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Tables for an effective enumeration
of real representations of quasi-simple Lie groups

Richard Bödi, Michael Joswig

The purpose of this paper is to provide the data which are necessary
to calculate the (real) dimension, the centralizer and the kernel of a finite-
dimensional irreducible real representation of a quasi-simple Lie group.

The authors have implemented a software package based on the LiE
system described in [7] which allows the user to access these data easily. For
further information on this software package see the last section of this paper.

The main source for our tables in this paper is J. Tits’ Springer Lecture
Note 40 [11]. This book contains all of the data we shall need. Unfortunately,
much of this information is given in a rather implicit way and one has to perform
additional calculations to obtain the final results which can be found in the tables
below. Part of this data can also be found in [9]. Note that in this paper we use
the (more standard) labelling of the Dynkin diagrams by Bourbaki [1], pp. 250–
275. This differs from Tits’ notation [11] in the case of the exceptional types E6 ,
E7 , E8 , and F4 . The theory of irreducible real representations of semi-simple
or reductive Lie groups can be found in [5], [9], [4], [12], e. g. A summary of
the basic facts of this theory is included in [11]. Extensive tables covering the
complex representations of complex quasi-simple Lie groups are contained in [8]
and [3].

For the sake of completeness and to fix notation we shall start with some
basics on the complex representation theory and then proceed with the real case.

We would like to thank Theo Grundhöfer for giving us many helpful
suggestions and comments.

Complex representations of quasi-simple Lie groups

Let G be a quasi-simple complex Lie group with g as its (simple) Lie
algebra. Every (complex) finite-dimensional continuous representation P : G →
GL(V ) yields a representation ρ : g→ gl(V ) by differentiation.

The adjoint representation ad is the (right) regular representation of g
defined by ad : g → gl(V ) : x 7→ (z 7→ [z, x]) , where V is g considered just
as a vector space. A Cartan subalgebra h of g is a nilpotent self-normalizing
subalgebra of g . All Cartan subalgebras of g are in fact conjugate and thus have
the same dimension r . The integer r is called the rank of g . A weight λ of the
representation ρ is an element of the dual h∗ with the property that there is a
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v ∈ V \{0} such that hρ(v) = λ(h) ·v holds for every h ∈ h . A root of g is a non-
zero weight of the representation ad. Since h is abelian, h = {x ∈ g | xad(h) = 0}
by Engel’s theorem. Thus the set Φ of all roots of g generates the dual h∗

because g is simple. Moreover, there is an R−basis ∆ ⊆ Φ of h∗ such that
every root λ is a linear combination of elements of ∆ having all coefficients
either ≥ 0 (then λ is called a positive root) or ≤ 0 (and λ is called a negative
root). The elements of ∆ are called fundamental roots.

Since semisimple Lie algebras are reductive, we may restrict our attention
to irreducible representations. For every finite-dimensional irreducible represen-
tation ρ there is a unique weight λρ such that the difference λρ−λ is a positive
linear combination of fundamental roots for every weight λ of ρ . This weight λρ
is called the highest weight of ρ and the representation ρ is uniquely determined
by λρ up to equivalence.

The Killing form κ on g is the symmetric bilinear form defined by
κ(x, y) = trace(ad(x)ad(y)). Since κ is nondegenerate on h× h , for any ϕ ∈ h∗

there is a unique element hϕ ∈ h such that ϕ(h) = κ(hϕ, h) holds for every
h ∈ h . Setting (ϕ, ψ) := κ(hϕ, hψ), the mapping (h∗, (. , .)) → (h, κ) : ϕ 7→ hϕ
hence is an isometry.

Now assume that ∆ = {α1, . . . , αr} . For λ ∈ h∗ and 1 ≤ i ≤ r set
fi(λ) := 2(αi, λ)(αi, αi)

−1 . Using the linear forms fi we can decide whether
or not an element λ ∈ h∗ is a weight or a highest weight of an irreducible
representation ρ . Namely, λ is a (highest) weight of ρ iff f1(λ), . . . , fr(λ) ∈ Z
(∈ N0 ). If we define λi ∈ 〈Φ〉R by fj(λi) = δij , the highest weight λρ of ρ can
be written as

λρ =
r∑

i=1

fi(λρ) · λi.

In particular, the elements λi are highest weights of irreducible representations
ρi which are called the fundamental representations corresponding to the funda-
mental roots αi . The free semigroup Λ+(g, h) :=

⊕r
i=1 N0λi is called the weight

space of g with respect to h . Since all Cartan subalgebras of g are conjugate, we
may abbreviate Λ+(g) := Λ+(g, h). Summing up, we obtain (see [10], 3.2, [13],
Thm. 4.7.1, [6], VII.3, or [4], 44.1)

Theorem 1. The elements of the weight space Λ+(g) and the equivalence
classes of irreducible finite-dimensional (complex) representations of g are in a
one-to-one correspondence.

The complex dimension dimC ρ can be calculated by using Weyl’s for-
mula (cp. [10], 3.8, [13], Thm. 4.14.6, [6], p. 257, or [4], 47.8):

dimC ρ =
∏

ϕ∈Φ+

(λρ + δ, ϕ)

(δ, ϕ)
with δ =

r∑

i=1

λi,

where Φ+ ⊆ Φ denotes the set of all positive roots in Φ . Expressing dimC ρ in
terms of fi(λρ) and (λi, ϕ) we have

dimC ρ =
∏

ϕ∈Φ+

∑r
i=1(fi(λρ) + 1)(λi, ϕ)∑r

i=1(λi, ϕ)
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and if ϕ =
∑r
j=1 kjαj ∈ Φ+ we moreover have

(λi, ϕ) =

r∑

j=1

kj(λi, αj) = ki(λi, αi) =
1

2
ki(αi, αi).

The sets Φ+ of positive roots are listed in [11]. An algorithm for computing Φ+

is presented in [6], Chapt. IV, Thm. XVI. The values (αi, αi) can be found in [6],
Chapt. IV, §5, or in [10], (2.14), e. g.

Real representations of quasi-simple Lie groups

By integration, every Lie algebra homomorphism ψ : g→ g′ gives rise to
a homomorphism Ψ : G̃ → G̃′ between the associated simply connected groups
G̃ and G̃′ . We shall always write the corresponding uppercase letters for the
integrated homomorphisms. In particular, by Pi we denote the representation
of G̃ which corresponds to the fundamental representation ρi of g .

If g is a simple real Lie algebra, then either

I) its complexification gC := g ⊗R C is a simple complex Lie algebra (and
g is called a real form of gC ) or

II) it is the realification of a simple complex Lie algebra gC , i. e. g is the
algebra gC considered as an R -algebra.

Now let ρ : g → gl(V ) be an irreducible real representation. Then
ρC := ρ ⊗ idC is a complex representation of gC on VC := V ⊗R C which may
not be irreducible, see the cases (2), (3) of the next section. Via the natural
embedding v 7→ v ⊗ 1 of V into VC we consider gl(V ) as a subspace of gl(VC)
and so GL(V ) is a subset of GL(VC).

The following commutative diagram displays the situation.

g
ρ - gl(V )

@
@
@
@
@

ι

R

@
@
@
@
@

⊆

R
gC

ρC - gl(VC)

G̃

?

exp

P- GL(V )
?

exp

@
@
@
@
@

I

R

@
@
@
@
@

⊆

R
G̃C

?

exp

PC - GL(VC)
?

exp
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Case I) g is a real form of gC .

The algebra g is embedded in gC via the injection ι : g 7→ g⊗ 1. The integrated
map I : G̃→ G̃′ is not necessarily injective, but its kernel must lie in the center
of G̃ since G̃ is quasi-simple. The kernel ker I , which is called the linearizer of
G̃ , turns out to be the intersection of the kernels of all representations IPi of

G̃ . The quotient G̃
/

ker I is the maximal linearly representable group which is

locally isomorphic to G̃ . To determine the group G̃P = G̃IPC which is represented
by P , we thus have to know how the center Z( G̃) is mapped via I to Z(G̃C ). To

identify the elements of Z(G̃), table 1 shows how Z(G̃) is embedded in the group

Z(K̃ ), where K̃ denotes the universal covering of a maximal compact subgroup

K of G̃
/

Z(G̃) . Table 2 lists the image of Z(G̃) under I as well as the linearizer.

We shall use the symbol 〈x〉n to express that the element x generates a cyclic
group of order n , where n =∞ means that 〈x〉∞ ∼= Z .

Table 1. The embedding of Z(G̃) in Z(K̃).

type of K̃ Z(K̃) Z(G̃)

type AR
n

n = 1 R R 〈z〉∞ for some z ∈ R
n = 2l BR,0l 〈y〉2 〈z〉2 , z = y

n = 4l+1 DR,0
2l+1 〈y〉4 〈z〉4 , z = y

n = 4l+3 DR,0
2l+2 〈y〉2 × 〈y′〉2 〈z〉2 × 〈z′〉2 ,

z = y , z′ = y′

type AC,i
n

i = 0 AC,0
n 〈y〉n+1 〈z〉n+1 , z = y

i > 0 AC,0
n−i× 〈y〉r × 〈y′〉i × R 〈z〉g × 〈z′〉∞

AC,0
i−1× with r = n−i+1 z = yr/gy′i/g

R z′ = xya+by′−a , x ∈ R
g = gcd(n+1, i)

= (n+1)a+ib

type AH
n

n = 2l+1 CH,0l+1 〈y〉2 〈z〉2 , z = y

type BR,i
n

i = 0 BR,0n 〈y〉2 〈z〉2 , z = y

i = 1, 2|n DR,0
n 〈y〉2 × 〈y′〉2 〈z〉2 , z = yy′

i = 1, 26 |n DR,0
n 〈y〉4 〈z〉2 , z = y2

i = 2 BR,0n−1 × R 〈y〉2 × R 〈z〉2 × 〈z′〉∞ ,
z = y , z′ = x ∈ R



Bödi, Joswig 243

Table 1. The embedding of Z(G̃) in Z(K̃), continued.

type of K̃ Z(K̃) Z(G̃)

type BR,i
n

i = 4k DR,0
i/2×BR,0n−i/2 〈y〉2 × 〈y′〉2 × 〈y′′〉2 〈z〉2 × 〈z′〉2 ,

z = yy′ , z′ = y′′

i = 4k+2 DR,0
i/2×BR,0n−i/2 〈y〉4 × 〈y′〉2 〈z〉2 × 〈z′〉2 ,

z = y2 , z′ = y′

i = 2k+1
2|n−k DR,0

n−k×BR,0k 〈y〉2 × 〈y′〉2 × 〈y′′〉2 〈z〉2 × 〈z′〉2 ,
z = yy′ , z′ = y′′

26 |n−k DR,0
n−k×BR,0k 〈y〉4 × 〈y′〉2 〈z〉2 × 〈z′〉2 ,

z = y2 , z′ = y′

type CR
n

n = 2l AC,0
n−1 × R 〈y〉n × R 〈z〉2 × 〈z′〉∞ ,

z = yl , z′ = xy ,
x ∈ R

n = 2l+1 AC,0
n−1 × R 〈y〉n × R 〈z〉∞ , z = xy , x ∈ R

type CH,i
n

i = 0 CH,0n 〈y〉2 〈z〉2 , z = y

i > 0 CH,0i ×CH,0n−i 〈y〉2 × 〈y′〉2 〈z〉2 , z = yy′

type DR,i
n

i = 0
2|n DR,0

n 〈y〉2 × 〈y′〉2 〈z〉2 × 〈z′〉2 ,
z = y , z′ = y′

26 |n DR,0
n 〈y〉4 〈z〉4 , z = y

i = 1 BR,0n−1 〈y〉2 〈z〉2 , z = y

i = 2
2|n DR,0

n−1 × R 〈y〉4 × R 〈z〉2 × 〈z′〉∞ ,
z = y2 , z′ = xy ,
x ∈ R

26 |n DR,0
n−1 × R 〈y〉2 × 〈y′〉2 × R 〈z〉2 × 〈z′〉∞ ,

z = yy′ , z′ = xy ,
x ∈ R

i = 4k
2|n DR,0

2k ×DR,0
n−2k 〈y〉2 × 〈y′〉2× 〈z〉2 × 〈z′〉2 × 〈z′′〉2 ,

〈y′′′〉2 × 〈y′′′′〉2 z = yy′ , z′ = y′′′y′′′′ ,
z′′ = yy′′′

26 |n DR,0
2k ×DR,0

n−2k 〈y〉2 × 〈y′〉2 × 〈y′′〉4 〈z〉2 × 〈z′〉4 ,

z = yy′ , z′ = yy′′
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Table 1. The embedding of Z(G̃) in Z(K̃), continued.

type of K̃ Z(K̃) Z(G̃)

type DR,i
n

i = 4k+2
2|n DR,0

2k+1× 〈y〉4× 〈z〉2 × 〈z′〉4 ,

DR,0
n−2k−1 〈y′〉4 z = y′2 , z′ = yy′

26 |n DR,0
2k+1× 〈y〉4× 〈z〉2 × 〈z′〉4 ,

DR,0
n−2k−1 〈y′〉2 × 〈y′′〉2 z = y′y′′ , z′ = yy′

i = 2k+1 BR,0k ×BR,0n−k−1 〈y〉2 × 〈y′〉2 〈z〉2 × 〈z′〉2 ,

z = y , z′ = y′

type DH
n

n = 2l AC,0
n−1 × R 〈y〉n × R 〈z〉2 × 〈z′〉∞ ,

z = yl , z′ = xy ,
x ∈ R

n = 2l+1 AC,0
n−1 × R 〈y〉n × R 〈z〉∞ , z = xy , x ∈ R

exceptional types

E6(−78) E6(−78) 〈y〉3 〈z〉3 , z = y

E6(−26) F4(−52) 1l 1l

E6(−14) DR,0
5 × R 〈y〉4 × R 〈z〉∞ , z = xy , x ∈ R

E6(2) AC,0
5 × AC,0

1 〈y〉6 × 〈y′〉2 〈z〉6 , z = yy′

E6(6) CH,04 〈y〉2 〈z〉2 , z = y

E7(−133) E7(−133) 〈y〉2 〈z〉2 , z = y

E7(−25) E6(−78) × R 〈y〉3 × R 〈z〉∞ , z = xy , x ∈ R
E7(−5) DR,0

6 × AC,0
1 〈y〉2 × 〈y′〉2 × 〈y′′〉2 〈z〉2 × 〈z′〉2 ,

z = yy′ , z′ = y′′

E7(7) AC,0
7 〈y〉8 〈z〉4 , z = y2

E8(−248) E8(−248) 1l 1l

E8(−24) E7(−133)× AC,0
1 〈y〉2 × 〈y′〉2 〈z〉2 , z = yy′

E8(8) DR,0
8 〈y〉2 × 〈y′〉2 〈z〉2 , z = y

F4(−52) F2(−52) 1l 1l

F4(−20) BR,04 〈y〉2 1l

F4(4) CH,03 × AC,0
1 〈y〉2 × 〈y′〉2 〈z〉2 , z = yy′

G2(−14) G2(−14) 1l 1l

G2(2) AC,0
1 × AC,0

1 〈y〉2 × 〈y′〉2 〈z〉2 , z = yy′
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Table 2. Description of I
Z(G̃)

and linearizer.

I
Z(G̃)

linearizer

type AR
n Z(G̃C) = 〈x〉n+1

n = 1 z 7→ x 〈z2〉
n = 2l z 7→ 1 Z
n = 4l+1 z 7→ x2l+1 〈z2〉
n = 4l+3 z 7→ x2l+2 , z′ 7→ x2l+2 〈zz′〉

type AC,i
n Z(G̃C) = 〈x〉n+1

i = 0 z 7→ x 1l
i > 0 z 7→ x(n+1)/g , z′ 7→ xb 〈zg−bz′(n+1)/g〉

g = gcd(n+1, i) = (n+1)a+ib

type AH
n Z(G̃C) = 〈x〉n+1

n = 2l+1 z 7→ xl+1 1l

type BR,i
n Z(G̃C) = 〈x〉2

i ≤ 1 z 7→ x 1l
i ≥ 2 z 7→ x , z′ 7→ x 〈zz′〉

type CR
n Z(G̃C) = 〈x〉2

2|n z 7→ x , z′ 7→ 1 〈z′〉
26 |n z 7→ x 〈z2〉

type CH,i
n Z(G̃C) = 〈x〉2
z 7→ x 1l

type DR,i
n Z(G̃C) = 〈x〉2 × 〈x′〉2, if 2|n

Z(G̃C) = 〈x〉4, if 26 |n
i = 0

2|n z 7→ x , z′ 7→ x′ 1l

26 |n z 7→ x 1l

i = 1
2|n z 7→ xx′ 1l
26 |n z 7→ x2 1l

i = 2
2|n z 7→ xx′ , z′ 7→ x 〈z′2〉
26 |n z 7→ x2 , z′ 7→ x 〈zz′2〉

i = 4k
2|n z 7→ xx′ , z′ 7→ xx′ , z′′ 7→ x 〈zz′〉
26 |n z 7→ x2 , z′ 7→ x 〈zz′2〉

i = 4k+2
2|n z 7→ xx′ , z′ 7→ x 〈z′2〉
26 |n z 7→ x2 , z′ 7→ x 〈zz′2〉
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Table 2. Description of I
Z(G̃)

and linearizer, continued.

I
Z(G̃)

linearizer

type DR,i
n Z(G̃C) = 〈x〉2 × 〈x′〉2, if 2|n

Z(G̃C) = 〈x〉4, if 26 |n
i = 2k+1

2|n z 7→ xx′ , z′ 7→ xx′ 〈zz′〉
26 |n z 7→ x2 , z′ 7→ x2 〈zz′〉
type DH

n Z(G̃C) = 〈x〉2 × 〈x′〉2, if 2|n
Z(G̃C) = 〈x〉4, if 26 |n

2|n z 7→ x , z′ 7→ xx′ 〈z′2〉
26 |n z 7→ x 〈z4〉
type E6 Z(G̃C) = 〈x〉3

E6(−78) z 7→ x 1l

E6(−26) — 1l

E6(−14) z 7→ x 〈z3〉
E6(2) z 7→ x 〈z3〉
E6(6) z 7→ 1 Z

type E7 Z(G̃C) = 〈x〉2
E7(−133) z 7→ x 1l

E7(−25) z 7→ x 〈z2〉
E7(−5) z 7→ 1, z′ 7→ x 〈z〉
E7(7) z 7→ x 〈z2〉
type E8 Z(G̃C) = 1l

E8(−248) — 1l

E8(−24) z 7→ 1 Z

E8(8) z 7→ 1 Z

type F4 Z(G̃C) = 1l

F4(−52) — 1l

F4(−20) — 1l

F4(4) z 7→ 1 Z

type G2 Z(G̃C) = 1l

G2(−14) z 7→ 1 Z

G2(2) — 1l
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Case II) g is the realification of a simple complex Lie algebra gC .

The complexification g ⊗R C of g is isomorphic to gC ⊕ gC via the mapping
g ⊗ c 7→ (g, 0), g ⊗ c 7→ (0, g), where c = 1

2
(1 + i). The embedding ι of g into

g ⊗R C is now given by ι : g 7→ g ⊗ 1 = g ⊗ c + g ⊗ c 7→ (g, g) : g → gC ⊕ gC .
Every real representation ρ : g → gl(V ) is induced by a pair of irreducible
complex representations ρ1, ρ2 : gC → gl(VC). The representation (ρ1, ρ2) of
gC ⊕ gC is equivalent to the representation (ρ1, ρ

∗
2) of gC ⊕ gC , where ρ∗2 is

the contragradient representation of ρ2 , cp. [5], §11 and §12. Every complex
representation τ : g → gl(V ) arises as the pair (τ, 0), which is equivalent to

(0, τ∗). The integrated map I : G̃ → G̃C × G̃C is injective and the image of I

is diagonal in G̃C × G̃C . Thus the I -image of Z(G̃) is obvious and therefore we
have omitted tables for this case.

The contragradient representation of the fundamental representation ρj
is always ρj , except for the following cases: If gC is of type An , then ρ∗j =
ρn+1−j . If gC is of type Dn , then ρ∗n−1 = ρn and ρ∗n = ρn−1 for n odd. If gC
is of type E6 , then ρ∗1 = ρ6 , ρ∗6 = ρ1 , ρ∗3 = ρ5 , ρ∗5 = ρ3 .

Extend one (of the mutually conjugate [2], 20.9(ii)) maximal R -split toral
subalgebras of g to a Cartan subalgebra t of g . Then tC := t ⊗ C is a Cartan
subalgebra of gC . Now complex conjugation acts on gC via σ : g ⊗ c 7→ g ⊗ c
and thus also on Λ+(gC, tC), see [12], 3.1. This action is explicitly given in Table
3 for case I. Note that the action of 〈σ〉 on Λ+(gC, hC) may be different for h
not conjugate to t in g . For case II the action is simply the exchange of the two
components. We have ([5], [9], p. 290/291, [12], 7.2, 8.2, or [4], section 55)

Theorem 2. The orbits of 〈σ〉 on Λ+(gC, tC) and the equivalence classes
of finite-dimensional irreducible real representations of g are in a one-to-one
correspondence.

Centralizers and real dimensions

Let g be a simple real Lie algebra and ρ : g → gl(V ) an irreducible
real representation. Then the centralizer Cs(ρ) of the image gρ in gl(V ) is a
skew field by Schur’s lemma. Moreover, Cs(ρ) obviously contains R = R · idV
in its center. Thus Cs(ρ) ∼= R,C,H by a result of Frobenius. Let λ be the
highest weight of ρC . We consider the subsemigroup Σ+(g) of Λ+(gC) of those
weights that are fixed by σ . By §4 and §9 of [5] there exists an additive mapping
αg : Σ+(g)→ Z

/
2Z , the index of g , such that either

(1) λ ∈ Σ+(g), αg(λ) = 0, Cs(ρ) ∼= R , dimR(ρ) = dimC(ρC),

and ρC is irreducible,

or (2) λ ∈ Σ+(g), αg(λ) = 1, Cs(ρ) ∼= H , dimR(ρ) = 2 dimC(ρC),

and ρC is the direct sum of two equivalent irreducible complex represen-
tations corresponding to λ ,

or (3) λ 6∈ Σ+(g), Cs(ρ) ∼= C and dimR(ρ) = 2 dimC(ρC),

and ρC is the direct sum of two non-equivalent irreducible complex
representations corresponding to λ and λσ .
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Note that the semigroup Σ+(g) is generated by the set {λi, λj+λσj | 1 ≤
i, j ≤ rank gC, λσi = λi} . Since αg(µ+ µσ) = 0, see [5], Lemma 11, we can extend
the definition of αg to Λ+(gC) by setting α ≡ 0 on Λ+(gC) \ Σ+(g). Thus, the
mapping αg is uniquely determined by the images of the fundamental weights
λi . Table 3 lists the index for the real forms, whereas for case II we have αg ≡ 0
on the whole weightspace Λ+(gC). The canonical projection of Z to Z

/
2Z is

denoted by par.

Table 3. The action of σ on Λ+(gC, tC) and the index αg .

type action of σ on Λ+(gC, tC) αg

AR
n λσj = λj λj 7→ 0

AC,i
n λσj = λn+1−j λj 7→

{
par(n+1

2 −i) if j= (n+1)
2

0 otherwise
AH
n λσj = λj λj 7→ par(j)

BR,in λσj = λj λj 7→
{

0 if j<n or n−i 6≡ 1,2 (4)
1 otherwise

CRn λσj = λj λj 7→ 0

CH,in λσj = λj λj 7→ par(j)

DR,i
n

λσj =λj (j<n−1 or 2|n−i),
λσn−1 =λn, λ

σ
n=λn−1(26 |n−i) λj 7→

{
0 if j<n−1 or 4|n−i
1 otherwise

DH
n

λσj = λj (j<n−1 or 2|n),
λσn−1 =λn, λ

σ
n=λn−1(26 |n−i) λj 7→

{
par(j) if j<n−1
0 if j=n−1 and 2|n
1 otherwise

E6(−78)
λσ1 =λ6, λ

σ
2 =λ2, λ

σ
3 =λ5

λσ4 =λ4, λ
σ
5 =λ3, λ

σ
6 =λ1

λj 7→
{

0 if j=2, 4
1 otherwise

E6(−26) λσj = λj λj 7→ 0

E6(−14) see E6,−78 see E6,−78

E6(2) see E6,−78 see E6,−78

E6(6) see E6,−26 see E6,−26

E7(−133) λσj = λj λj 7→
{

0 if j=1, 3, 4, 6
1 otherwise

E7(−25) λσj = λj λj 7→ 0

E7(−5) see E7,−133 see E7,−133

E7(7) see E7,−25 see E7,−25

E8(i) λσj = λj λj 7→ 0

F4(i) λσj = λj λj 7→ 0

G2(i) λσj = λj λj 7→ 0
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Kernels of representations

Let g be a simple real Lie algebra and let gC be its complexification, with
corresponding simply connected groups G̃ and G̃C , resp. Consider a non-trivial
irreducible representation ρ : g→ gl(V ) with highest weight λ .

As g is simple the representation ρ is faithful and ker P = ker(IPC) is

discrete and therefore central in the group G̃ . Of course Z(G̃) is mapped to

Z(GL(VC)) by P . Note that Z(G̃)
P

is a cyclic group of roots of unity. Define a

group homomorphism εP : Z(G̃) → C× by εP(z) · idVC = zP . Then εP can be
written as

(∗) εP(z) =
r∏

i=1

εPi(z)
fi(λ).

Obviously, ker P = ker εP . Together with the information on I|
Z(G̃)

already given

above this is enough to compute the kernel of P if one knows the kernels of all
fundamental representations of G̃C . This is contained in Table 4 below, where

ξk denotes a k th primitive root of unity. The group G̃
/

ker P is called the group
which is represented by P .

Table 4. The images of the center Z(G̃C ) under the
fundamental representations Pj of G̃C

type Z(G̃C ) Pj Z(G̃C)

An 〈x〉n+1 x 7→ ξjn+1

Bn 〈x〉2 x 7→
{

1 if j < n
−1 if j = n

Cn 〈x〉2 x 7→ (−1)j

D2l 〈x〉2 × 〈x′〉2 x 7→





(−1)j if j < 2l− 1
1 if j = 2l− 1
−1 if j = 2l

x′ 7→





(−1)j if j < 2l− 1
−1 if j = 2l− 1
1 if j = 2l

D2l+1 〈x〉4 x 7→





(−1)j if j < 2l√
−1 if j = 2l
−
√
−1 if j = 2l+ 1

E6 〈x〉3 x 7→
{
ξ3 if j = 1, 5
ξ2
3 if j = 3, 6

1 if j = 2, 4

E7 〈x〉2 x 7→
{
−1 if j = 2, 5, 7
1 if j = 1, 3, 4, 6

E8 1l —
F4 1l —
G2 1l —
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About the implementation

Our initial motivation was to compute a list of the equivalence classes
of all irreducible real representations of a given simple real Lie algebra g up to
a certain dimension. We found this to be not only tedious but also very fault
prone to do by hand.

Obviously one can establish a (lexicographic) ordering on the elements
of the weight space Λ+(gC). Moreover the dimension function (Weyl formula)
is increasing if the multiplicities of all roots in the weight space but one are
fixed. This ensures that there is only a finite number of equivalence classes of
irreducible representations for g up to a given dimension. Furthermore these
representations can be enumerated in that way.

So what is left is to deal with a fixed representation ρ : g→ gl(V ). Again

let λ be the highest weight of ρC and let G̃ denote the simply connected group
associated with g .

(1) Determine dimC ρC via the Weyl formula.

(2) Derive ρσC and the index αg(λ) from Table 3. This gives the centralizer
Cs(ρ) and, together with (1), dimR ρ .

(3) Compute ker P = ker εP as follows: Table 4 gives the images of each

element of the generating system S for Z(G̃) (as given in table 1) under
all fundamental representations Pi . Substitute these data and λ in
formula (∗) to obtain the images xP for each x ∈ S . Using the Chinese-
Remainder-Algorithm one obtains a generating system for ker εP . By
some reduction strategy the result can be transformed into a canonical

form such that the name for the represented group G̃
/

ker P can be
looked up in a list.

The first implementation of the algorithm sketched above has been done
in the LiE language [7]. To give the reader an idea of the complexity: this LiE
based implementation takes 5 minutes, approximately, on a 486 IBM computer
(50 MHz) to determine all irreducible representations of all simple real Lie
algebras up to dimension 16. We have to mention that it was not possible to run
our present LiE based program with the original LiE 2.0 MS–DOS version. This
is mainly due to the fact that this particular LiE version used short integers for its
memory management, which did not meet our requirements. However, since the
sources were included we were able to do a recompilation of the (slightly modified)
source code with the GNU C compiler. A significantly faster ANSI C based
version of our representation package is in preparation. This implementation
will also be more portable, since it will be independent from LiE. The output (of
both versions) is an ASCII file that contains all information computed. Because
this file uses some crude format, we have written a TEX back end that transforms
the plain ASCII file into a TEX file which produces tables that look like the ones
listed in the next section.
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Example Tables

AC,1
3 — su4C(1) — real dimension 15

Real representations from dimension 2 to dimension 300.

Center Z of the universal covering : Z = 〈z〉 ∼= Z
The linearizer is 〈z4〉 .
By SαU3H we denote the antiunitary group on H3 .

dimension centralizer dominant weight kernel represented group

8 C λ1 〈z4〉 SU4C (1)

12 H λ2 〈z2〉 SαU3H
15 R λ1 + λ3 Z PSU4C (1)

20 R 2λ2 Z PSU4C (1)

20 C 2λ1 〈z2〉 SαU3H
40 C λ1 + λ2 〈z4〉 SU4C (1)

40 C 3λ1 〈z4〉 SU4C (1)

70 C 4λ1 Z PSU4C (1)

72 C 2λ1 + λ3 〈z4〉 SU4C (1)

84 R 2λ1 + 2λ3 Z PSU4C (1)

90 C 2λ1 + λ2 Z PSU4C (1)

100 H 3λ2 〈z2〉 SαU3H
105 R 4λ2 Z PSU4C (1)

112 C 5λ1 〈z4〉 SU4C (1)

120 C λ1 + 2λ2 〈z4〉 SU4C (1)

128 H λ1 + λ2 + λ3 〈z2〉 SαU3H
140 C 3λ1 + λ3 〈z2〉 SαU3H
168 C 3λ1 + λ2 〈z4〉 SU4C (1)

168 C 6λ1 〈z2〉 SαU3H
175 R λ1 + 2λ2 + λ3 Z PSU4C (1)

240 C 4λ1 + λ3 〈z4〉 SU4C (1)

240 C 7λ1 〈z4〉 SU4C (1)

252 C 2λ1 + 2λ2 〈z2〉 SαU3H
280 C λ1 + 3λ2 〈z4〉 SU4C (1)

280 C 2λ1 + λ2 + λ3 〈z4〉 SU4C (1)

280 C 4λ1 + λ2 〈z2〉 SαU3H
300 R 3λ1 + 3λ3 Z PSU4C (1)
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D4 — o8C — real dimension 56

Real representations from dimension 2 to dimension 100.

Center Z of the universal covering : Z = 〈z, z′〉 ∼= Z2 × Z2

The linearizer is 1.

dimension centralizer dominant weight kernel represented group

16 C (λ4, 0) 〈z〉 SO8C
16 C (λ3, 0) 〈z′〉 SO8C
16 C (λ1, 0) 〈zz′〉 SO8C
56 C (λ2, 0) Z PSO8C
64 R (λ4, λ

∗
4) Z PSO8C

64 R (λ3, λ
∗
3) Z PSO8C

64 R (λ1, λ
∗
1) Z PSO8C

70 C (2λ4, 0) Z PSO8C
70 C (2λ3, 0) Z PSO8C
70 C (2λ1, 0) Z PSO8C

ER
6(−78) — real dimension 78

Real representations from dimension 2 to dimension 35000.

Center Z of the universal covering : Z = 〈z〉 ∼= Z3

The linearizer is 1.

dimension centralizer dominant weight kernel

54 C λ1 1

78 R λ2 Z

650 R λ1 + λ6 Z

702 C λ3 1

702 C 2λ1 1

2430 R 2λ2 Z

2925 R λ4 Z

3456 C λ1 + λ2 1

6006 C 3λ1 Z

11648 C λ1 + λ3 Z

14742 C λ1 + λ5 1

15444 C 2λ1 + λ6 1

34749 R λ1 + λ2 + λ6 Z
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[1] Bourbaki, N., “Groupes et algèbres de Lie, Chapitres IV – VI”, Paris:
Hermann, 1968.

[2] Borel, A., “Linear Algebraic Groups”, Berlin–Heidelberg–New York:
Springer, 2nd ed., 1991.

[3] Bremner, M. R., R. V. Moody, J. Patera, “Tables of dominant weight
multiplicities for representations of simple Lie algebras”, Monographs
and Textbooks in Pure and Appl. Math. 40, New York: Dekker, 1985.

[4] Freudenthal, H., H. de Vries, “Linear Lie Groups”, New York–London:
Academic Press, 1969.

[5] Iwahori, N., On real irreducible representation of Lie algebra, Nagoya
Math. J. 14 (1959), 59–83.

[6] Jacobson, N., “Lie algebras”, New York: Interscience, 1962.

[7] van Leeuwen, M. A. A., A. M. Cohen, B. Lisser, “LiE – A Package for
Lie Group Computations”, Amsterdam: Computer Algebra Nederland,
1992.

[8] McKay, W. G., J. Patera, “Tables of dimensions, indices and branching
rules for representations of simple Lie algebras”, Lect. Notes in Pure and
Appl. Math. 69, New York: Dekker, 1981.

[9] Onishchik, A. L., E. B. Vinberg, “Lie Groups and Algebraic Groups”,
Berlin–Heidelberg–New York: Springer, 1990.

[10] Samelson, H., “Notes on Lie Algebras”, Berlin – Heidelberg – New York:
Springer, 1990.

[11] Tits, J., “Tabellen zu den einfachen Liegruppen und ihren Darstellun-
gen”, Lecture Notes 40, Berlin–Heidelberg–New York: Springer, 1967.

[12] Tits, J., Représentations linéaires irréductibles d’un groupe réductif sur
un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220.

[13] Varadarajan, V. S., “Lie groups, Lie algebras, and their representations”,
Englewood Cliffs (N.J.): Prentice-Hall; Berlin etc.: Springer, 1984.

Universität Tübingen
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