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Rigidly symmetric L1-group algebras
Detlev Poguntke

A Banach algebra B with isometric involution a +— a* is called sym-
metric, if for each a € B the spectrum Spa*a is contained in RT = [0, 00).
The theorem of FORD and SHIRALI tells us that this is equivalent to B being
Hermatian, i.e., that Spb C R for each b € B with b = b*. The notion of
symmetry was invented in the forties when people were looking for characteri-
zations of closed involutive subalgebras of the algebra of bounded operators on
a Hilbert space, 1.e., of C*—algebras in today’s terminology. C*-algebras are
always symmetric. In the last decades several authors have investigated the
question for which locally compact groups G the L'—convolution algebra L'(G)
is symmetric, where L'(G) is formed w.r.t. a, say, left invariant measure. To
explain the notion of symmetry let me give an interpretation in the context of
amenable groups. Each f € L'(G) defines a convolution operator \,(f) on
LP(G), 1 <p< oo, by \(f)(g) = f+g. If G is amenable then L'(G) is sym-
metric if and only if Sp A\1(f) = SpA2(f) for all f = f* € L'(G), which in turn
by the usual interpolation arguments implies that Sp Ay (f) = SpA,(f) for all p
and all f = f* € L'(G). The case of amenable groups is of particular impor-
tance because for connected Lie groups G the symmetry of L'(G) implies that
G is amenable which here means that the semisimple part is compact, [4, § 4].
It is known for which connected solvable groups the corresponding L' —algebras
are symmetric, see [11]. In that paper there is also given a conjecture for general
connected groups which is very likely true.

There are several equivalent characterizations of symmetry, see [12, 2,
6, 9, 13]. Below I shall discuss and use one of them. But before doing so I
want to explain briefly the result to be proved in this note. Apparently it is not
known whether the projective tensor products of two symmetric algebras is again
symmetric. There are even no general sufficient criteria, except for trivialities
like one factor being commutative. In particular, it is unknown if it is sufficient
that one factor is a C*-algebra. This observation and some technical reasons
led us in [7] to the following definition.

Definition 1.  An involutive Banach algebra B is called rigidly symmetric if
the projective tensor product B®.A with a C*-algebra A is always symmetric.
Let me point out once more that no example is known of a symmetric
Banach algebra which is not rigidly symimetric.
In [7] it was shown that for any discrete nilpotent G the algebra ¢'(G)
is rigidly symmetric. This implies in particular that ¢'(G) is symmetric which
was proved earlier by A. HULANICKI using complicated combinatorial arguments
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to estimate spectral radii, see [3]. Our proof is much simpler. It proceeds by
induction on the nilpotent length of GG, at a crucial point we have to have that
groups of lower nilpotent length have rigidly symimetric algebras—this was meant
above by “technical reasons”.

In this note it will be proved that L'(G) is rigidly symmetric for any
nilpotent locally compact group G by reducing the problem to the case of discrete
groups with a very simple trick, which might be useful in other circumstances as
well. Again this implies that L'(G) is symmetric, which was known before, see
[8], or [10] for the case of connected Lie groups.

Let us return to a general involutive Banach algebra B. I am going to
explain one of the various characterizations of symmetry. Let b € B and let z be
a non-zero complex number in the left spectrum of b, ie., B(b— z) = {ab — zx |
x € B} is a proper left ideal. Actually, B(b — z) is a modular left ideal with
right modular unit v = %b, Le, ru =2 mod B(b—=z) for all € B. By Zorn’s
Lemma, B(b— z) is contained in a maximal left ideal A with right modular unit
w. Then F := B/A is a simple left B—module. The coset £ = [u] € F is different
from zero and b¢ = z¢, hence z is in the point spectrum of the operator n — by
on F.

Now suppose that B has the following property:

(U) For each simple left B-module E there exists a bounded, topologically
irreducible, involutive representation m of B in some Hilbert space £
and a non—zero B-intertwining operator 7" E — ).

By a simple B-module E we do not only mean that the only B-invariant
subspaces are the obvious ones, but we also exclude that b¢ = 0 for all b € B,
¢ € E (such a degenerate module also has only trivial B-invariant subspaces
in case that dimE < 1). To remind the reader of this agreement we add
occasionally “non-trivial” in brackets.

Applying property (U) to the above constructed module F' one finds
a non-zero intertwining operator T: F — §). The equation b = z¢{ leads to
m(b)T¢ = 2T¢, hence z is in the point spectrum of #(b); observe that T is
injective as F is simple. If b is of the form b = a*a with some a € B then
7(b) = 7w(a)*w(a) is a positive operator, hence z € RT. We conclude that
the left spectrum of elements of the form a*a is contained in R™. Since the
right spectrum of such elements (in fact, of any elements b with b* = b) is
just the complex conjugate of the left spectrum it follows that Sp(a*a) C RT
for all @ € B. In other words, property (U) implies that B is symmetric.
Indeed, symmetry of B is equivalent to property (U), see e.g. [6, 9]. The
other implication is more difficult: Using symmetry one has to construct positive
definite functionals, for these techniques see e.g. the relevant sections in [2, 13].

Using criterion (U) one can easily deduce that the L' —algebras of abelian
and of compact groups are symmetric. Better still, they are rigidly symmetric.
Of course, this result can also be obtained by other methods.

Criterion (U) shows that one needs some information about simple mod-
ules over Banach algebras. Let G be any locally compact group and let A be
any Banach algebra, for a while the involution plays no role. The projective
tensor product B = LI(G)®.A i1s a Banach algebra in the obvious manner. It
can be identified with the algebra L'(G, A) of integrable A-valued functions on
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G, which may be considered as the completion of C.(G, A) w.r.t. the norm || ||1.
The multiplication is given by

(f*g)(z /f»by ") dy,

where dy denotes a left invariant measure on G.

Let E be a (non-trivial) simple left B-module. We now define
p:B — End(E) by p(b){ = bf. If & is any non-zero vector in E, one gets
a norm on E by putting

€]l = nf{|[f]ls | f€B,p(f)éo =&}

This way, E becomes a Banach space, in fact, a Banach B—module, i.e.,

lpCHEN < I1FITIE]N

forall £ € E, f € B. The constructed norm depends on &, but choosing another
non-zero vector leads to an equivalent norm. All these facts are well known and
easy to prove. Of course, they have nothing to do with the assumption that B is
a tensor product, but hold true for any Banach algebra. For x € G and f € B
define ¢, * f € B by (4 * f)(t) = f(z7't). Then define an operator p(z) on
E by requiring that on elements of the form p(f)¢, f € B,€ € E, the operator
is given by p(z)(p(f)€) = pler * f)€. Since E is simple, each element in E
may be written in this form. Then p is a strongly continuous representation of
G in E, ie., z — p(z){ is continuous for each { € E and p is homomorphic.
Furthermore, each p(z) is an isometry for any of the norms on E as constructed

above. Similarily, for a € A and f € B we define axf € B by (a*xf)(z) = af(z),

and p(a) € End(E) by p(a)(p(f)E)) = pla* f)(§). Then p: A — End(E) is a
bounded representation of A, bounded by one.

Moreover, p(z)p(a) = p(a)p(z) for all z € G and a € A. The represen-
tation p of B can be reconstructed from the derived representations of G and

A by
p(F)E = /G p()pl(f(2))€ de

for £ € E, f € B. As was said above, I want to reduce the rigid symmetry of
L! -algebras of arbitrary nilpotent groups to the case of discrete groups. The
transition is mainly done by means of the following theorem.

Theorem 2.  Let G be a locally compact group, let A be a Banach algebra
and let E be a (non-trivial) simple left B-module where B = L' (G, A). The as-
soctated representations of G and A (see above) define a bounded representation

pa of By :=0"(G,A) in E by

pa(9)6 =Y p(z)p(g())E.

redG

Then E 1s also simple when considered as a Bg—module.
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Remark 3. The theorem applies in particular to A = C, hence each simple
module over the ordinary L' -group algebra L'(G) is a simple ¢'(G)-module in
a canonical fashion.

Proof of Theorem 2. We have to show that for each non-zero ¢, € E and
each ¢ in E there exists h € 0'(G,A) such that pg(h)éo = . We fix a certain
£o once and for ever. This &y is used to define a norm on E as above. First we
claim

(¥) For each n € E and each ¢ > 0 there exists an g € £1(G, A) such that

lgller < &+ linll and [lpa(g)éo —nll <.

In order to prove (*) let § be a small positive real number to be deter-
mined later. By definition of the norm on E there exists f € L'(G, .A) such that
p(f)éo = n and ||f][;2 < |[n]| + 6. Since C.(G,A) is dense in L'(G,A) there
exists f1 € C.(G, A) with ||f — fi||z» < . Then

I fillr < 28 + ||n], and
lp(f1)éo — nll = llp(f1)éo — p(F)éoll < IIf — fillzr |[éoll < 6]|€oll-

Denote by S the support of fi. Choose an open relatively compact
neighborhood U of the identity in G such that |[p(u)éo — &0l < § for v € U
and |f(zu) — f(z)] < §|S|™! for all # € G and u € U, where | | denotes the

Haar measure of measurable subsets of G. Clearly, such an U exists because p
is strongly continuous and f; is uniformly continuous as a compactly supported
function. There exist z1,..., 2, € G such that S is covered by {z;U | 1 < j <

m}. To get a disjoint covering of S let My := 21U N S and define inductively

M; by M; = (z;UNS)\ U My. Clearly, the M; are measurable subsets of G.
k<jy
The function f, € L'(G, A) is defined by

fo = ZanMj’ where a; := fi(z;) € A

i=1

and x,, denotes the characteristic function of M;. Then
J

“fl - f2HL1 = Z/ Hfl(lﬂ) - ajHA dr < Z5|5|_1|*Mj| =4,
j=1"M; j=1

hence || f2]|71 < ||n|| + 36. Moreover,

lo(f2)€0 = nll = llo(£2)0 — p(f1)€0 + p(f1)0 — nll < d][&oll + d][oll = 26][&oll-

The desired function g € £'(G, A) is defined by

m
9= a
1=1

l\lj|€]‘
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where ¢; denotes the point measure at z;. Then clearly

lgller = Nl fallze =Y llagllalM;| < |[n]l + 36.
i=1

Furthermore,

lpa(9)&o —nll = llpalg)éo — p(f2)é0 + p(f2)&0 —nll < llpa(g)éo — p(f2)Eoll +25][oll,

and

st = ool < 3 ot 34 o o~ | et ds]

= M;
<3 Ialiatlotas) - ool

because p: A — End(E) is bounded by 1. Writing |M;|p(z;){o as an integral
over M; it follows that

loalg)éo — p(f2)oll < ZH%H/ o560 — ps)6oll ds.

1=1

Since s € Mj is of the form z;u with v € U and since p(G) consists of isometries,
the quantity ||p(z;)0 — p(s)éo]| is less than &, hence |pa(g)éo — p(f2)éo] is

estimated by & Y |la;|||M;]| = d||f2]] < 8(||n]| + 35). Altogether we find that
1=1

lpag)€o — €Il < 26][éoll + o(lInll +36) and |igllen < [lnll + 34.

Choosing ¢ small enough the inequalities claimed in () are satisfied for the
given €.

Now suppose that any 5 € E is given as in the beginning of the proof.
Applying (*) to n=¢ and ¢ = + we find g1 € ' (G, A) such that

lpa(g1)éo — 5” <7 and |gille <€)+ 7
Applying (%) to e = % and n = £ — pa(g1)&o one gets go € (' (G, A) such that

lpa(g2)éo + pa(g)€o — €Il < g and  |lg2lleo < § + 1€ = palgr)éoll < 5
Inductively, we find a sequence (g,) in ¢'(G,.A) such that ||gn|n < 2,1%1 and

| Z pa(gj)éo — &Il < 2n+1 for n > 2: If g1,...,9n are already constructed then
1=1

apply (%) to n =& — E pa(g;)éo and ¢ = ZTJT to obtain an g,4+1 € (1(G, A)
=
such that
n+1

Hgn-H”fl < 2]_71 and H Zpd g] SH < 2n+2

The desired h is defined as h = Z gn. Clearly, h exists in ¢'(G,A) and the

n=1

equation pq(h)&y = € is satisfied. ]
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Remark 4. Instead of discretisizing G totally one may make it partially dis-
crete in the following sense. If N is a given closed normal subgroup in G then
one obtains a new locally compact group topology on G by declaring N to be
open in G while the topology on N coincides with the original one. Denote this
new locally compact group by GV . If again E is a simple left L'(G, A)-module
with associated representations p of G and A, then one obtains an L'(GY, A)-
module structure on E by putting

A= [ et dn® ),

where du denotes a left Haar measure on GV . This L'(GV, A)-module is
simple as well.

Proof. For £ in E let E({) :=
E() =E if ¢£0. Forany f € L'

that
pa(h)p™ ()€ = p™ (h+ f)¢
where h* f € LY(GV, A) is given by

=Y h(y)fly~'2), or

yea@

h*f:Zh(y)(ey*f

yed

Hence E(§) is ('(G, A)—invariant. By the theorem, E(¢) = E as claimed or
E() =0. To exclude E(§) = 0if € £ 0, let F:={{ € E|E({) = 0}. For
ECE, fe L' (GN,A) and h € ('(G, A) one finds that

PN (Fpa(h)e = pN(f * h)E

where fx h € L' (GN,A) is given by (f * h)(z) = S AN(y)f(zy)h(y™");
yed
here AN denotes the modular function of G . This equation shows that F is
0'(G, A)-invariant, hence by the theorem F =0 or F = E. If F = 0 we are
done. If F = E the operator p™(f) is zero for all f € L'(G™, A). We apply this
information to particular f’s. Let a € A be arbitrarily given and let (¢;);es
be an approximate identity in the algebra L'(G") of numerical functions on
GY. The ¢;’s may be chosen as nonnegative continuous functions with (small)

p (Ll(GN A))¢. We have to show that
(GN,A) and h € 0'(G, A) one computes

compact support around the origin such that |¢;|/71(gv)y = 1. For all j and all
¢ € E the equation

0=p"(¢;®a) = / ¢i(z)p(z)p(a)é du™ (z)

holds true. Passing to the limit we conclude that p(a)é = 0 for all £ € E and
all a € A, which is impossible because E was assumed to be non-trivial.
Observe that in the present proof we did not use explicitly that E is
a simple L'(G, A)-module. We only used that E is simple as an ¢'(G, A)-
module and that pV has the above structure, which means that the group
representation p 1is strongly continuous when considered as representation of
G . This observation applies in particular to N = G, i.e., GN =G. ]
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Remark 5. I want to spell out one fact explicitly even though it is evident. The
Banach space E above with its original norm derived from the norm on L'(G, A)
was made into a Banach L'(GY, A)-module. Being a simple L'(G", A)-module
the vector space E can be endowed with the quotient norm derived from the norm
on L'(GN,A). Actually, the two norms are equivalent; they are only fixed up
to equivalence anyway. This is an immediate consequence of the Open Mapping
Theorem.

Corollary 6. Let G be a locally compact group. If the involutive Banach
algebra 01 (G) is rigidly symmetric then L'(G) is rigidly symmetric as well. In
particular, LY(G) is rigidly symmetric for any nilpotent locally compact group
G.

Proof. The claim in the third sentence of the corollary follows from the
preceding claim because, as was pointed out earlier, it was proved in [7, Theorem
7] that ¢'-algebras of discrete nilpotent groups are rigidly symmetric.

In view of 1. and of the criterion (U) we have to consider a simple left

LY(G, A)—module E, where now A denotes a C*—algebra. The involutions in
L' (G, A) and ('(G, A) are given by

f(z) = Alz) L f(z™H)* and g*(z) = g(z™1)*

for f € L'(G, A) and g € ('(G, A), where A denotes the modular function of
G.

From 2. it follows that E is also a simple left ¢'(G, A)-module in a
canonical manner. Criterion (U) tells us that there exist a bounded, topologically
irreducible, involutive representation mq of ¢1(G,.A) in some Hilbert space $)
and a non—zero (!(G, A)-intertwining operator T: E — §). The operator T is
necessarily bounded, because for each non-zero & € E the map g — mq(g)Téo =
Tpa(g)éo from €'(G, A) into § is bounded (the letters p and pg have, of course,
the same meaning as in 2.), and because E carries the quotient norm w.r.t.
g+ pi(g)&o . Like in the case of simple modules the representation 74 delivers a
group representation of G in §) and a bounded representation of the algebra A
in $), both denoted by the same letter . Again 7(z)r(a) = m(a)r(z) for z € G
and a € A. From the fact that =4 is an involutive representation it follows easily
that each w(z),z € G, is unitary and that 7(a*) = w(a)* for a € A. Again, 74
can be reconstructed by the formula

ra(9)€ = Yy m(x)m(g(x))é
reG

for £ € $ and g € (*(G, A). Moreover, T intertwines the actions of G and
A on E and on $. We would like to define an involutive representation 7 of

L'(G, A) by the formula

m(f)€ = /Gﬂ(x)ﬂ’(f(:c))f dz.

To this end, we have to know that = is a strongly continuous representation of the
topological group G. But for £ € E the function = — 7(2)T¢ = Tp(x)€ from G
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into $) is continuous, because T is a bounded linear map and because x +— p(x)£
is continuous. At this point we use that E is not an arbitrary simple ¢' (G, A) -
module, but that originally E is an L'(G, A)-module. As m; is irreducible and
as T is an intertwining operator, the range of 7' is a dense subspace of §). Since
each 7T(.'L'), x € (G, 1s a unitary operator, an easy estimate shows that = — 71'(1')7/
is not only continuous for n € T(E), but rather for all n € ). Now it is clear that
the above formula defines a (topologically irreducible) involutive representation
of LY(G,A) in §, and that T is an intertwining operator for the actions of
LY(G, A) on E and on $). We conclude that L'(G, A) is a symmetric Banach
algebra (for all C*-algebras A), whence L'(G) is rigidly symmetric. |

Concluding remarks

It is very natural to ask if the theorem can be generalized to twisted
covariance algebras in the obvious manner. A twisted covariance algebra
LY(G, A, T,P) also consists of the A—valued integrable functions on a locally
compact group, but the convolution is “perturbed” by an action 7' of G on A
and by a factor system P. For this notion see H. LEPTIN [5]. There such alge-
bras are called “Verallgemeinerte L'—Algebren”. T did not thoroughly consider
this question, at the first glance I don’t see any fundamental difficulties.

The next remark concerns property (U). One should notice, that there
to a given E only the ezistence of (£, 7,T) is required. Nothing is said about
uniqueness (in the appropriate sense). I don’t know of any simple module of a
symmetric algebra where the “unitarization” $) is not unique, but it is hard to
imagine that a general uniqueness theorem could be true. Nevertheless such a
theorem might hold for ¢!-algebras of discrete nilpotent groups (it holds true
in the case of connected nilpotent groups, but for reasons which definitely don’t
apply in the discrete case). Uniqueness for discrete nilpotent groups would have
some interesting consequences.

Finally, there is a very loose connection between the present article
and recent investigations on the relation between the unitary duals of a locally
compact group and its discrete version. For more information on the latter
subject see the forthcoming paper [1] by M. BEKKA and A. VALETTE and the
references given there. In this article the authors prove that the unitary dual
G of a connected Lie group G is dense in the unitary dual of the underlying
discrete group iff G is solvable.
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