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Weyl groups of disconnected Lie groups

Karl-Hermann Neeb

Introduction

Let G be a real Lie group and g its Lie algebra. If one studies the
exponential function exp : g→ G and fibrations of the set of regular elements of
G over the set of all Cartan subalgebras of g , then one needs a general concept of
a Cartan subgroup and a Weyl group. So let h ⊆ g be a Cartan subalgebra, i.e.,
a nilpotent subalgebra which is self-normalizing. Then we consider the adjoint
action of the complexification hC on the complexified Lie algebra gC given by
ad : hC→ der gC , ad(X)(Y ) = [X,Y ] .

For α ∈ h∗C we set

gαC :=
⋂

X∈hC

⋃

n∈IN

ker
(

adX − α(X) id
)n
,

and call it the α-root space. We write

∆ := ∆(gC,hC) := {α ∈ h∗C \ {0}: gαC 6= {0}}
for the set of roots.

Now let N(h) := {g ∈ G: Ad(g)h = h} be the normalizer of h in G .
Note that for g ∈ N(h) and γ := Ad(g) |hC

we have that

Ad(g)gαC = gγ.αC ,

where γ.α = α ◦ γ−1 . So N(h) acts on the finite set ∆ such that the effectivity
kernel of this action is given by

C(h) := {g ∈ N(h): (∀α ∈ ∆)α ◦Ad(g) |h = α}.

This group is called the Cartan subgroup associated to h . We note in passing that
this definition of a Cartan subgroup is consistent with the standard definitions
for semisimple Lie groups or algebraic groups (cf. [3]).

We define the Weyl group as

W :=W(G,h) := N(h)/C(h).

This group is naturally isomorphic to the image of N(h) in the group of permu-
tations of ∆. It follows in particular that it is finite.

So it is very natural to ask which finite groups may occur as Weyl groups.
In this note we prove the following theorem:
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Theorem 1. Let Γ be a finite group. Then there exists a real Lie group G
and a Cartan subalgebra h ⊆ g such that

W(G,h) ∼= Γ.

This contrasts the following result for connected Lie groups (cf. [3, V.12])
which shows that the Weyl groups of connected Lie groups are Weyl groups of
semisimple groups.

Theorem 2. Let G be a connected Lie group and h ⊆ g a Cartan algebra.
Then there exists a Levi decomposition g ∼= r× s such that h ∩ s is a Cartan
subalgebra of s and

W(G,h) ∼=W(S,h ∩ s),

where S = 〈exp s〉 is the analytic subgroup corresponding to s .

Realization of finite groups as Weyl groups

In this section we prove Theorem 1. First we strip off the Lie algebra
context to see what we have to prove about finite groups.

Let h be an abelian real Lie algebra, ∆ ⊆ h∗ \ {0} a finite generating
subset, and

Γ := Aut(∆) := {γ ∈ Gl(h∗) : γ.∆ = ∆}.
We define a representation of h on V := IR∆ by

X.vα = α(X)vα ∀X ∈ h, α ∈ ∆,

where vα(β) = δα,β . In addition, we define an action of Γ on V by

γ.vα = vγ.α ∀γ ∈ Γ, α ∈ ∆.

Let X ∈ h , α ∈ ∆, and γ ∈ Γ. Then

γ.(X.vα) = α(X)vγ.α

and

(∗) X.(γ.vα) = (γ.α)(X)vγ.α = α(γ.X)vγ.α,

where Γ acts on h ∼= (h∗)∗ via

γ.X := (γ∗)−1.X.

Let H be a simply connected group with L(H) ∼= h . Then the repre-
sentation of h on V integrates to a representation of H on V with

exp(X).vα = eα(X)vα ∀X ∈ h, α ∈ ∆.
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Now (∗) shows that the actions of H and the action of Γ on H ∼= h
define an action of the semidirect product H× Γ. So we have a representation
of the group H× Γ on V and we can form the Lie group

G := V × (H× Γ) ∼= (V ×H)× Γ.

Lemma 2. The Lie group G has the following properties:

(i) h is a Cartan algebra of g := L(G) .

(ii) Z(G) = {1} and Ad(G) ∼= G .

(iii) N(h) = Ad(H× Γ) .

(iv) ∆(gC,hC) = ∆ .

(v) C(h) = Ad(H) .

(vi) W(G,h) ∼= Γ .

Proof. (i) Since h is abelian, it remains to show that h is self-normalizing
in g ∼= V × h . This follows immediately from the assumption that 0 6∈ ∆ which
entails that

Vfix := {v ∈ V : h.v = {0}} = {0}.

(ii) Let g = (v, h, γ) and α ∈ ∆. Then

g(vα,1,1)g−1 = (hγ.vα,1,1) = (eγ.α(logh).vγ.α,1,1).

If Ad(g) = 1 , then this calculation shows that γ = 1 and α(logh) = 0
for all α ∈ ∆. Since ∆ spans h∗ , it follows that logh = 0, i.e., h = 1 . So
g = (v,1,1) and since H acts on V without non-zero fixed points, it follows
that v = 0. This proves that ker Ad = {1} and in particular that Z(G) = {1} .

(iii) It is clear that H× Γ normalizes h . The other implication follows from (i).

(iv) This is immediate from (i) and the construction of g .

(v) Using (iv) and (∗), we see that the action of H× Γ on ∆(gC,hC) corresponds
to the action of Γ on ∆. Hence the pointwise stabilizer coincides with H .

(vi) This is a consequence of (iii) and (v).

Given a real vector space h and a generating subset ∆ ⊆ h∗ \ {0} ,
Lemma 2 provides a Lie group G such that g contains a Cartan subalgebra h
with W(G,h) ∼= Γ.

So we have the following problem: Given a finite group Γ. Find a vector
space h and ∆ ⊆ h∗ \ {0} such that

Γ ∼= Aut(∆) = {γ ∈ Gl(V ) : γ(∆) = ∆}.

Thus the proof of Theorem 1 is completed by the following proposition.

Proposition 3. Let G be a finite group and A := IR[G] its group algebra.
Then there exists a finite subset ∆ ⊆ A∗ such that

Aut(∆) ∼= G,
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where G acts on A by left translations.

Proof. We identify IR[G] with IRG . Then we have a basis given by the
functions εg(g

′) = δgg′ . We also consider A as a Hilbert space with respect to
normalized Haar measure, i.e., {εg: g ∈ G} is an orthonormal basis. Using this
Hilbert space structure, we identify A with its dual A∗ .

We choose an injective function m:G→ IN with m(g) > 2 for all g ∈ G
and set n(g, g′) := m(g−1g′). We define the finite set

∆ := {εg : g ∈ G} ∪ {εg + n(g, g′)εg′ : g, g′ ∈ G}.

Let C :=
∑
g∈G IR+εg denote the cone of positive functions in A = IRG .

This is a simplicial cone in the real vector space A . Let γ ∈ Gl(A) with
γ(∆) = ∆. Then γ(C) = C is a consequence of the fact that C is the smallest
cone containing ∆. Thus γ preserves the set {IR+εg : g ∈ G} of one-dimensional
faces of C . It follows that for each g ∈ G the element γ(εg) is contained in a ray
IR+εg′ for some g′ ∈ G . On the other hand IR+εg′∩∆ = εg′ so that γ(εg) = εg′ .
Thus there exists a bijective mapping

η : G→ G with γ(εg) = εη.g.

We claim that γ is left multiplication by η.1 . To see this, let g, g′ ∈ G
and fg,g′ := εg +n(g, g′)εg′ . Then γ(fg,g′) is an element in the two-dimensional
face spanned by εη.g and εη.g′ which is contained in ∆, so

γ.fg,g′ ∈ {fη.g,η.g′, fη.g′,η.g}.
Since

γ.fg,g′ = εη.g + n(g, g′)εη.g′ ,

the equality
γ.fg,g′ = fη.g′,η.g = εη.g′ + n(η.g′, η.g)εη.g

is excluded by the fact that the coefficient n(η.g′, η.g) of εη.g is greater than 1.

Whence

εη.g + n(g, g′)εη.g′ = γ.fg,g′ = fη.g,η.g′ = εη.g + n(η.g, η.g′)εη.g′ .

This leads to

m(g−1g′) = n(g, g′) = n(η.g, η.g′) = m
(
(η.g)−1η.g′

)

and, by the injectivity of m ,

g−1g′ = (η.g)−1η.g′,

i.e., g(η.g)−1 = g′(η.g′)−1 . With g′ = 1 this identity yields g(η.g)−1 = (η.1)−1 ,
or, equivalently,

η.g = (η.1)g ∀g ∈ G.
This proves that Aut(∆) consists of left multiplications in IR[G] .

If, conversely, g ∈ G , then the left multiplication λg:x 7→ gx preserves
Λ because it preserves the set {εg: g ∈ G} and

n(λg.x, λg.y) = m(x−1g−1gy) = m(x−1y) = n(x, y)

shows that it also preserves the set {fg,g′ : g, g′ ∈ G} .
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