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This is an abridged diary of some of the ‘mathematical adventures’ we encoun-
tered on our way towards a proof of the Divisibility Conjecture, formulated below.

1. Divisibility, Dispersion, and Porcupine Varieties

In this section we give a brief account of how Porcupine Varieties enter the stage
naturally in connection with the Divisibility Problem. Let us start with some
basic concepts and the appropriate notation from [5].

Let G be a connected Lie group, and let S be a closed subsemigroup
containing the identity. We say that S is divisible if each of its elements has
roots in S of arbitrary order, i.e.,

(∀s ∈ S, n ∈ N)(∃sn ∈ S) (sn)n = s.

We say that S is exponential if every point of S lies on a one-parameter semigroup
lying entirely in S . One sees immediately that an exponential semigroup is
divisible, and it is a principal result of [10] that the converse holds.

The property that a semigroup be divisible is quite restrictive, and it
reasonable to expect that one could achieve a classification of such semigroups.
As a beginning point one would like to pull the problem back to the Lie algebra
level. The Lie theory of semigroups provides the machinery for such a transfer.

Indeed, let g be the Lie algebra of a connected Lie group G containing
a closed subsemigroup S and let exp: g → G denote the exponential function.
Recall first that we denote the set of all subtangent vectors at 0 of a subset A of
g with L(A); for B ⊆ G we let L(B) = L(exp−1 B). Then the tangent wedge
W = L(S) of S satisfies W = {x ∈ g : expR+·x ⊆ S} ; it is a closed wedge in
g , invariant under the inner automorphisms induced by the elements of its edge
H(W ) = W ∩−W ; that is, W = eadH(W )W . Conversely, a wedge W satisfying
W = eadH(W )W is called a Lie wedge. The closed subsemigroup S is said to
be infinitesimally generated if it coincides with the smallest closed subsemigroup
containing the exponential image of its Lie wedge W , i.e., if S = 〈expW 〉 ; it
is said to be weakly exponential if S = expW , and one sees at once that S is
exponential in the sense of the definition above if and only if S = expW .
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Thus we want to study and characterize those Lie wedges W for which
expW is a (divisible!) semigroup. Unfortunately, this notion involves G and the
exponential mapping; it does not translate to an inherent proberty of W and
g alone. But a modified notion, that of local divisibility does carry over. The
semigroup S is said to be locally divisible if there exists an identity neighborhood
U such that every element of U has roots of all orders which lie in U ∩ S
(not merely in S ). We say that a Lie wedge W is a Lie semialgebra if there
is a Campbell-Hausdorff 0-neighborhood B in g such that B ∩ W is a local
semigroup. Using the local bijectivity of exp one sees readily that the Lie wedge
W of a closed subsemigroup S is a semialgebra if and only if S is locally divisible.
(For more details we refer to [5] and the papers [10], [12], [13].)

Thanks to the work of Eggert [4], a complete classification of Lie
semialgebras is now available. In principle, therefore, we know what a locally
divisible subsemigroup of a Lie group looks like, and we have a fairly good
understanding of how to construct them (at least locally) from scratch.

While it is easy to see that locally divisible closed subsemigroups need
not be divisible (there are, e.g., counterexamples in the universal covering group
of Sl(2,R)), there was much evidence to support the following conjecture:

The Divisibility Conjecture. (First version) Every closed divisible subsemi-
group of a Lie group is locally divisible.

In the light of our earlier remarks this may be rephrased:

The Divisibility Conjecture. (Second version) The Lie wedge of any divis-
ible closed subsemigroup of Lie group is a Lie semialgebra.

A verification of this conjecture is crucial to our program since it allows
us to invoke Eggert’s classification of Lie semialgebras.

There is indeed now a proof of this conjecture. However, it has turned
out to be amazingly hard and long. The efforts to establish such a proof were
very fruitful and rewarding, since they led to a variety of problems which are
rather deep and of independent interest. We report here on some of these.

The main difficulty in the proof of the Divisibility Conjecture lies in
controlling points near the origin. We know [10] that each point s in a divisible
closed semigroup S is the exponential image s = expw of some vector w in its
tangent wedge W . But in order to show that S is locally divisible one has to find
such a vector w ∈W in the vicinity of 0 whenever s lies in the vicinity of 1 . We
have to exclude the possibility that in every sufficiently small 1 -neighborhood U
there might lurk pockets of points s which can be reached only via ‘long detours’,
i.e., by one-parameter subsemigroups of S which leave and re-enter U at least
once before arriving at s . The following definition is taken from [5], p.461.

Definition 1.1. Let W be a wedge in the Lie algebra g of a Lie group G
(not necessarily a Lie wedge). Then W is said to disperse in G if there exists
a Campbell Hausdorff neighborhood B in g such that a point p ∈ expB lies in
expW if and only if it lies in exp(B ∩W ). In other words, W disperses in G if
the closure of the set exp−1(expW ) \W does not contain 0, or equivalently, if

L(exp−1(expW ) \W ) = Ø.
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Thus if W disperses in G then every long detour one-parameter sub-
semigroup steering to a point in some vicinity of 1 has a shortcut not leaving
this vicinity.

It can be shown that the Lie wedge W of a weakly exponential subsemi-
group S is a semialgebra if and only if it disperses in G .

The above discussion has given some indication why we are interested
in the set L(exp−1(expW ) \ W ). Our next proposition relates the non-zero
vectors in L(exp−1(expW ) \W ) with non-zero vectors in the closure of the set
compG(g) = {k ∈ g | exp k lies in a compact subgroup of G} .

Proposition 1.2. ([13]) Let W be the tangent wedge of a closed subsemigroup
S of G . Then the following assertions hold:

(i) L(exp−1(expW ) \W ) lies in the boundary ∂W of W in g .

(ii) W disperses in G if and only if L(exp−1(expW ) \W ) = Ø .

(iii) If W has interior points and L(exp−1(expW ) \W ) is nowhere dense in
the boundary ∂W then W disperses in G , and thus W is a semialgebra
whenever S is divisible.

(iv) If x is a non-zero subtangent vector of exp−1(expW ) \W then there
exists a non-zero vector y ∈ H(W ) ∩ compG(g) with [x, y] = 0 .

(Note that 0 /∈ exp−1(expW )\W , so L(exp−1(expW )\W ) 6= Ø always
implies that L(exp−1(expW ) \W ) contains a non-zero vector.)

For any y ∈ g let us write z(y, g) for the centralizer of y in g and
abbreviate H(W )∩ compG(g) by e . Using this notation we can write the above
assertion (iv) in the form

L(exp−1(expW ) \W ) \ {0} ⊆ {x ∈ g | (∃y ∈ e) y 6= 0, [x, y] = 0}.

If we let A denote the set of all abelian subalgebras of g then the union at the
right of this expression is

Z(e): =
⋃
{z(y, g) | 0 6= y ∈ e} =

⋃
{a | a ∈ A and a ∩ e 6= {0}}.

This is an example of a general construction:

The Porcupine Construction: Let e be a fixed subset of a Lie algebra g ,
and A a class of subalgebras of g . Then form the union

U: =
⋃
{a ∈ A | a ∩ e 6⊆ {0}}

of all those elements in the class A which hit the set e non-trivially.

(The mental picture behind this concept is that of a porcupine shooting
its quills at the target e ; for a more detailed description of the situation we refer
to the section on the hystrix in [15], p.78.)

No reasonable result can be expected unless e is at least a vector space,
better still a subalgebra. Hence for the purposes of attacking the Divisibility
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Conjecture we have to have the information that H(W ) ∩ compG(g) is a sub-
algebra. This is the case if G has a unique maximal compact subgroup. We
therefore formulate

The Restricted Divisibility Conjecture. If the Lie wedge of a divisible
closed subsemigroup of a Lie group with a unique maximal compact subgroup has
inner points in g then it is a Lie semialgebra.

A confirmation of the Restricted Divisibility Conjecture will by no means
finish a proof of the Divisibility Conjecture, but it provides a very important step
in the latter and is an instructive special case. We shall deal here with a proof
of the Restricted Divisibility Conjecture and the independent information on Lie
algebras which had to be accumulated to settle it. The assertions (iii) and (iv) of
Proposition 1.2 show that the Lie wedge W of a weakly exponential subsemigroup
S is a semialgebra whenever W has interior points and Z(H(W ) ∩ compG(g))
is nowhere dense in the boundary ∂W of W . This will be the case, as we shall
see, if Z(e) is closed and sufficiently ‘smooth’, say closed in the Zariski topology,
and small enough, say, has a codimension in g exceeding 1. Thus we are faced
with

Problem 1: Find conditions under which the following conditions are satisfied:

(i) Z(e) is Zariski closed in g ,

(ii) dim Z(e) ≤ dim g− 2.

With this goal in mind let us record first some preliminary observations. In con-
nection with divisibility we are primarily interested in the porcupine construction
when applied to e = H(W )∩ compG(g) and the class A of abelian subalgebras.
It is helpful and instructive to consider the class C of all Cartan subalgebras of
g as well.

More Porcupines. Set

H(e) =
⋃{

h | h ∈ C and h ∩ e 6= {0}
}

;

N(e) = {x ∈ g | (∃y ∈ e \ {0}, n ∈ N) : (adx)n(y) = 0}
= {x ∈ g | g0(x) ∩ e 6= {0}

}
.

Since Cartan subalgebras are much easier to handle than centralizers of single
elements, it is natural to search for conditions under which H(e) and Z(e)
coincide, or at least are as intimately related as possible. The set N(e) is not
derived directly from a porcupine construction, but contains both H(e) and Z(e);
in some cases of interest it coincides with the closure of H(e).

Let us write reg g for the set of all regular elements in g .

Remark 1.3. (i) If e contains a non-zero central element of g then Z(e) =
H(e) = N(e) = g .

(ii) If g is nilpotent and e 6⊆ {0} then N(e) = H(e) = g .
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(iii) If g is a compact algebra then Z(e) = H(e) = N(e).

(iv) reg g ∩ Z(e) ⊆ reg g ∩N(e) ⊆ H(e).

Let us pause to have a look on some illustrative examples.

Examples 1.4. (cf. [14], 3.10.) In the following examples we write K for the
ground field of g , having in mind mainly the cases K = R or K = C .

(i) Let g be the ‘Heisenberg algebra’ over K , g = K·x+K·y+K·z with [x, y] = z
and [x, z] = [y, z] = 0, and e = K·x . Then e is ideal free, i.e., does not contain
nonzero ideals of g , and Z(e) = K·x+K·z , but N(e) = H(e) = g .

(ii) Let g be the ‘motion algebra,’ g = R·u+R·x+R·y with [u, x] = y , [u, y] = −x
and [x, y] = 0.

(a) For e = R·x we have H(e) = Ø, Z(e) = N(e) = R·x+ R·y .

(b) For e = R·x + R·u (which is not a subalgebra) we have H(e) = Z(e) =
N(e) = g .

(iii) Let g be a solvable Lie algebra of type Γ1 , i.e., g = K·x+K·y+K·z1 +K·z2

with [x, y] = y + z1 , [x, zj] = j·zj , [y, xj] = xj+1 with z3 = 0 and all other
brackets zero (cf. [5], p.124). Set e = K·z1 . Then e is ideal free, H(e) = Ø,
Z(e) = K·z1 +K·z2 and N(e) = K·y +K·z1 +K·z2 .

(iv) Let g = sl(2,K). Then for every vector subspace e (over K) we have
Z(e) = e and N(e) = C ∪ e , where C is the set of all nilpotent elements in g .
(If K = R then C is the two-dimensional cone-surface {x ∈ g | k(x, x) = 0}
which bounds the compact elements of g .) Furthermore, H(e) 6= Ø if and only
if e contains regular elements, and H(e), if non-empty, is made up of 0 and the
regular elements contained in e . Pick elements h, p, q in g with [h, p] = 2p ,
[h, q] = −2q and [p, q] = h . Then

(a) for e = K·p we have H(e) = Ø 6= Z(e) = e and N(e) = C ;

(b) for e = K·(p− q) we have H(e) = Z(e) = e and N(e) = C ∪K·(p− q);

(c) for e = K·h + K·p we have H(e) = e \ (K \ {0})·p 6= Z(e) = e and
N(e) = C ∪ (K·h+K·p).

Note that in case (c) the porcupine set H(e) is a dense subset of Z(e), it is neither
open nor closed in Z(e).

We next record that if e is a vector subspace of g then the sets Z(e)
and N(e) are Zariski closed subsets — varieties. (This is a consequence of the
fact that an element x ∈ g belongs to Z(e), respectively, N(e) if and only if the
restriction of adx , respectively, (adx)dim g to e is singular). Note that compG(g)
is a subalgebra of g iff G has a unique maximal compact subgroup. In this case
H(W ) ∩ compG(g) is a subalgebra of g .

Proposition 1.5. ([14], Proposition 3.6) Let e be a vector subspace of the Lie
algebra g . Then the following assertions hold:

(i) The sets Z(e) and N(e) are Zariski closed subsets of g . Thus the Zariski
closure Zcl

(
H(e)

)
is contained in N(e) .

(ii) If [h ∩ e, e] = {0} for every Cartan subalgebra of g—in particular, if g
has abelian Cartan subalgebras—then H(e) is a subset of Z(e) , and we
have Zcl

(
Z(e) ∩ reg g

)
= Zcl

(
H(e)

)
⊆ Z(e) .
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The above Examples 1.4(iii)(b) and 1.4(iii)(c) show that N(e) need
not be an irreducible variety. (But if N(e) is irreducible and H(e) 6= Ø then
Zcl
(
H(e)

)
= N(e).) But Proposition 1.5(i) settles Part (a) of Problem 1, and

1.5(ii) gets us started on Part (b) of Problem 2, because H(e) is more accesible
to explicit calculations than Z(e) itself.

More subtle information becomes available under special circumstances.
Recall that a subset of a Lie algebra is said to be reductively embedded if adx is
semisimple on g for each x ∈ e . We shall say that a subalgebra e of g is Cartan
reductive if every Cartan subalgebra of g meets e in a reductively embedded
subalgebra.

Theorem 1.6. ([14], Theorem 3.8) Suppose that e is a nonzero vector subspace
of a Lie algebra g .

(i) If e is a Cartan reductive subalgebra of g containing an x 6= 0 such that
adx is semisimple then Ø 6= Zcl

(
H(e)

)
⊆ Z(e) ⊆ N(e) .

(ii) If e is reductively embedded then Z(e) = Zcl
(
H(e)

)
⊆ N(e) .

For the purposes of dealing with the Restricted Divisibility Problem it
will suffice to restrict our attention to the case where e is a subalgebra of g .
Furthermore, after factoring out the maximal G -normal subgroup of S it is not
hard to see that we may suppose as well that e is ideal-free, i.e., does not contain
any non-zero ideal of g (cf. [12]).

2. Porcupines which are proper subsets

In the last section we have set up the task of finding conditions under which
Z(e) is ‘very thin.’ But it is not even clear whether there are workable conditions
preventing Z(e) from being g—we know that Z(e) = g if the center of g meets
e non-trivially (cf. 1.3). Our next proposition essentially says that (under a mild
additional condition) Z(e) = g if and only if every Cartan subalgebra of g meets
e non-trivially.

Proposition 2.1. Let e be a vector subspace of g such that [h ∩ e, h] = {0}
for every Cartan subalgebra of g . Then the following statements are equivalent:

(i) g 6= Z(e) ;

(ii) there exists a regular element x with x /∈ N(e) ;

(iii) there exists a Cartan subalgebra h with e ∩ h = {0} .

Proof. From 1.3(iv) we know that reg g ∩N(e) ⊆ H(e), and from 1.5(ii) that
H(e) ⊆ Z(e). Since Z(e) is closed we conclude that

reg g ∩N(e) ⊆ H(e) ⊆ Z(e) ⊆ N(e).

Moreover, since N(e) is closed and the regular elements are dense in g we have
N(e) = g if and only if reg g ⊆ N(e). Thus Z(e) = g if and only if N(e) = g . By
the defintion of N(e) this establishes the assertion.
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Proposition 2.1 shows that our task involves as an intermediate step the
solution of

Problem 2: Suppose that e is an ideal-free subalgebra of g such that [h∩e, h] =
{0} for all Cartan subalgebras h of g . Find additional conditions on e under
which there exists a Cartan subalgebra h with h ∩ e = {0} .

Note that such conditions would imply that the codimension of e in g
is not less than the rank of g . Thus it is hopeless to try a proof of Z(e) 6= g
without, say, the assumption that e is ideal-free.

Since there are only finitely many conjugacy classes of Cartan subal-
gebras of g it is natural to fix some Cartan subalgebra h and to consider the
intersections h ∩ ϕ(e), where ϕ is an inner automorphism of g . Let m be the
minimal dimension of the vector spaces h∩ϕ(e). We want to show that m = 0.

Let G be the group of all inner automorphisms of g , endowed with its
intrinsic topology, and O the subset of those ϕ ∈ G which satisfy dim

(
h∩ϕ(e)

)
=

m . We write Σ(h) for the space of m -dimensional vector subspaces of h , with
the usual topology. Then O is Zariski open in G and it can be shown that the
map

∆:O → Σ(h), ϕ 7→ h ∩ ϕ(e)

is continuous. (We omit all details, cf. [14], Lemma 4.2).

We fix an element ψ ∈ O and define for every subset X ⊆ G the vector
space e(X ) =

⋂
ϕ∈X ϕψ(e). If U ranges through the neighborhoods of 1 in G ,

then the spaces e(U) form an updirected family of vector subspaces of h , so for
dimensional reasons there must be a U1 such that U ⊆ U1 implies e(U) = e(U1).

Suppose now that ∆ is locally constant.

Then there exists an open symmetric identity neighborhood V in G , so small
that VV ⊆ U1 , and such that ∆ is constant on Vψ , that is, h∩ϕψ(e) = h∩ψ(e)
for all ϕ ∈ V . Then

h ∩ e(V) =
⋂

ϕ∈V

(
h ∩ ϕψ(e)

)
= h ∩ ψ(e).

On the other hand, ϕ ∈ V implies ϕ
(
e(V)

)
⊇ e(VV) ⊇ e(U1) = e(V).

Since V = V−1 we therefore have ϕ
(
e(V)

)
= e(V) for all ϕ ∈ V . But V generates

G , so the set e(V) is invariant under G and is therefore an ideal contained in
ψ(e). Since ψ is an automorphism and e is ideal-free it follows that e(V) = {0}
and we get h ∩ ψ(e) = h ∩ e(V) = {0} . We summarize this discussion in the
following Lemma.

Lemma 2.2.(cf. [14], Lemmas 4.2 and 4.3) Let e be an ideal-free subalgebra,
and h a Cartan subalgebra of our given Lie algebra g . We assume that the above
map ∆ is locally constant. Then there exists an inner automorphism ψ ∈ G such
that e ∩ ψ(h) = {0} .
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This encouraging, though somewhat incomplete result motivates the hunt
for a practicable condition under which ∆ is locally constant. Since ∆ must be
locally constant if {h ∩ ϕ(e) | ϕ ∈ G} is finite, an obvious strategy is to look for
finiteness.

Problem 3: Suppose that e is an ideal-free subalgebra of g such that [k∩e, k] =
{0} for all Cartan subalgebras k of g . Find additional conditions on e under
which for a fixed Cartan subalgebra h the set {h ∩ ϕ(e) | ϕ ∈ G} is finite.

We note that an adequate answer to Problem 3 provides one for Problem 2.

Warning: The condition ‘{h ∩ ϕ(e) | ϕ ∈ G} is finite’ is not equivalent to
‘{e ∩ ϕ(h) | ϕ ∈ G} is finite.’

3. Intersections with Cartan subalgebras

Problem 3 of the last section triggers associations with well-known finiteness
properties of Cartan subalgebras (notably in semisimple Lie algebras). Thus a
natural start for our attempts is the investigation of the case where e is a Cartan
subalgebra itself, producing

Problem 4: Find conditions under which the Lie algebra g is Cartan finite,
that is, the set

{h ∩ k | k is a Cartan subalgebra of g}
is finite for every fixed Cartan subalgebra h .

We first remark that it suffices to consider this question for complex Lie
algebras g (this follows easily from the fact that the Cartan subalgebras of gC
are the complexifications of the Cartan subalgebras of g). Next we notice that
if the intersection of two Cartan algebras contains a regular element x , then
the two Cartan algebras are both equal to g0(x), the nilspace of adx . Thus a
non-trivial intersection of a fixed Cartan subalgebra h with another one, k , must
miss the regular elements, and hence be contained in the kernel of some root. We
therefore wonder whether h∩ k can be characterized uniquely as the intersection
of the kernels of certain roots. Since there are only finitely many roots, a positive
answer would confirm the conjecture that every Lie algebra is Cartan finite and
thus answer Problem 4. In addition, this information would yield an estimate
for the number of such intersections h ∩ k .

Unfortunately, the following example shows that we cannot hope to
confirm this tentative conjecture in general, even if h is abelian.

Example 3.1. Let g denote the Lie algebra of all matrices of the form

[c;x, z;u, v, w]: =



c x z u
0 c 0 v
0 0 c w
0 0 0 0


 , c, x, z, u, v, w ∈ C.
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(Note that g is the Lie algebra of an algebraic subgroup of Gl(C, 4).) Further, we
define h: = {[c;x, z; 0, 0, 0; 0, 0] : c, x, z ∈ C} ; this is an abelian Cartan subalge-
bra. The set Λ of roots contains only one element λ , with λ([c;x, z; 0, 0, 0]) = c ,
and the corresponding root space is

gλ1 = {[0; 0, 0;u, v, w] : u, v, w ∈ C}.

But for every v ∈ C the subspace kv: = {[c;x, z;xv+ z; cv; c, 0, 0] | c, x, z ∈ C} is
a Cartan subalgebra and the intersections h∩ kv = {[0;x,−xv; 0; 0, 0, 0] | x ∈ C}
form a one-parameter family over C .

However, a closer study of the situation shows that our conjecture is not
so far off the mark. By Theorem 5.9 of [11] the conjecture is valid under fairly
mild restrictions. For lack of space we only cite an important special case where
the above proof strategy can be carried out.

Theorem 3.2. ([11], Proposition 5.18) If g is a Lie algebra containing a
reductively embedded Cartan subalgebra then g is Cartan finite.

Note that if one Cartan subalgebra of g is reductively embedded then all
of them are reductively embedded and abelian. If g is a reductive algebra then
the Cartan subalgebras are reductively embedded, so every reductive Lie algebra
is Cartan finite, as is well known. Theorem 3.2 answers Problem 4.

If g is Cartan finite and v is any subset of a fixed Cartan subalgebra h
of g then the set {v ∩ ϕ(h) | ϕ ∈ G} is finite. Also, every reductively embedded
abelian subalgebra is contained in the center of a Cartan subalgebra. Thus the
following Theorem is a generalization of Theorem 3.2. Its proof follows the same
strategy but requires some additional care in the details.

Theorem 3.3. ([14], Proposition 2.6) For any reductively embedded abelian
subalgebra v of a Lie algebra g the intersections v ∩ k , k a Cartan subalgebra,
form a finite set. In particular, the set {v ∩ ϕ(h) | ϕ ∈ G} is finite.

Problem 3 asks for conditions under which the set {h ∩ ϕ(e) | ϕ ∈ G} is
finite. Thus the above theorems do not directly provide answers for e = v , since
it is not obvious that the finiteness of {v ∩ ϕ(h) | ϕ ∈ G} implies the finiteness
of {h ∩ ϕ(v) | ϕ ∈ G} : If ϕ(h) = ψ(h) for some ϕ 6= ψ ∈ G then in general
ϕ−1

(
v ∩ ϕ(h)

)
= h ∩ ϕ−1(v) will not coincide with ψ−1

(
v ∩ ϕ(h)

)
= h∩ ψ−1(v),

so it is well conceivable that there are infinitely many ϕ ’s producing different
sets h∩ϕ(v) but only one set ϕ−1(h)∩v . We need a condition which guarantees
that for a fixed ϕ and a: = v ∩ ϕ−1(h) the restrictions to a of the maps ψ ∈ G
with v∩ψ−1(h) = a form a finite family. (Note that v∩ψ−1(h) ⊆ a = v∩ϕ−1(h)
if and only if ψ(a) ⊆ h .)

This raises

Problem 5: Suppose that a is a subalgebra of a Cartan subalgebra h in g .
Find conditions under which the set

Φ(a, b): = {f : a→ b | there exists a ϕ ∈ G with f(x) = ϕ(x), for every x ∈ a}
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is finite for every conjugate b of a .

If f ∈ Φ(a, b) 6= Ø then f−1Φ(a, b) = Φ(a, a), so Φ(a, b) is finite if and
only if Φ(a, a) is finite. If a = h and g is semisimple then Φ(a, a) = Φ(h, h) can
be identified with the traditional Weyl group with respect to h .

For easier reference in the following let us call g Weyl finite if for every
subalgebra a of a Cartan subalgebra h in g the sets Φ(a, b) of Problem 5 are
finite.

Lemma 3.4. Suppose that g is Weyl finite as well as Cartan finite. Then the
set {h ∩ ϕ(v) | ϕ ∈ G} is finite for every subset v of h .

Proof. ([11], 6.4) Since g is supposed to be Cartan finite, the family of all
intersections h ∩ k , where k is any Cartan subalgebra of g , is finite. A fortiori,
the family I: = {a = h ∩ ϕ−1(h) | ϕ ∈ G} is finite. Thus the intersections
v ∩ ϕ(a) = v ∩ h ∩ ϕ(h) form a finite set.

By assumption, the set Φ(a, b) is finite for any pair a, b ∈ I . Thus the
set

S = {f(v ∩ a) | a ∈ I, f ∈ Φ(a, b) for some b ∈ I}

is finite. But for every ϕ ∈ G we have h∩ϕ(v) = f(v∩a) where a = h∩ϕ−1(h) ∈
I , b = ϕ(a) ∈ I and f = (ϕ|a) ∈ Φ(a, b). So h ∩ ϕ(v) ∈ S and the assertion
follows.

Similar to the situation of Theorem 3.2, a careful study of this discussion
shows that it can be adapted to the case where g is not supposed to be Cartan
finite, but v is supposed to be reductively embedded in g . This yields

Lemma 3.5.([14], Proposition 2.7) Suppose that g is Weyl finite. Then the set
{h ∩ ϕ(v) | ϕ ∈ G} is finite for every subset v of h which is reductive in g .

Starting with the above result and exploiting the properties of reductively
embedded subalgebras it is now not difficult to get a satisfying answer to Problem
3—if we take for granted that Problem 5 can be solved in a practical way.

Remember that we called a subalgebra e of g Cartan reductive if every
Cartan subalgebra h of g meets e in a reductively embedded subset. Note that
e always contains maximal abelian g -reductive subalgebras and each of these is
contained in the center of some Cartan subalgebra h .

Proposition 3.6. ([14], Proposition 2.9) Let e be a Cartan reductive subalgebra
of a Weyl finite Lie algebra g . Furthermore, we let h be a Cartan subalgebra
of g containing a maximal abelian g-reductive subalgebra v of e . Then the set
{h ∩ ϕ(e) | ϕ ∈ G} is finite.

In particular, this proposition gives us a satisfactory answer to Problem
3 and allows us to conclude that Z(e) 6= g if e is a Cartan reductive and ideal-free
subalgebra of a Weyl finite Lie algebra g .

Let us take care of the problem which is now at hand:
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Problem 6: Which Lie algebras are Weyl finite?

4. General Weyl groups

For a subalgebra a of a Lie algebra g over K = R or K = C we want
to define a group which deserves the name of the “Weyl group of a in g”.
This requires a little preparation. We let G denote the group 〈ead g〉 of inner
automorphisms of g in its intrinsic Lie group topology. Now for a subalgebra a
of g we set

N (a,G) = {ϕ ∈ G | ϕ(a) = a},
Z(a,G) = {ϕ ∈ N (a,G) | (∀a ∈ a) ϕ(a)− a ∈ [a, a]}.

Definition 4.1. We say that W(a, g) = N (a,G)/Z(a,G) is the generalized
Weyl group of a in g .

We note that the generalized Weyl group acts in a natural way on a/[a, a]
by the formula

(
ϕ+Z(a,G)

)
(x+[a, a]) = ϕ(x)+[a, a] . This yields a well-defined

linear action of W(a, g) on a/[a, a] and this linear representation is faithful on
W(a, g). In particular, if a is abelian, then W(a, g) acts faithfully and linearly
on a .

Proposition 4.2. Assume that a is a subalgebra of a Cartan subalgebra h
satisfying [a, h] = {0} . Then if α ∈ G , α(a) = b ⊆ h , and [b, h] = 0 , the
assignment

θ:W(a, g)→ Φ(a, b), θ(ϕ·Z(a,G)) = αϕ|a
is a well defined bijection. In particular, |Φ(a, b)| is finite iff |W(a, g)| is fi-
nite. Furthermore, each member of Φ(a, a) can be viewed as a restriction and
corestriction of a member of the Weyl group of h .

Proof. The member of the Weyl group ϕ · Z(a,G) acts on a by restricting
ϕ to a , since [a, a] = {0} . Suppose that β ∈ G is such that β(a) = b = α(a).
Then ϕ: = α−1β ∈ G satisfies ϕ(a) = a and is, therefore in N (a,G). If β′ ∈ G
satisfies β′(y) = β(y) for all y ∈ a , then ζ: = β−1β′ ∈ Z(a,G) and β′ = αϕζ .
These remarks show that θ is well defined and bijective.

As a corollary, if one, hence all, Cartan subgroups of g are abelian,
then g is Weyl finite (terminology introduced preceding Lemma 3.4) if for all
subalgebras (vector subspaces) a of a Cartan subalgebra h , the generalized Weyl
group W(a, g) is finite. Thus for Lie algebras with abelian Cartan subalgebras
we have an affirmative answer to Problem 6 provided we have an affirmative
answer to the following Problem:

Problem 7: Are the generalized Weyl groups W(a, g) finite for all subalgebras
a of a Cartan subalgebra such that [a, h] ⊆ [a, a]?

The answer is given by the following result:
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Theorem 4.3. ([11], Theorem 3.9) Let a be a subalgebra of a real or complex
Lie algebra g which is contained in a Cartan subalgebra h such that [a, h] ⊆ [a, a] .
Then W(a, g) , and in particular W(h, g) is finite.

The proof of this fact uses the theory of algebraic groups and is rather
lengthy (see [11]). We now have covered all of our problems except for Problem
1, and we have, in particular, the following theorem which answers Problem 2:

Theorem 4.4. ([14], Theorem 4.4) Let g be a Lie algebra with a Cartan
reductive subalgebra e which does not contain any nonzero ideal of g . Then the
following assertions hold:

(i) In each conjugacy class of Cartan subalgebras of g there is a member h
which satisfies h ∩ e = {0} .

(ii) dim g− dim e ≥ rank g .

(iii) N(e) 6= g . A fortiori, Z(e) 6= g and Zcl
(
H(e)

)
6= g .

It is interesting to observe that for the case that a is a Cartan subalgebra
h the Weyl group has an alternate geometric interpretation which we shall briefly
describe. We let g be a real Lie algebra, h a Cartan subalgebra of g , and
exp: g → G , be an exponential function to some corresponding connected Lie
group G . (The complex set-up is analogous but simpler.) We let Λ denote the
(finite!) set of nonzero roots of gC with respect to hC . We set

N(h, G) = {g ∈ G : Ad(g)h ⊆ h},
Z(h, G) = {g ∈ N(h, G): (∀h ∈ h) Ad(g)(h)− h ∈ [h, h]}.

We may then identify the Weyl group W(h, g) with N(h, G)/Z(h, G), irrespective
of the particular choice of the Lie group G as long as G is connected and has
g as its Lie algebra. (see [11], Lemma 3.3). Every g ∈ N(h, G) defines an
automorphism Ad(g) of g preserving h as a whole. Thus it induces a unique
automorphism AdC(g) on gC respecting hC . If λ: hC → C is a root from Λ,
then λ ◦ (AdC(g)|hC)−1 is again a root. This is in fact readily verified to be the
case for any automorphism of gC preserving hC in place of AdC(g). (See e.g.
[9].) Thus if S(Λ) denotes the permutation group of all bijections of Λ, then
S(Λ) is a group of order |Λ|! and the function

π:N(h, G)→ S(Λ), π(g)(λ) = λ ◦ (AdC(g)|hC)−1

is a homomorphism of groups. Its image is a finite group of permutations of Λ,
which we shall call the geometric Weyl group of h in g

Wgeo(h, g) = π
(
N(h, G)

)
.

Since Ad(G) = G , this definition indeed depends only on g and h and not on
the choice of G (see [11], Lemma 3.3).
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Definition 4.5. The kernel kerπ ⊆ G of π:N(h, G) → S(Λ) is called the
Cartan subgroup of G with respect to h and is denoted by C(h). (See [9]
Definition 1.1.a.)

In other words, Wgeo(h, g) ∼= N(h,G)
C(h) .

Evidently g ∈ Z(h, G) implies Ad(g)(x)− x ∈ [h, h] for all x ∈ h . But
λ([hC, hC]) = {0} for all roots λ . Consequently λ ◦AdC(g)|hC = λ for all λ and
g ∈ Z(h, G). Thus Z(h, G) ⊆ kerπ . Therefore, π:N(h,G)→Wgeo(h, g) factors
uniquely through a surjective morphism π′:W(h, g) → Wgeo(h, g) with kernel
C(h)
Z(h,G) .

Proposition 4.6. ([11], Proposition 4.2) For any connected Lie group G with
Lie algebra g and with a Cartan subalgebra h of g , set H = exp h . Then
the Cartan subgroup C(h) equals Z(h, G) and π′:W(h, g) → Wgeo(h, g) is an
isomorphism of groups.

Hence the Weyl group W(h, g) has an alternate geometric interpretation.

5. Codimension two

As we have seen in the first section, knowing that Z(e) is a proper
subvariety of g is not enough. We need more precise information on the di-
mension of Z(e). If Z(e) contains regular elements at all, then 1.3 shows
reg g ∩ Z(e) ⊆ H(e), and if g has abelian Cartan subalgebras, then 1.5(ii) gives
us Zcl(reg g ∩ Z(e)) = Zcl

(
H(e)

)
⊆ Z(e). As a consequence, in a finer analysis of

the dimension of Z(e) the focus shifts to H(e).

The group E = 〈ead e〉 of inner automorphisms generated by e acts
naturally on the set I: =

{
h ∩ e : h ∈ C, h ∩ e 6= {0}

}
. Let F denote a

system of representatives for the orbits of I .

Lemma 5.1.([14], Lemmas 5.1 and 5.2) Suppose that e is a Cartan reductive
subalgebra of a Lie algebra g . Then

H(e) =
⋃

a∈F
E·z(a, g) =

⋃

ϕ∈E, a∈F
z(ϕ(a), g) ⊆ Z(e).

Further, I/E is finite and thus any cross section F is finite.

This lemma allows us to concentrate on z(a, g). The result is the follow-
ing:

Proposition 5.2. ([14], Theorem 5.12) Let g be a Lie algebra and e a Cartan
reductive subalgebra of g such that H(e) 6= Ø . Then the dimension of the Zariski
closed set Zcl

(
H(e)

)
= Zcl

(
Z(e) ∩ reg(g)

)
is

dim Zcl
(
Z(e ∩ reg(g))

)
= max{dim

(
z(a, g) + e

)
| a ∈ F}.

In the process of exploiting this proposition once again some shorthand
terminology is convenient.
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Definition 5.3. A subalgebra g1 of g is called Cartan compact in g if every
Cartan subalgebra of g meets g1 in a compactly embedded subalgebra.

One notices at once two principal sufficient conditions under which a
subalgebra is Cartan compact in a containing algebra:

Proposition 5.4. A subalgebra g1 of a Lie algebra g is Cartan compact in g
if at least one of the following two conditions is satisfied:

(i) All Cartan subalgebras of g meeting g1 nontrivially are compactly em-
bedded.

(ii) g1 is compactly embedded.

Proposition 5.5. ([14], Theorem 5.15) Suppose that e is a Cartan compact
proper subalgebra of a Lie algebra g with H(e) 6= Ø and suppose that e does not
contain any nonzero ideals of g . Then dim Zcl

(
H(e)

)
≤ dim g− 2 .

By Theorem 1.6, the difference between Zcl
(
H(e)

)
and Z(e) vanishes if e

is reductively embedded. This is certainly the case if e is compactly embedded.
It is this last condition which allows us via an estimate of the dimension of z(a, g)
to conclude the following decisive answer to our Problem 1:

Theorem 5.6. ([14], Theorem 5.16) Suppose that e is a compactly embedded
proper subalgebra of a Lie algebra g , and that it does not contain any nonzero
ideals of g . Then dim Z(e) ≤ dim g− 2 .

Corollary 5.7. Suppose that e is a proper subalgebra of a compact Lie algebra
g and that e does not contain any nonzero ideals of g . Then dim Z(e) ≤ dim g−2 .

We point out that passing to quotient algebras is not compatible with
porcupine varieties. In order to see this let g be a compact Lie algebra with
nonzero center z contained in a subalgebra e of g in such a way that any ideal j
of g with z ⊆ j ⊆ e agrees with either z or e . Let p: g→ g/j denote the quotient
morphism. Then Z(e) = g , but dim Z

(
p(e)

)
≤ dim p(g) − 2 by Corollary 5.7.

Thus p
(
Z(e)

)
= p(g) 6= Z

(
p(e)

)
.

Theorem 5.6 yields a proof of the Restricted Divisibility Conjecture
formulated in Section 1: Suppose that G has a unique maximal subgroup.
Then compG(g) is a subalgebra and thus e: = H(W )∩ compG(g) is a compactly
embedded subalgebra. Hence by Theorem 5.6, Z(e) is a Zariki-closed subvariety
in g of codimension at least 2. Assume also that the Lie wedge W of the
weakly exponential subsemigroup S has inner points. Then by 1.2(iv) and the
subsequent section the hypothesis of 1.2(iii) is satisfied and shows that W is a Lie
semialgebra. Thus the Restricted Divisibility Conjecture is true. The hypothesis
that W has to have interior is, at this time, a technical matter. Eventually, we
can get around it, but that is another matter, not exactly trivial, involving a
good deal of Lie semigroup theory.
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