contained in the halfspace
x9 > 0 and M5 possesses no causal cycles.

Here are the equations for a geodesic v : = = x(t) passing through 1
with initial tangent vector a :

.’tl = CL1€$4 + CL2(€2I4 - €$4), .’jjz = a2€$4 ,

Aok 11
21+CL4. ()

T3 =ag, T4=—

They are more complicated than (3), but we shall solve our problems
without integrating them.
We find ds? = g;;dz'dz? in the coordinates (10) as in Section 2:
ds* = 2e *dx dry — das + dr3 + qdr; .

The non-zero connection one-forms are

rl o d_x4 i _e‘T“"lalgc4 o _d_xl B e dz?
1 — ) 2 — ) 4 — )
2 2 2 2
9 det de? _, e %dr? _, R
M2, =—— I, =——" T4="——""""T%4=
2 2 2q 2q

Similarly to (6), the expressions for the curvature two-forms are

oL _ e~ Tidzt A d? oL _ dz! A dx? ol _ drt A dzt

1 — 4q ’ 2 4(] ) 4 — D) )
02 e~ Tidxt A dx? 02 dx? A dzt . e~ %4dx? A dzt

2 = 4q ’ 4 — 4 ) 1 — 4q )
. e %idzt ANdzt  da? A dzt

2 4q 4

As in Section 2, we are searching for the solution y(¢) of the system (7)
with y(0) = y(t) = 0 for some ¢ > 0. That is why y3 = 0. The other equations
form a system for yi,ys2,ys as follows:

U1 — Y124 — Yoboe®™ — Ya(f1 + T2) — yadody =0,
Yo — YoZy — Yaxo =0, (12)
agy1 + T1e” Yy — asT1y4

Ya + = 0.
q

We find y; from 0 = (y,&) = g;;y'47 and get a linear first-order system
for yQa 94 :
Yo — TaY2 — T2ys =0,

. T .. 13
y4+27y2—334y4=0- (13)
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It can be writen as 2 = A(t)z with z = (92,94) and

A:< T4 $'2)
—Za2/q Z4 )"

The matrix A of this system commutes with its integral

X4 o
—x2/q x4 )"

The latter makes it possible to find the fundamental solutions
. " . e"S(x
Uo = €™ C(z2), 4 = —#,
and
Y2 = \/qe" S(x2), ya = " C(x2),
where C(z2) = cos ¥Z, S(z2) = sin %

In order to integrate these equations, we will use (11):

nir) = | "0 (ay(t)) dt = / "800 0 1) ap = Y[ g = VIS @20)

as az Jo az
Therefore,
)\1\/65(.'172) + )\Qq(l - C($2)) )\1(0(.’172) — 1) + )\2\/65(.'172)
Y2 = s y Y4 = s (14)

is the general solution of (13). It is not difficult now to find y;(¢), but for our
purposes this will not be necessary.

There is only one null geodesic with as = 0. It coincides with a one-
parameter subgroup, is contained in 7' = {z : x5 = 0} and has no points
conjugate to 1 along itself. We deduce, as in Section 2, that the points cojugate
to 1 along null future geodesics closest with respect to x5 lie in the hypersurface
x9 = m,/q. So the first hypothesis of Theorem 1 is satisfied.

In order to verify the second, we integrate the equations (11): We set
b=1+a3+qai , A =4a3 —b*. Note that b > 0 and thus A < 0. Further set
S(t) = sin %\/g)‘) and C(t) = cos M\/j}_‘” with A solving the equation

v/ —A sin % = b — 2a§.
q

Now we obtain

x1(t;ay,...,a4) =q <a4 + (GS\//\z_ﬁA)\S/(;TA_Cb‘(t)> ,

tan %\/E}‘)—\/—A

2@3 ’

z(t;ar,...,a1) = § xa2(t;a1,...,a4) = b+ 2,/garctan ’ (15)
xz3(t;ay,...,aq) = ast,
z4(t;ay, ..., as) = log(2a3) — log(b — vV—AS(t)),

where h is a constant chosen so that x2(0) = 0.

In the equation for zo in (15) it is understood that the values of the
function are defined for all ¢ € R by continuous extension. By an argument
similar to that used in the proof of Theorem 2 we now conclude that also the
second hypothesis of Theorem 1 is satisfied. Therefore we obtain:
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Theorem 3.  The Lorentzian Lie group Ms(q) is future distinguishing for all
q > 0. Hence is also strongly causal, stably causal and causally continuous in
view of its homogeneity.
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