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On the Riemannian Geometry
of Finite Dimensional Mixed States

Jochen Dittmann

Abstract

We consider the Riemannian geometry of the space of nonsingular density
matrices D1 equipped with the Bures metric gB . This space is of certain
physical relevance on the background of a generalization of the Berry phase
to mixed states. We determine the covariant derivative and the curvature
tensor field related to the Levi-Cevita connection of (D1, gB), which allow us
to calculate other curvature quantities . It turns out that D1 is not a space
of constant curvature and not even a locally symmetric space, in contrast to
what the case of two-dimensional density matrices might suggest. Moreover,
we give a local description of D1 and explicit formulae for the Bures metric
in terms of natural matrix operations containing % and d% only.

1. Introduction

The aim of this paper is to consider the local Riemannian geometry of the
space of nonsingular, normalized n×n density matrices D1 := {% ∈ Mn,n(C ) |
%∗ = % > 0, T r % = 1} equipped with the Riemannian Bures metric gB . This
Riemannian metric appears on the background of a generalization of the Berry
phase (see [11, 4, 16, 12, 1]) to mixed states in quantum systems proposed by
Uhlmann in a series of papers ([12, 13, 14]). Moreover, this metric is just the
infinitesimal version of the distance function

d(%, µ) =

√

2− 2Tr
(
%

1
2µ%

1
2

) 1
2 (1.1)

given by Araki many years ago ([2], A2).

So it is natural to ask for differential geometric properties of (D1, gB)
and check several ideas one gets considering the case of 2×2 density matrices.
Uhlmann observed that for n=2 the space D1 is isometric to an open half shell
of the 3-sphere of radius 1

2
([15]). Moreover, for n=2 there is an interesting relation

to instantons and the Yang-Mills theory ([7]). Thus this space is an interesting
geometrical object and one is led to several questions for general n, e.g., is the
space (D1, gB) of constant curvature or, at least, locally symmetric?

Let us briefly explain how (D1, gB) appears. The idea of generalization of
the Berry phase to mixed states proposed by Uhlmann is based on the concept of
purification of mixed states, where one represents mixed states % ∈ Ω in a Hilbert
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space H by pure states in an extended Hilbert space Hext . A standard way to do
this is to take as Hext the Hilbert space HHS of Hilbert-Schmidt operators on H .
If

IR 3 t 7→ %(t) ∈ Ω = {µ:H → H | µ ≥ 0, T r µ = 1}
is a sufficiently regular path of density operators then

IR 3 t 7−→ w(t) ∈ HHS

is said to be a purification of % iff

%(t) = w(t)w(t)∗.

Thus, a purification of % is a lift of % into the fibration

S(HHS) ⊂ HHS
y π

% : IR −→ Ω

(1.2)

π(w) = ww∗ , where S(HHS) = {w ∈ HHS | 〈w,w〉 = 1} is the unit sphere with
respect to the real part of the Hilbert-Schmidt metric;

〈X, Y 〉 = ReTr XY ∗; X, Y ∈ HHS. (1.3)

Among all lifts there are distinguished ones, the so called horizontal lifts satisfying
the horizontality condition

w∗ẇ = ẇ∗w (1.4)

which generalizes the Berry condition in this framework. A detailed motivation
and discussion of (1.4) was presented in [13, 14]. In particular, let H be of finite
dimension n. Then the restriction of the fibration (1.2) to the (dense in Ω)
manifold D1 of nonsingular states % > 0 is a principal U(n)-bundle;

gl(n, C ) ⊃ S2n2−1 ⊃ P := π−1(D1) −→ D1. (1.5)

The vectors X ∈ TwP satisfying

w∗X = X∗w (1.6)

are the horizontal vectors of Uhlmann’s connection form A given implicitly by
the equation

w∗wA+ Aw∗w = w∗dw − (dw∗)w, (1.7)

see [13, 14]. A certain class of connection forms including this one was considered
in [6]. Since (1.6) is just the condition for X being orthogonal to the vertical
vectors of (1.5) w.r. to (1.3), the horizontal subspaces are just the orthogonal
complements of the fibre directions of (1.5). This connection form together with
the Riemannian metric (1.3) on P define the Riemannian metric gB on D1 we
are interested in. The metric gB is given by

gB% (X, Y ) = ReTr X ′Y ′∗; X, Y ∈ T%D1, (1.8)
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where X ′ , Y ′ are horizontal lifts of X and Y to any point of π−1(%). Using the
horizontality condition (1.6) one obtains

gB =
1

2
Tr Gd%, (1.9)

where G (see [13, 14]) is the matrix of 1-forms on D1 given implicitly by

%G+G% = d%; % ∈ D1. (1.10)

In Section 2 we make some remarks about the local structure of D1 . It turns
out, that D1 is locally isometric to the product of a sphere and the homogeneous
space U(n)/Tn with an invariant metric depending on the points of the sphere.
Moreover, we give an explicit algebraic formula for the Bures metric tensor gB

in the case n=3 and give a method to obtain analogous formulae for general
n. However, these local considerations and the formulae give not a satisfactory
picture of the Riemannian space we are discussing. That is the reason for making a
differential geometric approach. In Section 4 we determine the covariant derivative
on D1 . This enables us to give in Section 5 the corresponding curvature tensor
field. As a consequence we obtain that D1 is not a space of constant curvature for
n > 2, and not even a locally symmetric space. The physical meaning of this fact
seems to be an interesting open question.

2. Notations

We denote by D the space of nonsingular hermitean n×n matrices and
by D1 as above the subspace of trace one matrices for a fixed n. The spaces D
and D1 carry a flat local affine structure, because they are open subsets of affine
spaces (space of hermitean resp. trace one hermitean matrices). It corresponds to
the flat metric

gf = Tr d% d% (2.1)

on D resp. D1 .

We denote vector fields on D resp. D1 by X , Y , Z and W . Often we
consider them as hermitean matrix valued functions due to the embedding of D
and D1 into matrix spaces. In particular, let N be the vector field on D defined
by

N% = %; % ∈ D . (2.2)

By [X, Y ] we denote the commutator of the matrix valued functions X and Y in
contrast to the commutator [X, Y ]vf of vector fields considered as derivations;

[X, Y ]% = X%Y% − Y%X% , [X, Y ]vf (f) = X(Y (f))− Y (X(f)) .

Let L% (resp. R% ) be the operator of left (resp. right) multiplication of matrices
by % ∈ D . Note that L%+R% has the spectrum {λ+ µ | λ, µ are eigenvalues of %}
and, therefore, the operator (L%+R%)

−1 is well defined. Omitting the index % we
regard (L+R)−1 as an operator valued function on D resp. D1 . For simplicity
we denote by X the matrix valued function defined by

X := (L+R)−1(X) ; X % = (L%+R%)
−1 (X%) . (2.3)
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Formulae (1.9) and (1.10) define the Riemannian Bures metric gB on D1 . Of
course, these formulae even define a Riemannian metric on D which we denote by
g . The metric gB is the pullback of g to D1 . Since d% is a matrix of 1-forms we
have by (1.10)

G = (L+R)−1 (d%)

and in this notation the metrics read

gB (resp. g) =
1

2
Tr (L+R)−1 (d%) d%. (2.4)

Note that N is normal—with respect to g—to the submanifold D1 ⊂ D of
codimension one.

Clearly, L+R is pointwise a selfadjoint operator with respect to g and
gf . By ∇B, ∇ and ∇f we will denote the covariant derivatives of the Levi-Cevita
connections corresponding to gB , g and gf . Thus, ∇f is the ordinary covariant
derivative on matrices, in particular, we have

∇f
XN = X . (2.5)

Curvatures related to the metrics above will be denoted analogously.

3. The Manifold (D1, gB)

In order to form an intuition of the space (D1, gB) one would like to have a
“natural” isometric embedding of D1 into a flat space. However, except the case
n=2 ([15]) such an embedding is not known to the author.

Note that every % ∈ D1 can be uniquely decomposed as % = ss∗ , where s
is a triangular complex matrix with real positive entries on the diagonal;

s =
∑

i>j

zijEij +
∑

i

µiEii .

Since % has trace one the coefficients satisfy
∑

i>j

| zij |2 +
∑

i

µ2
i = 1 .

Thus D1 is diffeomorphic to a segment (µi > 0) of a (n2−1)-sphere. But this
diffeomorphism is not an isometry as we will see later. However, let us consider
the submanifold Λ of diagonal matrices λ = µ2 , where

µ =
∑

i

µiEii ; µi > 0 ,
∑

i

µ2
i = 1 .

Denoting the pullback of the 1-form G to Λ by ι∗G, we get explicitly

ι∗G =
1

2
µ−2dµ2

and, therefore, we obtain for the pullback of gB to Λ

ι∗gB =
1

4
Tr µ−2d(µ2)d(µ2) = Tr dµdµ =

∑

i

dµidµi .
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Thus Λ is isometric to the segment

S =
{

(µ1, . . . , µn) ∈ IRn
+ | µ2

1 + . . .+ µ2
n = 1

}

of the (n−1)-sphere of radius 1 ([15]). A little bit more of the local structure of
D1 one can see as follows.

Using the decomposition % = uµ2u∗ ,u ∈ U(n)/T n , for a generic % ∈ D1 a simple
calculation shows that

(L%+R%)
−1(d%) = Adu

(
1

2
λ−1dλ+ (Lλ+Rλ)−1 ([u∗du, λ])

)
, (3.1)

where λ = µ2 is diagonal with different eigenvalues only. Here we used the same
symbol u resp. du for classes and their representatives. This makes sense, because
the right hand side of (3.1) does not depend on the the choice of representatives.
Indeed, elements of T n commute with λ. Inserting (3.1) into (2.4) we get

gB% = Tr dµdµ +
1

2
Tr

{
(Lλ+Rλ)

−1 ([u∗du, λ]) [u∗du, λ]
}
. (3.2)

Thus, in a generic point % the manifold D1 is locally isometric to Sn−1×U(n)/T n ,
where the metric on the homogeneous space U(n)/T n given by the second term
of (3.2) depends on the parameter λ ∈ Sn−1 . Moreover, this metric is invariant
under the natural left U(n)-action.

Formula (2.4) giving the metric gB is rather implicit because the operator
(L+R)−1 is not given in natural matrix operations. In [9] an explicit formula for
the Bures metric was given for n=2, only. Here we show, how one can obtain
for every fixed n an explicit formula for the inverse of the operator L+R and,
therefore, for gB , too. We first consider the cases n=2 and n=3. Note, that for
% ∈ D1 holds

L− R
L+R

= L−R for n = 2 (3.3)

L− R
L+R

=
3

1− Tr %3
(Id− L)◦(Id−R)◦(L−R) for n = 3 . (3.4)

Inserting these formulae into

2

L +R
= L−1

(
Id+

L− R
L+R

)

we get for the inverse of L+R

2

L+R
= Id +

1

|%| (Id− L)◦(Id− R) for n = 2 (3.5)

2

L+R
= Id +

3

1− Tr %3
(Id− L)◦(Id−R)

+
3|%|

1− Tr %3
(Id− L−1)◦(Id− R−1) for n = 3 , (3.6)
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where |%| := Det %. Here we used that from the Hamilton-Cayley theorem we
know

L2 − L+ |%| Id = 0 for n = 2

−R3 +R2 − 1− Tr %3 + 3|%|
3

R + |%| Id = 0 for n = 3 .

Thus we obtain by (2.4) for the Bures metric in these two cases

gB% =
1

4
Tr

{
d%d% +

1

|%|(d%− %d%)(d%− %d%)

}
for n = 2 (3.7)

gB% =
1

4
Tr

{
d%d% +

3

1− Tr %3
(d%− %d%)(d%− %d%)

+
3|%|

1− Tr %3
(d%− %−1d%)(d%− %−1d%)

}
for n = 3 . (3.8)

In (3.8) we could additionally substitute %−1 by powers of % and its invariants as
in the first case. The formula given in [9] for the case n=2 can be reproduced from
(3.7) using the following two identities, which are easily derived from the equation
%2 − % + |%| 1l = 0.

Tr (% d% d%+ d% % d%) = Tr d% d% ,

T r % d% % d% = |%|Tr d% d%+ d|%| d|%| .

Using this we get from (3.7)

gB% =
1

2
Tr d% d% +

1

4|%| d|%| d|%|

=
1

2
Tr d% d% + d

√
|%| d

√
|%| (see [9]). (3.9)

To get similar formulae for arbitrary n one can proceed as follows:
Denote by

χϕ(x) =
∑

i

σm−i(ϕ)(−x)i

the characteristic polynomial of a linear mapping ϕ, where σk(ϕ) := Tr ∧k ϕ is
the elementary invariant of degree k . By the Hamilton-Cayley theorem we have

χL+R(L+R) = 0

and, therefore, multiplying this equation by (L+R)−1

(L+R)−1 = − 1

Det(L+R)

n2∑

i=1

σn2−i(L+R) (−L−R)i−1 . (3.10)



Dittmann 79

The invariants σk(L+R) may be expressed by polynomials of invariants of the
matrix % using the following identities:

σk(L+R) =
k∑

i=0

σi(L)σk−i(R) (3.11)

χL(x) = χR(x) = (χ%(x))n . (3.12)

The invariant σi(%) is a polynomial in Tr %j , j = 2, . . . , i. Formulae (3.11) and
(3.12) can be easily verified assuming % to be diagonal. Finally, using χ%(%) = 0
we get the Bures metric gB for every fixed n in the form

gB =
1

σn2(L+R)
Tr

n−1∑

i,j=0

Cij%
id%%jd% , (3.13)

where the Cij ∈ IR are certain polynomials of invariants of %. Thus, we have the
Riemannian Bures metric gB in terms of %, d% and natural matrix operations.
However, it seems that such algebraic formulae do not contribute to much to a
better understanding of the Riemannian metric gB and are rather unsuitable for
the calculation of curvatures. A general approach to this problem will be presented
in the next sections.

4. The Covariant Derivative

In order to determine the covariant derivatives ∇ and ∇B related to g and
gB we use the underlying flat local affine structure on D and D1 . Note, that by
(2.4) and (2.1) we have the relation

2g(X, Y ) = gf(X , Y ) = gf(X, Y ) . (4.1)

The flat covariant derivative of the (1,1)-tensor field L+R is simply calculated,
namely, (

∇f
X(L+R)

)
(Y ) = XY + Y X , (4.2)

where the fields X and Y are considered on the right hand side as matrix valued
functions and XY denotes their product. This implies

(
∇f

X(L+R)−1
)

(Y ) = −(L+R)−1(X Y + Y X) (4.3)

and, therefore, using ∇fgf = 0

2
(
∇f

Xg
)

(Y, Z) = gf
((
∇f

X(L+R)−1
)

(Y ), Z
)

= − gf(X Y + Y X, Z ) . (4.4)

Any two covariant derivatives on a manifold differ on vector fields by a certain
(1,2) tensor field. Relating ∇ and ∇B to ∇f we prove the following



80 Dittmann

Theorem 4.1. The covariant derivatives ∇ and ∇B corresponding to the Levi-
Cevita connections on (D, g) and (D1, gB) are given by

∇XY = ∇f
XY + S(X, Y ) (4.5)

∇B
XY = ∇f

XY + S(X, Y ) + 2gB(X, Y ) ·N (4.6)

with

S(X, Y ) := −X N Y − Y N X . (4.7)

For notations see (2.2) and (2.3).

Proof. First we show (4.5). Let X and Y be vector fields on D and define
a covariant derivative by ∇̃XY := ∇f

XY + S(X, Y ), where S is given by (4.7).
Since S is a symmetric (1,2) tensor field on D the torsion of ∇̃ vanishes. Thus,
in order to show that ∇̃= ∇ we have to show ∇̃g = 0. It is sufficient to show(
∇̃g
)

(Y, Y ) = 0. By the Leibniz rule, (4.7), (4.4), (4.1) and (2.1) we get
(
∇̃Xg

)
(Y, Y ) = ∇̃X(g(Y, Y ))− 2g

(
∇̃XY, Y

)

= ∇f
X(g(Y, Y ))− 2g

(
∇f

XY, Y
)

+ 2g(XN Y + Y N X , Y )

=
(
∇f

Xg
)

(Y, Y )) + 2g(XN Y + Y N X , Y )

= −1

2
gf(X Y + Y X, Y ) + gf(X N Y + Y N X , Y )

= Tr (−X Y Y + (X N +N X )Y Y )

= Tr (−X Y Y +X Y Y ) = 0 . (4.8)

Now, let X and Y be vector fields tangent to D1 ; Tr X% = 0, Tr Y% = 0
for % ∈ D1 . Then ∇f

XY is tangent to D1 , too. Because D1 is a Riemannian
submanifold of D , ∇B

XY is just the component tangent to D1 of ∇XY . Using
that N is normal to D1 and g%(N,N) = 1

4
for % ∈ D1 we get

∇B
XY = ∇XY − 4g (∇XY,N) ·N

= ∇XY + 4g
(
X N Y + Y N X ,N

)
·N

= ∇XY + Tr ((X N Y + Y N X )1l) ·N
= ∇f

XY − X N Y − Y N X + 2gB(X, Y ) ·N . (4.9)

This finishes the proof.

The geodesics on D1 connecting two states were given explicitly in [15]. By the
construction of the Bures metric they are the projection under π of shortest circles
connecting representatives π−1(%) and π−1(µ) in the principal bundle (1.5). This
allows one to determine the exponential mapping related to the covariant derivative
obtained above. Here we give the final result, only. Let % ∈ D1 and h ∈ T%D1 be
a traceless hermitean matrix. Then the exponential mapping on (D1, gB) is given
by

Exp%(h) = cos2(||h||)% +
1

||h||2 sin2(||h||) h % h

+
1

||h|| sin(||h||) cos(||h||) h , (4.10)
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where
||h||2 = gB(h, h) and % h + h % = h .

A direct verification that %(t) := Exp%(th) satisfies the geodesic equation

∇B
%̇ %̇ = 0

is not straightforward.

5. The Curvature Tensor Field

We denote by R and RB the curvature tensor fields of ∇ and ∇B obtained
in the last section. As usual we use the same symbol for the (0,4) and (1,3) tensor
fields, e.g.

R(W,Z,X, Y ) = g(R(X, Y )Z,W ).

The basic result for what follows is

Theorem 5.1. The curvature tensor fields of the Levi-Cevita connections of
(D, g) and (D1, gB) are given by

R (W,Z,X, Y ) = 2g
(
iN [X , Y ]N, i[W , Z ]

)

+g
(
iN [Z , Y ]N, i[W , X ]

)

−g
(
iN [Z , X ]N, i[W , Y ]

)
(5.1)

RB (W,Z,X, Y ) = R (W,Z,X, Y )

+gB (Y, Z) gB (X,W )− gB (X,Z) gB (Y,W ) (5.2)

For notations compare Section 2. The imaginary units were introduced to make
the arguments of g hermitean.

Proof. First we show (5.1), then (5.2) follows from the Gauss theorem. Equa-
tion (5.1) we could get by a straightforward but quite lengthy computation after
inserting (4.5) into the definition of the curvature. The proof is simplified if we
use algebraic properties of quadrilinear mappings of the curvature type (comp.
[10]). For this purpose denote by R̃(W,Z,X, Y ) the right hand side of (5.1). R̃ is
antisymmetric in the first two and in the last two arguments. Moreover, it satisfies

R̃(W,Z,X, Y ) + R̃(W,X, Y, Z) + R̃(W,Y, Z,X) = 0 .

Thus (comp. [10]), R = R̃ follows if we prove

R(X, Y,X, Y ) = R̃(X, Y,X, Y ) ,

where we have from the right hand side of (5.1)

R̃(X, Y,X, Y ) = 3g
(
iN [X , Y ]N, i[X , Y ]

)
.

The essential technical problem is solved by the following lemma, whose proof is
given in the Appendix.
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Lemma 5.2. Let X and Y be vector fields on D . Then

R(X, Y )Y :=
(
∇X∇Y −∇Y∇X −∇[X,Y ]vf

)
Y = 3

[
L◦R
L+R

(
[X , Y ]

)
, Y

]
. (5.3)

This lemma and definition (2.4) of g yield

R(X, Y,X, Y ) = g(R(X, Y )Y,X)

=
3

2
Tr

[
L◦R
L+R

(
[X , Y ]

)
, Y

]
X

=
3

2
Tr

1

L+R

(
N [X , Y ]N

)
[Y , X ]

= 3g
(
iN [X , Y ]N, i[X , Y ]

)
= R̃(X, Y,X, Y ) . (5.4)

This proves the assertion (5.1). Now, let X , Y , Z and W be vector fields tangent
to the Riemannian submanifold D1 ⊂ D . Then by the Gauss formula (comp. [10])

R(W,Z,X, Y ) = RB(W,Z,X, Y ) + g(α(X,Z), α(Y,W ))

− g(α(Y, Z), α(X,W )) , (5.5)

where α(X,Z) is the component normal to D1 of ∇XZ . Since ∇B
XZ is the

corresponding tangent component, we get

∇XZ = ∇B
XZ + α(X,Z)

and, therefore, by Theorem 4.1

α(X,Z) = −2gB(X,Z)N .

We inserte this and related formulae for the other pairs of fields into (5.5). Using
gB(N,N) = 1

4
we get the assertion (5.2).

6. The Sectional Curvature

Theorem 5.1 giving the curvature tensor fields on D and D1 allows us
to determine other curvature quantities. We restrict ourselves to the sectional
curvature KB of D1 . Let X and Y be vector fields on D1 . Then the sectional
curvature of the planes ρ generated by X and Y is given by

KB(ρ) =
1

|| X ∧ Y ||2 R
B(X, Y,X, Y ) ,

where
|| X ∧ Y ||2 = gB(X,X)gB(Y, Y )− gB(X, Y )gB(X, Y )

is the square of the area of the parallelograms generated by X and Y . Thus we
obtain from Theorem 5.1
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Proposition 6.1. The sectional curvature of the planes ρ generated by the
fields X and Y on D1 is given by

KB(ρ) = 1 +
3

|| X ∧ Y ||2 g
(
iN [X , Y ]N, i[X , Y ]

)
(6.1)

Corollary 6.2. The sectional curvature on D1 fulfils

KB ≥ 1 . (6.2)

Proof. Note that Z 7−→ g%(%Z%, Z) is a positive definite quadratic form on
hermitean matrices, because % > 0. Thus (6.2) is obvious by (6.1).

Corollary 6.3. The space D1 is not a space of constant curvature for n ≥ 3.

Proof. Let µ = 1
n

1l . We calculate KB at µ and show that it is not independent
of the plane ρ. First, note that

1

Lµ +Rµ

=
n

2
Id .

Thus we get by (2.4) and (6.1)

KBµ (ρ) = 1− 3

4
n

Tr ([X, Y ]2)

Tr (XX)Tr (Y Y )− (Tr XY )2
.

Inserting X = E11 −E22 , Y = E11−E33 and X ′ = E12 +E21 , Y ′ = E23 +E32 we
get KBµ (ρ) = 1 and KBµ (ρ′) = 1 + 3

8
n.

Since D1 is not a space of constant curvature we ask whether the sectional cur-
vature is invariant under parallel displacement or not. A space with this property
is called a locally symmetric space ([8]). An equivalent property is that the lo-
cal geodesic reflections exp%(X%) 7→ exp%(−X%) are local isometries. This would
mean that locally there is no essential difference between going along a geodesic
in a direction X% and the opposite direction −X% . From this point of view the
following theorem should not be a surprise, although we do not give a physical
interpretation of this fact.

Theorem 6.4. The space D1 is not locally symmetric for n ≥ 3.

Proof. It is a well known that a space is locally symmetric iff the covariant
derivative of its curvature tensor field vanishes ([8]). We show that ∇BRB does
not vanish at µ = 1

n
1l . Since ∇BgB = 0 we have by Theorem 5.1 ∇BRB = ∇BR,

where we regard R as a (0,4)-tensor field on D1 given by (5.1). Since N = 1
2
1l we

see from (5.1) that N annihilates R. Thus we have
(
∇BR

)
(X, Y,X, Y ) = ∇B(R(X, Y,X, Y )) − 2R(∇BX, Y,X, Y )

− 2R(X,∇BY,X, Y )
= ∇(R(X, Y,X, Y )) − 2R(∇X, Y,X, Y )

− 2R(X,∇Y,X, Y )
= (∇R) (X, Y,X, Y ) ,
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where we used that by Theorem 4.1. ∇B−∇ = 2 gBN . Hence, ∇BRB = ∇R on
D1 . Define the (1,2)-tensor field C on D by

C(X, Y ) := i [X , Y ] . (6.3)

Then we have by (5.1)

R(X, Y,X, Y ) = 3 g(L◦R ◦ C(X, Y ), C(X, Y ))

and, therefore,

(∇R) (X, Y,X, Y ) = 3 g((∇ L◦R) ◦ C(X, Y ), C(X, Y ))

+ 6 g(L◦R ◦ (∇C)(X, Y ), C(X, Y )) . (6.4)

The covariant derivatives of L◦R and C we calculate using the Leibniz rule and
∇ = ∇f + S , where S is given by (4.7), e.g.

(∇Z L◦R) (X) = ∇Z(L◦R(X))− L◦R (∇ZX)

= ZXN +NXZ + S(Z,NXN)−NS(Z,X)N .

We are interested in the value of this quantity at µ only. Thus, for hermitian
traceless matrices X, Y, Z we get

(∇Z L◦R)µ (X) =
1

n
(ZX +XZ) (6.5)

and, analogously,

(∇Z C)µ (X, Y ) = −i n
3

8
(Z[X, Y ] + [X, Y ]Z +XZY − Y ZX ) . (6.6)

Moreover, we have at µ

gµ(X, Y ) =
n

4
Tr XY (6.7)

L◦R µ =
1

n2
Id (6.8)

Cµ(X, Y ) = i
n2

4
[X, Y ] . (6.9)

Finally, we insert (6.5)–(6.9) into (6.4) and obtain

(∇ZR)µ (X, Y,X, Y ) =
3

64
n4 Tr Z

{
(XY )2 + (Y X)2 −X2Y 2 − Y 2X2

}
. (6.10)

But, in general the right hand side does not vanish for n ≥ 3, e.g. X = E12 +E21 ,
Y = E23 + E32 , Z = E11 − E22 and, therefore, ∇BRB 6= 0.
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7. Appendix

Proof of Lemma 5.2. By Theorem 4.1 we have ∇ = ∇f+ S , where S is the
symmetric (1,2)-tensor field on D given by (4.7). Using the Leibniz rule and the
vanishing of curvature and torsion of ∇f we get

(
∇X∇Y −∇Y∇X −∇[X,Y ]vf

)
Y

=
(
∇f

XS
)

(Y, Y )−
(
∇f

Y S
)

(X, Y ) + S(S(Y, Y ), X)− S(S(X, Y ), Y ) . (7.1)

To determine ∇fS one replaces—using the Leibniz rule—N and (L+R)−1 involved
in S by their flat covariant derivatives (2.5) and (4.3). To simplify the notation
we write X , Y instead of X , Y . This yields

(
∇f

XS
)

(Y, Y ) = 2
{
(X Y +Y X)N Y + Y N(X Y +Y X)− Y X Y

}
.

Overline means as defined in Section 2 the application of (L+R)−1 . Now, we
substitute X by N X+X N and obtain

(
∇f

XS
)

(Y, Y ) = 2
{

(N X Y + X N Y + Y N X + Y X N)N Y

+Y N(N X Y + X N Y + Y N X + Y X N)

−Y (N X + X N)Y } .
Next, we substitute in the last two terms X Y by N X Y + X Y N and similary
for Y X . This yields

(
∇f

XS
)

(Y, Y ) = 2
[
N [X , Y ]N, Y

]

+ 2(X N Y + Y N X )N Y

+ 2Y N(X N Y + Y N X ) . (7.2)

Analogously we find for the second term of (7.1)

−
(
∇f

Y S
)

(X, Y ) =
[
N [X , Y ]N, Y

]

− (X N Y + Y N X )N Y

− Y N(X N Y + Y N X )

− 2Y N Y N X − 2X N Y N Y . (7.3)

The remaining terms of (7.1) yield

S(S(Y, Y ), X) = 2Y N Y N X + 2X N Y N Y (7.4)

−S(S(X, Y ), Y ) = −X N Y N Y − Y N X N Y

−Y N X N Y − Y N Y N X . (7.5)

Finally, we add equations (7.2)–(7.5) and get by (7.1) the assertion of Lemma 5.2

R(X, Y )Y = 3
[
N [X , Y ]N, Y

]

= 3
[
L◦R
L+R

(
[X , Y ]

)
, Y

]
.
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