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Generating Functions of 7, 1(SU,)
Christian Gross

In many questions concerning homotopy groups of LIE groups G, especially of
the unitary groups U,, and SU,,, it suffices to know the mere group structure
of 7,(G). For this purpose one can consult tables. For example, it is known that

(1) 7T-271(517771) = 7"-271(17771) = 07 7T2n—|—1(SUm) = 7T2n+1(Um) = Z7 m>neN

by BOTT’s periodicy theorem [1]. However, often we have to know representa-
tives U: S™ — G for the generators of these homotopy groups.

One example for this situation is the SKYRME model [5] in theoreti-
cal nuclear physics, a chiral invariant effective field theory describing the low
energy limit of the quantum chromodynamics (QCD). By compactification of
euclidian space R?, resp., of space-time R*, the meson fields are differentiable
functions U:R(t) x 8% — SUp,, resp., U: S* — SUy,, Nr being the number
of flavors in the QCD (Ng = 2, resp., Np = 3). In this model nucleons appear
as topological soliton solutions of these field configurations. The number of nu-
cleons described by a certain meson field U can be computed by integration of

the pullback

U*wg =

(2)

1
Y Y Tr (LANLAL)
over the space manifold, with L:= Utadu , where A is the wedge product of dif-
ferential forms and ws is the generator of the DE-RHAM cohomology H3(SU,,) =
Hs(U,,) 2R for m > 2.

The meson fields obey the field equations derived as EULER-LAGRANGE
equations from a lagrangian L(U,dU) by variation of the action integral
| ga £ dV. Let €'"P? denote the totally antisymmetrical LEVI-CIVITA symbol,
L,=U t 0,U and A a coupling constant. Then for Nr = 3 the field equations
involve an additional term

(3) X e [,L,L,Ly,

that describes anomalous processes of the QCD. (In (3) we have used the EIN-
STEIN summation convention.) Unfortunately, it is impossible to build up the
global corresponding term in the lagrangian from which (3) could be derived
by variation. Instead by using m4(SUs) = 0 from (1) one argues that U can
be extended to a differentiable function U’: D° — SUs from a five-dimensional
disc D® whose boundary dD?® is space-time S* [7]. Now the corresponding term
for (3), the so-called WESS-ZUMINO term [6], is A [,5 (U’)*ws, with ws being the
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generator of H5(SU,,) = R for m > 3. Using STOKES’ theorem we can perform
the integration along space-time which leads — at least locally — to (3).

For any possible extension U’ the result has to be unique. This is equiv-
alent to the requirement that

/\/ (U)ws = 2nz, 2 €L,
S5

where S° is the 5-sphere which one obtains by gluing any two 5-cells D?l) and
P?Q) at space-time S* = OD?I) = 6D(52) together, and where we have defined
U= U(/1) U U(’Q): S5 — SUs as the corresponding extension to this 5-sphere. This
forces A to be set equal to Wlﬁz by the following index theorem (cf. BOTT,

SEELEY [2]). The factor 57— in (2) can also be deduced from this conclusion.
Recall L, =U'9,U.

Theorem 1. For every map U:S*"~! — U,, the integral

S2n—1

' (n—1)!
/ <i) % etrtztent T (Lyyy Ly« + Lyig, ) dvy Aday A+ AN davgp—

S2n—1

is an integer n(U). The assignment [U] — n(U): mapn—1(Un) — Z is an isomor-
phism for m > n.

We have seen that in the case of the SKYRME model, explicit represen-
tatives U(t,-): 3 — SUy, and U:S% — SUy,. for the generators of m3(SUn,.)
and 75(SUy,.) have physical significance. Thus it is worthwhile to look for such
explicit representatives. This is the task of the following article.

For 73(SUs) there is the so-called Hedgehog Ansatz [5] where the field
equations can be transformed into a differential equation for the radial part
of this ansatz. Unfortunately, this is not transferable to w5(SU,,), let alone
Ton—1(SUp,). In order to achieve such an extension we take the more mathe-
matical point of view and do not demand our representatives to obey certain
physical field equations. A first result is the following: having found a genera-
tor U of ma,—1(SU,,) one also has a generator joU of ma,_1(SU,;,) for m >n
through the inclusion

7:SU, — SU,,, U+~ <g ﬂn?—n) ;
because of U*wy, = (j o U)*wy . On the other hand one obtains a generator io U
of man—1(U,) (and thereby of ma,—1(U,,) for m > n) via the inclusion i: SU,, —
U,.

So the main problem is to find representatives for ma,_1(SU,). By
looking at the LIE algebra of U,, and the use of the exponential map we make
the following ansatz for a function of a (2n — 1)-dimensional disc D(Q{L)_I into
U,:let H denote the hermitian operator
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where zj 1= x9;_1 +ixg; for j=1,...,n—1. Let x = (z9,21,...,T2n—2) and
define U;: D(Qf)_l — U, by Ui(x) = exp(imH(x)). To obtain a representative of
a generator of ma,_1(U,), resp., of ma,_1(SU,) one has to construct a second

function U of a second disc D*"~! (northern and southern hemisphere) so that
(2)

U, U val is a continous function of D?*~1 U D71 =~ S52n=1 " well defined on the

1) (2)
equator 9D?"~! = 9D~ =~ §2n=2 Tp order to get a generator we must make
4 (1) )

sure that this “gluing process” is not trivial: if we were so careless as to choose Ur
so that U;UU; is symmetric about the equator, then we would obtain a candidate
for the zero element of 7y, _1(U,) instead of a generator. In this paper we shall
carry out this program for n =1,2,3.

In [3] LUNDELL has proven an iteration for the construction of rep-
resentatives for generators of mo,_1(SU,). This iteration even leads to func-
tions U: S?"~! — SU,, directly, one doesn’t have to look for fitting second func-
tions on the northern hemisperes. But unfortunately, as he himself admits, “the
actual formulae are too complicated for reasonable calculation”. They do not
inherit any symmetries between the matrix elements — like the ones built up by
(4) — that allow for the calculation of the integral in Theorem 1. So this iteration
is of more theoretical interest, whereas the representatives presented here could
be of practical use whenever the problem of finding functions for the northern
hemispheres is solved for n > 4.

Using CLIFFORD algebras LUNDELL and TOSA constructed representa-
tives for generators of the stabe homotopy groups of SO, SU and Sp [4].
In the case of SU their formalism leads to functions U:S?"*! — SUs,n, so
Ton—1(SU,),n > 3 isn’t covered either.

A Generator of 7 (Uy)

For the sake of illustration and completeness we begin by discussing the simplest
case. The isomorphism U; — S! yields a representative for the generator of
7m1(U1). We also obtain this representative by using our scheme in (4). In this
case we set:

H = (x9), Ui(x) = Uy(xg) = exp(imzy).

Here we have U;(—1) = U;(1) = —1. Therefore we can map D! onto S! by
identifying 1 and —1 (and so we define our second function from D(12) to St by
ﬁ;(x) = —1 = const ). The mapping U: S* — U; we obtain is a homeomorphism
and thus generates m(Uy). This is confirmed by our invoking Theorem 1: Because
of (Uy)*wy = Tr [exp(—imzg)imexp(inzg)] dxg = im dxg, integration gives
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41 . 1
0!
/ (L) — i dxg = —1.
-1 2 1!

Note. Representatives for the other elements of m1(U;) are obtained by expand-
ing the domain for U; to be n - D' = [-n,n]. Because of U;(—n) = Ui(n) =
(—1)", we can again identify n and —n and thereby transform n - D! into S?.

Integration leads to
/+" i\ o
— | —imdxg = —n.
_n \27) 1

If we keep D! = [—1,1] as domain, U,, = exp(inmx), resp., U_,, = exp(—inmxq)
is a representative for the n-th element of 1 (Uy).

A Generator of 73(SUs)

Here we have SU, = S3. Under this identification the identity on S® is again a
representative for the generator of m3(SUsz). We are led to it through our scheme
defined by (4) (remember zy = z1 + iz3):

Z1 —X0

H= ("@ A1 ) Ui (x) = Uy (20, 71, 72) = exp(inH (x)).

Evaluating the exponential map and using R? := 22 + 2?3 + 23, we obtain

Uy (x) COSWR—i—i%O sinTtR i% sinmR
1\ X) = o . . .
z% sinTtR cosmR — z%“ sinTR
Settin =cosTR, y; == LsinwR, y := ZsinwR, and y3 := XL sin7tR
0 ) R ) R ) R ’

we get Z?:o y]2- = 1 and realize the isomorphism y: SU(2) — S3 as follows:

(yo +iys  —yo + i

. ) — (Yo, Y1, Y2, e S3.
Y2+ Yo — Y3 ) (o, 91 2, o)

In particular, R =1 yields

and therefore, similarly to the previous case, we can transform our function
U,: D3 — SU, into a continous mapping U: S® — SU, by collapsing all points
x € D3 with R =1 into one single point oo, the “North Pole”.

For the evaluation of the integral in Theorem 1 we use the three inde-
pendent parameters xg,r1, ¢, defined by z; = r1e®1. We thus rather compute
*(Uy)*ws instead of U*ws, where 1:R x [0,1] x [—7, +7] — D3 is defined by
W(xg,7r1,01) = (20,71 COS 1,71 8in ¢71) . By cyclic permutation under the trace we
get

1/1*(U1)*w3 =-3- TI'{LQ;O [L¢1, Lrl]} dxo A d?“l N dqbl
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Next we compute the L,’s, using the abbrevations ¢ := cos7R,s :=
sinTmR:
2
TI'CL’O + TlSC Zl |:7'('Rg320 _ 'T()SC _|_ ZRz]
Lmo =1 2 2 2 ) (5)
T [ﬂxQ _ xgsc __ ZS—:| _Tmry _ T8¢
1| Rr2 RS 2 R2 R3
2 2
TS
iy z1 [mﬁg +’LS—I§]
Ly, =1 6
é1 — [ ags? e r2s? ) (6)
1 R2 _Zf R2
2 2
TTy _ ZgSC T Tgsc oS
I R® ~ RS 1 [RZ T = ’H;‘RZ] (7
1 i — | = xgsc wos 7'rx0 xosc
2wt g tide +
1
This yields
2 2.2 2 .
iy (TR [ oo
(L, Lr,] =
17T 2 _ 2 777"230 .’E282
R Z1 [%—xos +z7rs] —+ t

and Tr{Ly,[L¢,, L]} 4;21 sin?7 R, from which we deduce

12
Y (Up) w3 = — };rl sin®m R dxg A dry A déy,
12
resp., Urws = R;T sin?m R daxg A dxy A dxs.

By the transformation rule for integrals we obtain for the integral in theorem 1
N +1 V/1-a]

1 r ) 2r
I :/ Ry * :/dxo /drl/dgbl 27?2’,2 sin?7 R :/dxo /dﬁR—Ql sin?7R

S3 -1 0 0 0 0

(the integrand is even in zg ). We choose new variables R, 7}, observe dRAd(r3) =
2:‘% dxg A dry, and finally get

+1 R? 2R +1
Ilzde/d( 2y ST _ [ osin®rRdR = 1.

TN

This confirmes that U is a representative for the generator of m3(SUs).

0

Note. As for 71 (U;), we obtain representatives for all other elements of 7'('3( 2)
by expanding our domain to the ball of radius R = n. For x with || x||=R=n
we have

For this reason even a mapping from n - D? can be transformed into a continous
mapping from S3, resp., n-S3, into S, which yields
n
I, = /2sin27TR dR =n.
0
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If we want to keep our domain D3, we simply replace x by nx and obtain
U,: D> — SU, :

U, (x) CcoS mTR + Z 0 sinnm R R sinnm R
X g
" % sin er cosnmR — i% sinnm R

as representative for the n-th element of 73(SUsz). In order to get the inverse
elements we replace xg by —z¢, then L,, changes into —L,, and U*ws changes

into —U*ws. We obtain U_,,: D — SU, :

U (x) = <Coser— i%% sinnmR i% sinnmTR ) .

12 sinnm R cosnmR + ZFO sinnmTR

R

A Generator of 75(SUs)

There is no isomorphism between SUs and a sphere and for the first time
we will have to make use of the gluing process described in the introduction.
Two mappings Ul:D(51) — SUs and Ul:D(52) — SU;3 that coincide on the
boundaries 8D(51) = OD?Q) = 54, are transformed into a well defined continous
function U = U; UU;: 85 — SUs. In analogy with (4) we have

To 21 0
_ 2 = 21 +ixy = r1e'®
H=|ZzZ1 —x9 2 |, { ! . 2 1 } E x —xo—l—r = R?,

0 = 0 22—x3+zx4—r26
and a mapping Uj: D5 — Us defined by Uj(x) = exp(itH)(x).

det U] = exp(ir Tr H) = exp(imxg),
so we have Uj(D®°) € SUs. Using the diagonalisation of H we compute

2 2
r . r . . . .
F(c+igs) + Femro i s A2 (c+ifes — ')
/ - Z1 . .
Uj(x) = i%s c—i%s i2s ,
— 2 2
; . T . T
A2 (c+i%s — o) %25 Z(c+i%s) + felmo

where we again used ¢ = cosmR and s = sinmR for convenience. In order to
obtain Uy: D — SUs, we multiply every matrix Uj(x) by a matrix T(x) of de-
terminant det T'(x) = exp(—imxg), preserving a convenient degree of symmetry
between its elements. Thus we choose

e~ () 0
(8)  Ui(x)=T(x) -Uj(x) with  T(x) = 0 1 0
0 0 e i2%

Using 7t :=c =+ 1% s for further convenience we obtain

+,—15To +i5 o - 21 —1Zxg 2122 +_,—1Zxo +iZ g
T27T e + = e iZse"z A2 (preTt20 — et %0)
Ui(x) = iZLs o i3
R J— 2 2
1z ;] . —7 T T . T ]
Z;gz (7r+e 15 T0 e+12$0) ZZRZSG 15 T0 7,%7T+8 150 T§6+12$0
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as the function on the southern hemisphere of S°. On the equator (R = 1) it
turns out to be

2 . 2 . . .
_%6—1%$0 + T_%e—l—z%w() 0 _z1§2 (e-i-z%w() + e—zgxo)
r T T
Ui(x) = 0 ~1 0
N 2 2
P iz ry; 4L r | T
27152(6_“2%0 +e 1231:0) 0 _T_%e 12x0+r_ée+12m0

Obviously this is not constant like in the previous cases, so it is impossible to
contract the boundary into one single point, but we have to look for a nontrivial
mapping U; on the northern hemisphere, that coincides with U; on the equator.
There are two possibilities:

2

2
_ Ty — +ifxo _ "1 ,—iTx0 122 oo tiTTo 2122 (—,tiTx0 _ ,—i5 X0
Bmettz Se 'z +iZ2set'? 12 (mmett2 e 'z7o)

Up(x)= FiZs L +iZls

Z}ﬂ@(w_eﬂgmo — eTi5®0) :Fi%seH%mO —;—zw_e+i§$0—:_§e—i%$0
To secure the property of being unitary we have to choose either the upper or
the lower signs. Once the choice has been made, it propagates to all products,
its derivations and inverses, and so — by forming the trace at the end of the
computation of (U;)*ws — does not influence the value of this pullback. In the
following we choose the upper signs.

Again we will use polar coordinates for the evaluation of our 5-form:
let K = R x RS x Rf x [~m,+7] x [-7,+7] and define ¢: K — R® by
(o, 71,72, 01, O2) = (T, 71 COS P1, 71 SIN P1, T3 COS g, T2 SiN P2 ), TESP., Testrict K
to ¥ ~1(D?). By cyclic permutation under the trace we then obtain

(9) 'lp*<U1)*W5 = 5 . TI'{L . on} d.’]?() AN d’f’l A\ d’T’Q A\ d(bl A\ d¢2
with the hermitian matrix

L= +[L¢17L¢2HLT17L7’2] - [L¢17LT1][L¢27 LTz] + [L¢17L7“2][L¢27 LT1]

(10)

+[L7‘17L7‘2][L¢17L¢2] - [L¢27L7‘2][L¢17L7‘1] + [L¢27L7‘1][L¢17L7‘2]
(LT = L is a consequence of [L,,L,]" = —[L,,L,], which itself follows from
LL =—L,, cf. (5) to (7)).

The computation of ¢*(U;)*ws is straightforward but long and tedious.
We have collected the main steps in the appendix. We end up with (14):

riro

R3

. . Lo .
—m sin?7R(sin7R cosmrg — = cosmR sinmrg)

R

R? in’
+ 2 sinmR(cosmrg — costR) + (2— +2) SlanR
r

77/J* (Ul )*w5 =307

(1—cosmR cosmr)

R2
—( T—2+1)% sin® 7R sinmro | dzo Adry Adra Adgy Ades.

For the mapping on the northern hemisphere, it turns out that — cf. (15) —

(U1)*ws = (U1)*ws = —(U1)*ws.

Fortunately, the negative sign compensates the factor (—1), that arises as a
consequence of the opposite orientation of the northern hemisphere. So both
integrals yield the same value:
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l T =
I = U —— (W)
! / g0 (U ws / 15073 (1)
S5, “south” S5, “north”
1 1
= 2 U = 2 - * U * .
/ ~ 15073 (U ws / 180730 (U ws
S5, “south” Y=1(D?5)

Because ¢*(Up)*ws is even in z(, we integrate twice over positive values of
7o, the integration over ¢; and ¢ just yields the factor 472. Using new vari-
ables R,z and r? and observing dR A dzg A dri = 2522dxg A dry A\ dra, we
obtain

2

1 —
/%/ / { 7 sin®7R (sinmR cosmry — x_B()) cosmR sinmxg)
0 0

R2
+ 27 sinmR(cosmry — cosmR) — (2— +1)— 70 sindaR sinmr

R2

R? sin’nR
+ (25 +2)

(1 — cosmR cosmo)] dr?

2
=y

2

=)

R
Zo
R?—13) sin*7R(sin7R cosmrg — — cosnR sinmrg)
R
0

|

+ 2m(R?—23) sinTR(cosmrg — cosmR) — (3R*—x3) 70 sindnR sinmrg

R2
.2
R
+ (4R*—213) SmRW (1 — cosnR cosmo)} dxg.
Partial integration yields:
! 2 1.,
I, = / [—1—2 sin’7R — gwR sinmR cosmRR — 3 sin“mR
0
sinmR cosmR  sin’7R sin®7R cosmR sin*7R
-2 4 -3 dR
TR + T2 R? + TSR3 Tt R4 }
1 ) . 4 R=1
1 sin“mtR  sin“nR
.2 .2
:/0 2sin“mR dR + {—gRsm R — R + Y } .

=14+0=1.

This finally proves that our mapping constructed from U; and ﬁ; represents the
generator of 75(SUs).

Representatives for further Elements of 75(SUs)

Having found a representative U for the generator [U] of 75(SUs), we could use
standard techniques to construct representatives for the powers [U]™, notably,
since SUs is a group. But neither of these is practical for an explicit numerical
representation of a V,, with [V,,] = [U]™. Fortunately, there is a simple technique
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due to the fact that we can expand the domains for U; and a They not
only can be glued together at R = 1, but as well at R = 2n + 1, yet not at
R =2n (n € Ny).

2n+1
Iopny1 = / 2sin’7R dR = 2n + 1,
0

we thus easily obtain further representatives for all odd products of [U]. For

even products U; has to be combined with another function a: 2n-D% — SU;.
Choosing

2 2
r _ | T ry 4L . | T =
T_%ﬂ. e+7/2$0_|_r_%e 15 To Z%SQ_HZQCO 271052(71_ e—|—z To _g zzxo)
Ui(x)= 2 + z1
Ui(x)= i%2s ™ ] % s ]
120 _ | T iz T | T T _ s TS L
_ ;22(7.(. 8—|—12m0_8 zzxo) zﬁlseﬂzxo r_%ﬂ- 6+7’2x0+T—%6 15 To

for points on the northern hemisphere, we recognize that /U-I can be glued
together with Uy at R = 2n, since

N :_ze—i%xo+:_§e+i%mo 0 _%(G—H%xo_e—i%xo)
Ui(x) = 0 1 0 = Uy (x)

__ 2
2122 (,+iZx —1Zx Ty —iZzx ™ +iZx
T—Q(B 240 —e7"2 0) 0 T—Qe 2 0+r_28 240

for all points x with ||x| = R = 2n. Because of /U\l(x =0)=13 =Ui(x =0),
both North Pole and South Pole of S° are mapped onto the base point of SUs.
Using the fact that the L, are invariant under left multiplications, we have

-1 0 O
Ui(x)=1 0 1 0 | -Ui(x) = L,u(x)=L,(x).
0 0 -1

This yields (/U\l)*W5 = (Uy)*ws and thus:

Iy, = U U
2 / 4807 Tioms (V1) + / 4807r3( 0w
2n-S5, “south” 2n-S5, “north”
= 2 / 4807T3(U1) wy = /0 2sin*7tR dR = 2n.
2n-S5 “south”

In order to obtain representatives for the corresponding inverse elements
of m5(SUs3) we replace ) by —xg, or define Uy to be the mapping of the northern
hemisphere and U1, resp., U1 to be the mapping of the southern hemisphere of
S5. If we replace x by 2nx, resp., by (2n + 1)x, we can keep D® instead of
2n - D resp., (2n+ 1) - D as domain.

Representatives for Elements of 75(Us)

As already mentioned in the introduction, U: S® — SUs constructed above also
is a representative for the generator of m5(Us) via the inclusion i: SUs — Us.
Alternatively, we can also use the function Uj: D° — Us that we had obtained
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by (4) directly, to build up representatives for all the elements of m5(Us), as a
short computation will show.

For the mappings on the northern hemisphere we define:

2 . 2 . .
2 . — iTXg 1 22 o piExo 2122 (. — 4T X0
—271"e L j22ge2 2(r~e - 1)
/V/( ) = " & iZxo " + o iZxg
Ui(x) = —i%se s 22Rse e resp.,
3T Lm re r
z122 (7T em‘rxo _ 1) —Z%SQZZ%O _ 17T em‘rxo _ r%
2
s . y IC
T2,n. e’Lﬂ'CBQ _|_ T% ZZ]% 8612%0 Z,,anQ( T emT.’Eo + 1)
Uj(x) = 122 5tz %0 Tt —iZlsela® ;
1 9
Z1Z ; iTT z iZx 7 Rzﬂ':c
122 (_ —— 0 __ g Z1 2 %0 - 0 _2
12 (—m"e +1) ik se' ST e + 3

these can be glued together with U at R =2n + 1, resp., R = 2n, because

__2 + 7"3 elmTo 0 Z1§2 (1 + eiﬂ:c())
Ui(x) = 0 -1 o0 = Uj(x)
%(1+€iﬂxo) 0 _77:_% + %eiﬂ$0

for all x with ||x||=R=2n+1 and
- o im0
Uix)=| 0 1, 0 = Ui(x)
%(1 o eiﬂ':co) 0 77:_% + %eiﬂxo
for all x with ||x|| = 2n. Recalling T'(x) from (8) we get
Uj(x) =T~ (x)-Us(x), Ul(x)="Ui(x)-T"}(x), U{(x)="0i(x)-T""(x).
T(x) only depends on zy, so the matrices that occur in our calculation of

(U1)*ws (conf. (9)), only change in the following manner (we omit the argu-
ment x for convenience):

LT
Liyy = Lag + i3 U EUL,
I _T-Z:O-T—lﬂ'gE,
i7 _T-Z;.T—lng,

L'=L, L'=T7-L-T' L'=T-L-T7",

10
where we have defined £ := [ 0 0 . We easily deduce
0 0

_ o O

T{L - L, }:Tr{L.on}Jrﬂ Tr{L - U/EU,} and
Te{L' - L' o= Te{L - L’ o =—Tr{L- on}—l—z Tr{L - E}.

For the total integral we get I/ = I,, + A with

2,2 1
A= / / dzxg / dr? 832 T{L - (U{EU, — E)},
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and for M := U{rEUl — /. we compute

7’%52 52 £ SC 52
Bz 21(xoR—;2—|—Z§) _ZlfQW
M = 71({[‘0%—2%) TRSZ ZQ(IL‘()%—’L'%>
s? = s2 - SC 7"332
—Z1%22 77 Z2(To gz + 1% ) —RZ
Using (11) to (13) from the appendix we obtain
2 9 L2 9 Lo
T{L - M}——S+2§( {72} 3 Im{ 2 })
= T]l%—? [—24rs® c(l—ccw—x—}gssw) + 247ws c(l—ccw—x—}gssw)] = 0.
This yields A =0, and thus — as expected —
I =n.

This result once again confirms that our ansatz (4) directly leads to
representatives for generators of ma,_1(SU,), resp., ma,—1(Uy), depending on n
being even or odd — at least for the lower dimensions examinated here.

Appendix

In order to compute *(U;)*ws we first calculate the antihermitian L,’s.
Throughout all computations we will use the following abbrevations for con-
venience and clarity:

c=cosTR, s =sinTR,
. Lo . _ Lo .
7T =cosTR + z§ sinTR, m =cosTR — zE sinTR,
Cp = COSTX, Sy = sinmzg,
et = exp(+imzg), e~ = exp(—imxg).

Remember K = R x R x RY x [~7, 47| x [~7,+n] as domain for
the polar coordinate function ¢ and let v := (xg rl,rg,¢1,¢2) € K. Define
the linear involution A: K — K by w = A(v) = (xg,72,71, —¢2,—¢1). S0
Ui(¢p(w)) is the matrix we obtain from Uj(i)(v)) by replacing (z1,22) by
(z2,71), resp., (r1,®1) by (r2, —¢2), and vice versa.

Let AT denote the matrix A “rotated by 180°”, so that A;; becomes
Asz, Ao becomes Asy, Az becomes Asp, and so on. Obviously this operation
commutes with the hermitian conjugation and the derivation of A. We have
(AB)P = AP BP and Tr{AF} = Tr{A}. Because of U ot = UjorpoA we obtain
a0 (UF o) = 535 (UrogoA) = 53 (Urow)o A, 52 (Uf o) = - (Urogpod) =
8U1(Ulozp)oAand 22 (UF oz/;) 5= (UrotpoA) = aUl(Uloz/J)oA We thus
have an additional symmetry between the elements of the antihermitian L,’s
(here L, = (U; olp)T(%(Ul o1): K — Ms(C) for p=xzg,71,72,01,02):

Ly (v) = Ly (W),

L¢1(V) 5, (W), Lo, (v) = —Lg, (w),
Ly, (v) = +Ly, (W),  Liy(v) = +Ly, (w),
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which makes life a bit easier. We obtain

i
Lo (v) :
0 2R?
2
Rz—‘,—r%(iﬂg 21 [—xo(zs‘: 1—02)+i(2%—Rsc)] 2122(2“ 1—02)
2 2
Z[—wo(%—l—cQ)—i(%—Rsc)} —2R2—7’2(%—1—C2) Zz[—wo(zsc 1—02)—1'(2L—Rsc)] ,
- _ 2
Z1Z2(%—1—02) zg[—wo isl‘é = —Rsc)] R 412 2S‘:—l c?)
L¢1 (V> - z-
1252 2,2 r2 r2 _ -
Y e B
- 2 -2 1242 2
—iz1%<r—§ﬂ++r—ge+> + }%2 —ZZQE—(ﬂ' e+) 5
__ 2
FEEZ(rin T 4rieT)(nT—eT)  timgE(nT—eT) siay 2
L¢2 (V) =
f§++2 P P 2122 (2 4+ 2 Y (o
et Cimg B ) —AR2(Ertrlet)(n—e)
-2 1242 -2 -2
= ; +
E E v (Feeder) |
zZ122 0.2 — | 2 —\(_+_ -+ P +_+2
——g= (g +4rie” ) (v —e)  —izmf| BT+ Se —e™|
L. (v) = ‘iry-
2 I g 2t 2
:vO’F T + 3(7‘177 +rie ) xq ry,wl “et—rZnte
s %)"’17721(7" er—mte) Zl[gz 7)1 272 R } 2122 5 (3~ 35) irZd }
_ s(r27r++r26+) _
2 [(Rz L) — —30 (T — %) 22 (E——HS("—;) :
R 3 3
rZr 7r et 2pte— _ _ 9&07‘ _.
2172 2(32 Rs) ”?Tf } Z2|:ﬁ )""S(ﬂ RE )} ( )_Z 4(7T ef—nte)
L,,(v) irg -
2 2 2t
9007“ T — — ( — ) x 7"—7" e €
e L R
_ + _ et s(rg atpr2et)
g {<———>+¥} —n(E-) o [@——HW
r2p2pet g 2rte s(r 2+ 'r257) zoT2 r2
1 2 2 1 073 i1 +
TR g ] A | S G ik et

For the antihermitian [L,, L, ] we have the following additional symmetries:

[L¢17L¢2](V> = _[L¢17L¢2]P(W>7 [LTNL?“Q](V)
[L¢17L7”1](V) = _[Lfiﬁz?LTz]P(W)? [L¢27LT1](V)
[L¢17LT2]<V) = _[L¢27LT1]P<W)7 [L¢27LT2]<V)

_[LT'17 LTQ]P(W>7
[L¢17 7“2] (
[L¢717 7’1] (W)

w),

so that [Lg,,Ly,](v) and [Lg,, Ly,](v) do not need to be computed. For the
others we obtain



R 2 (r7—e™) 2122 Rz
. 2 ) -2
(Lo, Lop](v) = | —imrg Bat—et) 2 izg § % (vt —eT)
2 — s _ _
—Z122 25 % Q%T—%(ﬂ' —e7) 0
172
[Lrys Le, (V)
ryy e
1 2 T2R2
—7TRS(7€6++7‘§€7)
mRs(et—e™) wr?(ce” —1) +iraors(ce” —1)
+imzo(ceT+ce™ —2) % —‘,—mg%(e_—c) fjj% —imzori(cet —1)
1 172
+i$0%(26—6+—6_) +izgs? +ix0rf%(e+—c)
—iwmﬁ%(e_—c)
mr?(cet—1) mr?(cet —1)
121 s 12
7"_21 +x3%(6+—c) 0 — 7"22 2%(e+—c)
1 2
—ixos2 —ix082
mRs(rie” +r3e™)
+irzors(cet —1) mr2(ce™ —1) —mRs(eT—e™)
% —imxor(ce” —1) ’:—22 —l—zc(z)%(e*—c) —imxo(ceT+ce™ —2)
172 2
+i:c0rf%(e_—c) +izgs? —ixO%(Qc—e"'—e_)
—ixm"g%(e"'—c)
[L¢>17L7’1](V) = T
( —
2i7rzorfr§csm 21'777"4113«: 2717“%32 rgs ( _ ) _TI%S (’I’%€+J,-rr§e )(WRC_S)\
rd R2 /2R3 2 R2 2R3 ¢ 9 ims 2 +_ .2, —
ZiTrT?TgSCx Zixor%rgssx " 7;7-27‘ +T4R(T16 ) 726 )
- AR - A R3 2R2 (ce —1) Tz 217r7"1 sc
2002 2 Z1 2124 +22_23
2irs(rs—re) 2ix 'r2s R R
202 1l |at_et2 0 2
G [T —e™| +— 2~ (rRc—s) 4ir? L2
2.2 2 42 5 412 1 + |7" —e™|
2irsrss 24ir’s .2 R
+ 12 + 1 __2is + (e _7-(-7) (r —r2)32
r4 g2 r2 g4 R2 7"4R _ xpsc 0 1 2
\ 2R3 rd p4
2mr2 52 7‘25 271252 7"23 3\
- T21132 - 2R3 (et —0) - Tzllzz 2R3 (et —c)
T, T
+ 2_(cet—1 — L(cet—1
& g lee 7l 22 [r} (TRe—s)+R%s]  z2 i )
2ixqgrys 2ixQry s
+2—R4(7TRC—S) +2—}z4(ﬂ'RC—S)
2'r25 2'r25
S22 (et 2% (et —nt)
.
Z'}O%g (7”16 —|-‘l“2e+)(7rRC—S) 271—7%32 7‘25 ( ) 2i7rz0r%rgcsm 21717"%7"%3«:
ixs (p2= _p2eT 2Rr2 2R3 € —9 - +AR2 T T 2R3
+ (7"1 Tg ) " 7_”“% _ 21’717‘%7‘%3(;3; 2719:07“%7"3351
m . 7”5'0 _21777‘136 = —|—2—Rz(C€ —1) AR AR3
1 2 R2 2 r2R3 2”607- s 21‘7"%(7"5—7“%) + 42
4isZ +4 |7 +_ +|2 + 2R4 (mRc—s) + 6 |7 —e™|
Rr4 2 _ _ .9 9 9 419 2i'r%'r§sz
4 mose izd(r?—r2)s? —|—T4R e —m) —2irirys i RO+ —3 24—
\ 2R3 A R4 Vs
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[L¢27 L7“1](V)

T -

We further have

GROSS

Ly Lool[Lrys Ly ](v) = ([Lgys Lo][Lrys L,

[Lrys Loy ][Lgy, Lo, ] (V) = ([Lrys L] [Lgy s L,

(L, L) [Loy, Ly ] (V) ([Lys Ly [ Ly s Ly

[Ls, Ly |[Lgy, L (V) ([Lgs Ly )[Lgy s Ly

(Lo, Liy][Lgys Ly ](v) = ([Lgos Ly )[Ley, Ly

[Lys Lry)[Lgys L J(v) = ([Lgys Lro)[Lg,, Ly
from which we deduce for L defined by (10)

L(v)=L"(

W), L+ Loy(v) = (L L) (W

)and Tr{L - L, }(v) =

+
2i7rz0'r%'rgcsz 21'777‘%7‘%34: 27"7"532 420 7“23 ( ) 4R3 (’I” € +7”2€ )(WRC_S)
——5%5 e —d

r4R2 r2R3 2R22 2R3 ims (2ot _pZeT)
2i7r7‘2'r‘25cm 21'9007"27“23395 T R )
— 1 2 — 12 (ce —1) 2imrssc
4R AR3 ZRZ 2< + 7;1'02 _ — 13
i z zZ12
2z'r2(r g2 1 _219607‘ ( R ) 1 5 R R
— |7'r | 2Rt mRc—s ir2s -2
2..2.2 2.2.2 —
+21r17“2s _217"17‘25 "o ("" "o )s (6_—71'_) 5 9 9
r4 R2 r2 R4 r?r‘lR zgsc +2iac0r23 )
. ~ 2R3 4 R4
<R r* R
2.2 2
2rry _ "2 (€+—C) 27rr§s r%s +
2R2 2R3 2 R2 753 (e” —c)
2 r“R r“R
T
2 + T
cem —1 1 +
) trEmel ) o iz (e —1)
z 2 —2is [r2 (7 Re—s)] z reR
1 2iz0r s R4l 2 2 2izgr2s
- 2R4 (mRc—s) - 2ORZ (mrRc—s)
2 r
(7“ —r2)s 2 2
2 + + (r£43r3)s
_27( —7 ) _ 2 4R2 (6+ 7T+)
T r
( + o) )
4R3 (Tle +7”2€ )(ﬂ-RC S) 2717“332 TQS ( ) 27.7rz0’r%’rgcsz 21717"33«:
i ot —25— e — - =) 2R3
—|—T4R(7“1 —r2e™) r2 R2 2R3 R R
§ 2imr2 ] _ 2imriryscy 2izgriryssy
_ mzg T 7.7r'r256 . +2—R2(C€ —1) AR r4R3
717 2R2 2R3 2 24w 7‘25 2i'r2('rl2 r2)
2.2 0 2271 t_et|2
irss TP 27
2 +_ 42 = 4 (wRc—s) + 2 |7 |
+ r2r2R2 | R 2.2 .32 2.2 2 2.2
('r +3T )s , _ _ 2ir{rys 2iryrys 2irys
\ +Iosc+2img'r‘§sz ) e ) By oy
2R3 4 R4

Since diL‘O A d7’1 A d?”g VAN d¢1 A d¢2 = d.’]?o N d7’2 N d?”l VAN d(—¢2) A d(—¢1), we

have ¢*(Ur)*ws(v) = ¢*(Ur)*ws(w

) by (9). Even if we make good use of these

symmetries there is still some work left over to compute L. We finally obtain

Tr{L - L,, }(w

172
L(V) R3 ’
127252
5 (ﬂs%—chsx+R233x) (7TSC‘E—’7T csx—|—stsx)
Lr(l—ce—ss,)-
+85(2-3-3) [r(c—c;) z19 " N 212 +24 [r(c—cx)
((—mxoctirRs+32 s) 2

+—T§R(1—6%)—f—88 8]

123 (7TSQE—’/T csm—i— ssm)
245 [r(e—c) —{

1'28
+ = (1—ce— 2 ss;)]

Z1z7

—1252(7TSQE—’/’I' csm—i— 9 s8y)
_ &(1—0%—96—03396)-
Z1 —8s [m(c— QE)
(—mzoc—imRs+22 s) 225
(1 cox)— 5% 5]

%(1—0%—%8%)-
(—mzoctirRs+22 s)

+m(1—c%_%}55z)]

&(1—0%—96—03396)
(—mxoc—in Rs+22 s)

{

12'r2s2
T% (TI'SCL—’/T csm—i— ssm)
—|—8s(2—3r—§) [m(c—cs)

1(2)3 1 zg 2
+ s (1—ce)— 35" ]

).
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Using

TI‘{L Lwo} == Z Lz] ggo Z Lzz wo 11 + QZ Z Im{L’LJ xo ]1}
1<J

we have (omitting the argument v )

L) =i - T (2 g )

T gm(l+c¢ ) sc
iyl = 2lo L) + ’(TRQ )8
with S = [—T%Lu + 7% Lag — T§L33 17“2 Re{—}
Z1R2
L
+2$0<T%Re{£}+7"gRe{Z— )} (11)
21
We obtain
L
TlI { 12} _ 21 {ﬁ :7}5—743212 RS (1 — CCy — %SS$)7 (12)
L
r? Re{—z1 } 473 Re {—23 :_7"}127;2 122 Os(% —mc)(1 — cep — x—}gssx),
xXr i)

L1y — 2L + L33 :%{3682 [W(scm — Eocsx) + ﬁssm}
755 (1 —ccy) — w—gSQSm] },
r

+ 245 [71’(0 —¢z) + 25

2.2
’I“17“2 7“17“2{ _94 [ _ @ _ i) :|
s m(sey I CSy) T2

—2rir3 Re{ =73
- 485[ (c—cz)+ %(1 — CCy — %st)] }7
2
—r2 Ly +7?Loo—73 L33 —w 2{ fir ) [W(scx — x—}gcsx) + %ssx}
A 22
1"’ 0S o o
— 24s " [ (c— )+—R( ccx)—r—zs Sa;”,
thus: S=- %—222471'3280(1 —cCy — %ssx) (13)
r17r2 Zo
and Tr{L-L,,} _z?{mw%(%—c) — 67%5%(sc, — Ecsx)
2 R2 2
i s sx+67r(2—+2)R(1—ccx)}.

- 67r(2— +1) 72

It is finally done. For the desired 5-form on the southern hemisphere of the S°

we end up with

Y (Ur)*w 30@%1}1%—7"32 [ 7 sin® 7R (sinmR cosmry — x_}g cosTR sinmxg )

R* _ sin’mR
+ 27 sinmR(cosmrg —cosmRl) + (2— +2) SR (1—cosmR cosmr)
r
dxoNdri Adra ANdp1 Adgs. (14)

R? xo
(2— +1) 2 sin®mR sinmr
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After this preliminary work it is quite easy now to compute (U;)*ws on
the northern hemisphere. We rewrite U; as

U, =FU, F* = (F'TF)",

-1 0 O
where we have defined F':= | 0 1 0 |. This yields
0 0 1

=~ ——— P
—~ _ P
- (e ()

because complex conjugation and differentiation along real variables commute.
We thus have

f’; = (FL—L'F)P7
Te{L Ly} = To{(FL-L,,F)"} = Tt{FL - L, F}
=Tr{L-L,,} =Tr{L-L,,}

and immediately obtain

(15) (U1)*ws = (U1)*ws = —(U1)*ws.
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