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The rule of Littlewood/Richardson and its treatment
by a computer

Hartmut Schlosser

1. Introduction

The irreducible summands of the sum decomposition of the tensor product
of two irreducible representations of a classical group or algebra are computable
by aid of the rule of Littlewood/Richardson (shortly LR-rule). The LR-rule is
effective also for other decomposition problems. It originated from the task to
decompose the product of two Schur functions into a sum of Schur functions.
The idea connecting all these problems is the characterization of the objects by a
partition l = (l1, l2, . . . , lp ), l1 ≥ l2 ≥ ... ≥ lp ≥ 0, li ∈ N or by a Young frame with
p rows and li boxes in the i-th row (i = 1, . . . , n). We get the summands of the
product of two such objects adding the boxes of the second frame in a various way
to the first frame. With the LR-rule we have to expect certain restrictions. It is
possible that two frames with only a few rows give a great number of summands.
So the use of a computer for the calculation appears to be indicated; for this
purpose the LR-rule will be translated in a formula.

2. The rule of Littlewood/Richardson

We consider two Young frames l = (l1, l2, ..., lp) and m = (m1, m2, ..., mq ).
In the j -th row of m we write in all the boxes the number j and denote these
boxes by j -boxes. Now we add the boxes of m to l beginning with the 1-boxes,
next the 2-boxes etc. In the built frame the following conditions must be satisfied:

I. The frame gotten from l after the addition of the 1-boxes (2-boxes,...)
must be admissible, i.e., the length of successive rows are non-increasing.

II. The frame does not contain boxes with equal labels appearing in a
column.

III. The number of (j + 1)-boxes is never greater than the number of j -
boxes if we count up the boxes in the rows from the right to the left and from top
to bottom (j = 1, ..., q − 1).

We sum symbolically all Young frames built in this way and denote this
sum as the result of the multiplication of l and m.

Example: The two factors are and ((1,1) and (2,1) resp.).

We fill the second frame with numbers: 2
1 1

.
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Now we add the 1-boxes to the first frame:

(1)
1 1

(2)
1
1 (3)

1

1 (4)
1

1 (5)
1
1

By I. is forbidden: (4); by II. are forbidden: (2),(5). Now we add the 2-box
to (1) and (3):

(1a)
1 1 2

(1b)
1 1
2 (1c)

1 1

2 (3a)

1

1

2

(3b)

1

1
2

(3c)

1

1 2 (3d)

1

1
2

By I. are forbidden: (3c); by III. are forbidden: (1a), (3a). The result is
the following:(1b),(1c),(3b) and (3d) or (3,2),(3,1,1),(2,2,1) and (2,1,1,1).

3. A closed formula for the LR-rule

A general formula for the LR-rule is given in [S91]. There we can find
also formulas for some Clebsch-Gordan-series of classical Lie algebras and super-
algebras. Here we will prove only a special case, but the same idea leads to the
general proof. We look to l = (l1 , . . ., lp ) und m =(m1 , m2 ) and complete l
by lp+1 = lp+2 = 0. We consider an admissible distribution of the 1-boxes and the
2-boxes of m at l and denote the number of i-boxes in theh-th row by khi . If we
put first kp+1,1 1-boxes to the (p + 1)-th row of l, then kp1 1-boxes to the p-th
row etc., we have the following restrictions by I. and II.:

kh1 ≤ min(lh−1 − lh, m1 −
p+1∑

j=h+1

kj1) = Min(l, m; h, 1)

k11 = m1 −
p+1∑

j=2

kj1

for h = 2, ...p+ 1. For the parameters kh2 we get from I. and II.:

kh2 ≤ min((lh−1 + kh−1,1)− (lh + kh1), m2 −
p+2∑

j=h+1

kj2) = Min(l, m; h, 2)

k11 = m1 −
p+1∑

j=2

kj1

for h = 2, ...p+ 2.
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Now we have to consider also condition III. :

h∑

j=2

kj2 ≤
h−1∑

j=1

kj1

or

h∑

j=3

kj2 +m2 −
p+2∑

j=3

kj2 ≤
h−1∑

j=2

kj1 +m1 −
p+1∑

j=2

kj1

or

m2 −m1 −
p+2∑

j=h+2

kj2 +
p+1∑

j=h

kj1 ≤ kh+1,2

for h = 2, ..., p+ 1.

So we get

Max(m; h, 2) = max(0, m2 −m1 +
p+1∑

j=h−1

kj1 −
p+2∑

j=h+1

kj2) ≤ kh2

(h = 3, ...p+ 1) and can press the LR-rule in the following form:

l ∗m =

∑

kp+1,1

. . .
∑

k21

∑

kp+2,2

. . .
∑

k32

(l1 + k11, l2 + k21 + k22, . . . , lp+1 + kp+1,1 + kp+2,2, lp+2 + kp+2,2)

0 ≤ kh1 ≤Min(l, m; h, 1)

Max(m; h, 2) ≤ kh2 ≤Min(l, m; h, 2)

k11 = m1 −
p+1∑

j=2

kj1, k22 = m2 −
p+2∑

j=3

kj2

4. Treatment by a computer

This formula and the general formula also can be treated by a computer.
We have written in Greifswald a C-program which give the result of the LR-rule
using the proved formula. For example, we have computed the following cases: (1)
(5,3,1)∗(2,2,1) (2) (6,5,3,3,1)∗(3,2,1) (3) (8,6,5,4,2,1)∗(4,2,2,1) The sums consists
of (without consideration of multiplicities) 37 summands (1), 436 summands (2),
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10483 summands (3). These results show that it is necessary to use a computer.
It is possible to compute the summands of the LR-rule by an other procedure.
This procedure is realized in Bayreuth using the special computer-algebra- system
SYMCHAR. The theoretical basis of this procedure is given in the paper [LS85] of
Lascoux/Schützenberger. The first comparisons show that this procedure should
be a little quicker than our computation. But it seems that an advantage of
the formulas of [S91] consist in the possibility of computing the Clebsch-Gordan-
series of representations of classical Lie algebras and superalgebras without change
of the program: We only have to replace the definition of Max(m; h, i) and
Min(l, m; h, i) by a similar definition.
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