Constant Yang-Mills potentials

Elke Mundt

The sourceless Yang-Mills equations on a manifold (E, g) for a potential $A=$ $A_{\alpha} d x^{\alpha}$ with values in some Lie algebra L read

$$
D_{\alpha} F^{\alpha \beta}=\partial_{\alpha} F^{\alpha \beta}+\left[A_{\alpha}, F^{\alpha \beta}\right]=0
$$

where [.,.] denotes the commutator in $L, F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}+\left[A_{\alpha}, A_{\beta}\right]$ are the field strength components, $\partial_{\alpha}=\frac{\partial}{\partial x^{\alpha}}$ the partial derivative with respect to the local coordinates x^{α} of $x \in E, D_{\alpha}$ the gauge-covariant derivative and $g=g_{\alpha \beta} d x^{\alpha} d x^{\beta}$ a Riemannian metric. We want to discuss Yang-Mills potentials A with constant components A_{α} in some gauge and choice of coordinates. The Yang-Mills equations $D_{\alpha} F^{\alpha \beta}=0$ then collapse to the algebraic equations

$$
\begin{equation*}
\left[F_{\alpha \beta}, A^{\beta}\right]=\left[\left[A_{\alpha}, A_{\beta}\right], A^{\beta}\right]=0 \tag{YM}
\end{equation*}
$$

A general solution of (YM) is not available. It depends on the structure of L and the signature of g whether or not there exists a non-trivial solution of (YM). We can decide this problem for special types of Lie algebras - Abelian, nilpotent, compact - and for all Lie algebras L of a dimension ≤ 5. If there exists a nontrivial solution of (YM) at all, then the problem arises to find all solutions of (YM).

Let E be an n-dimensional vector space and E^{*} its dual. Let further $\left\{e_{\alpha}\right\}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ be a base of E and $\left\{e^{\beta}\right\}=\left\{e^{1}, \ldots, e^{n}\right\}$ the dual base of E^{*}. A scalar product g on E has components $g_{\alpha \beta}:=g\left(e_{\alpha}, e_{\beta}\right)$; we set $\left(g^{\alpha \beta}\right):=\left(g_{\alpha \beta}\right)^{-1}$. The pair (E, g) is interpreted as the (flat) physical space and the spacetime if g is Euclidean and Lorentzian respectively. Let L be an N-dimensional real Lie algebra and $\left\{X_{i}\right\}=\left\{X_{1}, \ldots, X_{N}\right\}$ a base of $L, c_{i j}^{k}$ the structure constants of L with respect to $\left\{X_{i}\right\}$, that means $\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k}$ for $i, j, k=1, \ldots, N$. Physically interpreted, L is the Lie algebra of some Lie group G of gauge symmetries.

An element $A=a_{\alpha}^{i} e^{\alpha} \otimes X_{i} \in E^{*} \otimes L, a_{\alpha}^{i} \in R$, is called a one-form or a potential on E with values in L. The field strength $F \in\left(\wedge^{2} E^{*}\right) \otimes L^{1}$ and the current $J \in E^{*} \otimes L^{2}$ of A are defined by

$$
\begin{gathered}
F(x, y):=[A(x), A(y)] \\
J(x):=g^{\alpha \beta}\left[A\left(e_{\alpha}\right), F\left(x, e_{\beta}\right)\right]
\end{gathered}
$$

for $x, y \in E$. Note the antisymmetry: $F(x, y)=-F(y, x)$.
There is a component representation with Greek indices $\alpha, \beta, \gamma, \ldots=1, \ldots, n$:

$$
\begin{aligned}
& A=e^{\alpha} \otimes A_{\alpha}, \text { where } A_{\alpha} \equiv A\left(e_{\alpha}\right):=a_{\alpha}^{i} X_{i} \in L, \\
& F=\left(e^{\alpha} \wedge e^{\beta}\right) \otimes F_{\alpha \beta}, \text { where } F_{\alpha \beta} \equiv F\left(e_{\alpha}, e_{\beta}\right):=\left[A_{\alpha}, A_{\beta}\right], \\
& J=e^{\alpha} \otimes J_{\alpha}, \text { where } J_{\alpha} \equiv J\left(e_{\alpha}\right):=\left[A^{\beta}, F_{\alpha \beta}\right],
\end{aligned}
$$

and another representation with Latin indices $i, j, k, \ldots=1, \ldots, N$:

$$
\begin{aligned}
& A=a^{i} \otimes X_{i}, \text { where } a^{i}:=a_{\alpha}^{i} e^{\alpha} \in E^{*}, \\
& F=f^{k} \otimes X_{k}, \text { where } f^{k}:=c_{i j}^{k} a^{i} \wedge a^{j}, \\
& J=j^{m} \otimes X_{m}, \text { where } j^{m}:=c_{k l}^{m} f^{k} \angle a^{l} .
\end{aligned}
$$

The Greek indices are raised and lowered by means of $\left(g^{\alpha \beta}\right)$ and $\left(g_{\alpha \beta}\right)$ respectively. The inner multiplication with respect to g of a tensor by a one-form is denoted by L. The potential A is called flat if $F=0$; it is called a Yang-Mills (abbreviated YM) potential if $J=0$. A flat potential is trivial in the sense that it can be gaugetransformed to zero. We search for potentials A such that $F \neq 0$ and $J=0$.

Now we specialize the type of the Lie algebra L in order to make the problem tractable. The following three structural theorems are essential.

Theorem 1. Let $L=L_{I} \oplus L_{I I}$ be the direct sum of Lie algebras $L_{I}, L_{I I}$ and let $A=A_{I}+A_{I I}$ be the corresponding decomposition of an L-valued potential into an L_{I}-valued potential A_{I} and an $L_{I I}$-valued potential $A_{I I}$. The YM equations for A are equivalent to both the YM equations for A_{I} and $A_{I I}$.

Theorem 2. Let $L=L_{I} \not L_{I I}$ be the semidirect sum of an ideal L_{I} and a subalgebra $L_{I I}$ and let $A=A_{I}+A_{I I}$ be the corresponding decomposition of a potential. The YM equations for A imply the $Y M$ equations for $A_{I I}$.

Theorem 3. If a Lie subalgebra M of L admits a non-flat YM potential then so does L.

The proofs are easy and omitted here.[1]

Theorem 4. Every YM potential A with values in a 3-nilpotent Lie algebra L is a constant YM potential.

Proof. (YM) holds identically: $[[L, L], L]=0 \Rightarrow\left[\left[A_{\alpha}, A_{\beta}\right], A^{\beta}\right]=0$.

Example . The Heisenberg algebra $H(2 m+1)$ has the only non-vanishing structure relations $\left[X_{i}, Y_{i}\right]=Z$ for $i=1, \ldots, m$ with respect to some base $\left\{X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}, Z\right\}$. It is 3-nilpotent.

Corollary . Every non-Abelian nilpotent Lie algebra L admits a non-flat YM potential A.

Proof. It is known that the 3-dimensional Heisenberg algebra appears as a subalgebra of every nilpotent Lie algebra $L: H(3) \subseteq L$.

Theorem 5. If $L^{\prime}=[L, L]$ is Abelian and of codimension 1 in L then L admits only flat YM potentials.

Proof. Let a base $\left\{X_{1}, \ldots, X_{N-1}\right\}$ of L^{\prime} be completed to a base $\left\{X_{0}, X_{1}, \ldots\right.$, $\left.X_{N-1}\right\}$ of L. Since L^{\prime} is Abelian, the only non-trivial commutator relations are $\left[X_{p}, X_{0}\right]=c_{p 0}^{q} X_{q}$, where $p, q=1, \ldots, N-1$. Since L^{\prime} has dimension $N-1$, the matrix $c=\left(c_{p 0}^{q}\right)$ is regular and so is its square $b=\left(b_{p}^{q}\right):=c^{2}$. Now F and J reduce to the components $f^{r}=2 c_{q 0}^{r}\left(a^{q} \wedge a^{0}\right)$ and $j^{p}=b_{q}^{p}\left(a^{q} \wedge a^{0}\right) \angle a^{0}$ respectively. The YM equations become equivalent to $\left(a^{q} \wedge a^{0}\right) \angle a^{0}=0$. Hence each pair (a^{q}, a^{0}), $p=1, \ldots, N-1$, is linearly dependent and $F=0$.

Theorem 6. A constant YM potential on a Euclidean or Minkowski space with values in a compact Lie algebra is flat.[1]

Corollary . Let $L=L_{I} \forall L_{I I}$ be the semidirect sum of an ideal L_{I} and a compact subalgebra $L_{I I}$ and let $A=A_{I}+A_{I I}$ be the corresponding decomposition of a potential. There exists a gauge in which the YM equations for A reduce to the $Y M$ equations for A_{I} and to $A_{I I}=0$.

Concisely expressed: Compact right summands in a semidirect decomposition of a Lie algebra can be ignored. The situation may appear as a special case to the Levi-Malcev theorem which states that every Lie algebra is the semidirect sum $L=I \forall S$ of a solvable ideal I and a semisimple subalgebra S.

Now we want to consider low values of $\operatorname{dim} L \leq 5$ and Euclidean (E, g). We make use of the classification of the isomorphy types of Lie algebras. The Levi-Malcev theorem allows to reduce the problem of classification of all Lie algebras to the following subproblems:

Classification of the solvable Lie algebras. Solvable Lie algebras are completely classified in the literature up to dimension 6. ([2], [3], [4], [5], [6], [7])

Classification of all semisimple, or rather, simple Lie algebras. Simple Lie algebras are completely classified nowadays.

Classification of the derivations of solvable Lie algebras. This problem is solved up to dimension 9. [8]

The number of isomorphy types of N-dimensional Lie algebras rapidly increases
with N :

$\operatorname{dim} L=N$	Number of isomorphy types	Number of indecomposable types
1	1	1
2	2	1
3	8	6
4	19	10
5	-	40
6	-	>100

Let us follow Mubarakzyanov's notation for the isomorphy types of indecomposable Lie algebras: $L_{N, k}^{h_{\ldots}}$ means the k-th type of the Lie algebra of dimension N. Eventual superscripts h, \ldots stand for the continous parameters on which L depends. Mubarakzyanov further abbreviates the direct sum of m copies of a Lie algebra L by $m L$.

We use the Levi-Malcev theorem and, moreover, the following structure results to reduce the big number of isomorphy types of low-dimensional Lie algebras:

- Mubarakzyanov classifies solvable Lie algebras with respect to their maximal nilradical $N R$, where $\operatorname{dim} N R \geq \frac{N}{2}$. Furthermore he classifies with respect to the dimension of the centre $Z(L)$ of L, where $\operatorname{dim} Z(L) \leq$ $2 \operatorname{dim} N R-N$. Only the fact whether $Z(L)=0$ or $Z(L) \neq 0$ matters here.
- Every indecomposable solvable Lie algebra with a non-vanishing centre $Z(L)$ $\neq 0$ contains the 3 -dimensional Heisenberg algebra as a subalgebra. According to Theorem 3 the corresponding (YM) has a non-flat solution.

In view of the above theorems we should work inductively with respect to N.
The existence of non-flat YM potentials remaines open only for

- non-compact simple Lie algebras and
- indecomposable solvable Lie algebras with Abelian nilradical of $\operatorname{dim} N R \leq N-2$ and with $Z(L)=0$.

Let us now go through all isomorphy types of Lie algebras with $N \leq 4$ and the open cases for $N=5$ in the following tables.
$\operatorname{dim} L \leq 3$

$L_{N, k}^{h}$	Non-vanishing commutator relations	Remarks
L_{1}		Abelian \Rightarrow Every A is flat.
$2 L_{1}$		decomposable \Rightarrow THEOR. 1
L_{2}	$\left[X_{1}, X_{2}\right]=X_{1}$	$\begin{aligned} & (\mathrm{YM}) \Rightarrow\left(a^{1} \wedge a^{2}\right) \angle a^{2}=0 \\ & \Rightarrow a^{1}, a^{2} \text { linearly dependent } \\ & \Rightarrow\left(a^{1} \wedge a^{2}\right)=0, \text { hence } F=0, \\ & \text { i. e. } A \text { is flat } \end{aligned}$
$3 L_{1}$		decomposable \Rightarrow THEOR. 1
$L_{2} \oplus L_{1}$	$\left[X_{1}, X_{2}\right]=X_{1}$	decomposable \Rightarrow THEOR. 1
$L_{3,1}$	$\left[X_{2}, X_{3}\right]=X_{1}$	$\begin{aligned} & L_{3,1} \cong H(3) \\ & \text { nilpotent } \Rightarrow \text { THEOR. } 4 \\ & \hline \end{aligned}$
$L_{3,2}$	$\begin{aligned} & {\left[X_{1}, X_{3}\right]=X_{1}} \\ & {\left[X_{2}, X_{3}\right]=X_{2}} \end{aligned}$	$\begin{aligned} & N R=2 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{3,3}^{h}$	$\begin{aligned} & {\left[X_{1}, X_{3}\right]=X_{1}} \\ & {\left[X_{2}, X_{3}\right]=h X_{2}} \\ & h \leq\|1\|, h \neq 0 \end{aligned}$	$\begin{aligned} & N R=2 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{3,4}^{p}$	$\begin{aligned} & {\left[X_{1}, X_{3}\right]=p X_{1}-X_{2}} \\ & {\left[X_{2}, X_{3}\right]=X_{1}+p X_{2}} \\ & p \geq 0 \end{aligned}$	$\begin{aligned} & N R=2 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{3,5}$	$\begin{aligned} & {\left[X_{1}, X_{2}\right]=X_{3}} \\ & {\left[X_{2}, X_{3}\right]=X_{1}} \\ & {\left[X_{3}, X_{1}\right]=X_{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & L_{3,5} \cong s o(3) \\ & \text { compact } \Rightarrow \text { THEOR. } 6 \end{aligned}$
$L_{3,6}$	$\begin{aligned} & {\left[X_{1}, X_{2}\right]=-X_{3}} \\ & {\left[X_{2}, X_{3}\right]=X_{1}} \end{aligned}$	$\begin{aligned} & L_{3,6} \cong \operatorname{sl}(2, R) \\ & (\mathrm{YM}) \Rightarrow f^{3} \angle a^{2}=f^{2} \angle a^{3}, \\ & f^{3} \angle a^{1}=-f^{1} \angle a^{3}, f^{2} \angle a^{1}=f^{1} \angle a^{2} \\ & \Rightarrow a^{1}, a^{2}, a^{3} \text { linearly dependent, } \\ & \text { hence } F=0, \text { i. e. } A \text { is flat } \end{aligned}$

If L has dimension $N \leq 3$ and admites a non-flat YM potential then $L \cong H(3)$.
$\operatorname{dim} L=4$ (indecomposable)

$L_{N, k}^{h}$	Non-vanishing commutator relations	Remarks
$L_{4,1}$	$\left[X_{2}, X_{4}\right]=X_{1},\left[X_{3}, X_{4}\right]=X_{2}$	nilpotent \Rightarrow THEOR. 4
$L_{4,2}^{\alpha}$	$\begin{aligned} & {\left[X_{1}, X_{4}\right]=\alpha X_{1},\left[X_{2}, X_{4}\right]=X_{2}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+X_{3}, \alpha \neq 0} \end{aligned}$	$\begin{aligned} & N R=3 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{4,3}$	$\begin{aligned} & {\left[X_{1}, X_{4}\right]=X_{1}} \\ & {\left[X_{2}, X_{4}\right]=X_{1}+X_{2}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+X_{3}} \end{aligned}$	$\begin{aligned} & N R=3 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{4,4}^{\text {B, }}$	$\begin{aligned} & {\left[X_{1}, X_{4}\right]=X_{1},\left[X_{2}, X_{4}\right]=\beta X_{2}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+X_{3}, \beta, \gamma \neq 0} \\ & \hline \end{aligned}$	$\begin{aligned} & N R=3 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{4,5}^{\alpha, p}$	$\begin{aligned} & {\left[X_{1}, X_{4}\right]=\alpha X_{1}} \\ & {\left[X_{2}, X_{4}\right]=p X_{2}-X_{3}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+p X_{3}} \\ & \alpha \neq 0, p \geq 0 \end{aligned}$	$\begin{aligned} & N R=3 L_{1}, Z(L)=0 \\ & \Rightarrow \text { THEOR. } 5 \end{aligned}$
$L_{4,6}$	$\left[X_{1}, X_{4}\right]=X_{1},\left[X_{3}, X_{4}\right]=X_{2}$	$\begin{aligned} & N R=3 L_{1}, Z(L) \neq 0 \\ & \Rightarrow \text { THEOR. } 3 \end{aligned}$
$L_{4,7}$	$\begin{aligned} & {\left[X_{2}, X_{3}\right]=X_{1},\left[X_{1}, X_{4}\right]=2 X_{1}} \\ & {\left[X_{2}, X_{4}\right]=X_{2}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+X_{3}} \end{aligned}$	$\begin{aligned} & N R=H(3) \\ & \Rightarrow \text { THEOR. } 3 \end{aligned}$
$L_{4,8}^{h}$	$\begin{aligned} & {\left[X_{2}, X_{3}\right]=X_{1}} \\ & {\left[X_{1}, X_{4}\right]=(1+h) X_{1}} \\ & {\left[X_{2}, X_{4}\right]=X_{2},\left[X_{3}, X_{4}\right]=h X_{3}} \\ & h \leq\|1\|, h \neq 0 \end{aligned}$	$\begin{aligned} & N R=H(3) \\ & \Rightarrow \text { THEOR. } 3 \end{aligned}$
$L_{4,9}^{p}$	$\begin{aligned} & {\left[X_{2}, X_{3}\right]=X_{1},\left[X_{1}, X_{4}\right]=2 p X_{1}} \\ & {\left[X_{2}, X_{4}\right]=p X_{2}-X_{3}} \\ & {\left[X_{3}, X_{4}\right]=X_{2}+p X_{3}, p \geq 0} \\ & \hline \end{aligned}$	$\begin{aligned} & N R=H(3) \\ & \Rightarrow \text { THEOR. } 3 \end{aligned}$
$L_{4,10}$	$\begin{aligned} & {\left[X_{1}, X_{3}\right]=X_{1},\left[X_{2}, X_{3}\right]=X_{2}} \\ & {\left[X_{1}, X_{4}\right]=-X_{2},\left[X_{2}, X_{4}\right]=X_{1}} \end{aligned}$	$\begin{aligned} & N R=2 L_{1}, Z(L)=0 \\ & \exists \text { a non-flat } A^{*} \end{aligned}$

* $A=\left(e^{1}+e^{2}\right) \otimes\left(X_{1}+X_{2}\right)+e^{3} \otimes X_{3}+e^{4} \otimes X_{4}$ on a Euclidean space (E, g) with orthonormal base $\left\{e^{1}, \ldots, e^{4}\right\}$ of E^{*} is a non-flat YM potential:
$F_{13}=F_{23}=X_{1}+X_{2}, F_{14}=F_{24}=X_{1}-X_{2}$, but $J=0$.

If L has dimension $N \geq 4$ then the number of Lie algebras which admits a non-flat YM potential are predominant.
$\operatorname{dim} L=5$
with L indecomposable, solvable, $N R=3 L_{1}, Z(L)=0$

$$
\begin{aligned}
L_{5,33}^{\alpha \beta}: & {\left[X_{1}, X_{4}\right]=X_{1},\left[X_{3}, X_{4}\right]=\alpha X_{3},\left[X_{2}, X_{5}\right]=X_{2},\left[X_{3}, X_{5}\right]=\beta X_{3}, } \\
& (\alpha, \beta) \neq(0,0) \\
(\mathrm{YM}) \Rightarrow & \left(a^{1} \wedge a^{4}\right) \angle a^{4}=0,\left(a^{2} \wedge a^{5}\right) \angle a^{5}=0, \\
& \left(a^{3} \wedge b\right) \angle b=0, b:=\alpha a^{4}+\beta a^{5} \\
& \Rightarrow\left(a^{1}, a^{4}\right),\left(a^{2}, a^{5}\right),\left(a^{3}, b\right) \text { linearly dependent } \\
& \Rightarrow \quad F=2\left(a^{1} \wedge a^{4}\right) \otimes X_{1}+2\left(a^{2} \wedge a^{5}\right) \otimes X_{2}+2\left(a^{3} \wedge b\right) \otimes X_{3}=0, \\
& \text { i. e., } A \text { is flat } \\
L_{5,34}^{\alpha}: & {\left[X_{1}, X_{4}\right]=\alpha X_{1},\left[X_{2}, X_{4}\right]=X_{2},\left[X_{3}, X_{4}\right]=X_{3},\left[X_{1}, X_{5}\right]=X_{1}, } \\
& {\left[X_{3}, X_{5}\right]=X_{2} }
\end{aligned}
$$

$H(3)$ is a subalgebra \Rightarrow THEOR. 3

$$
\begin{aligned}
L_{5,35}^{\alpha \beta}: & {\left[X_{1}, X_{4}\right]=\alpha X_{1},\left[X_{2}, X_{4}\right]=X_{2},\left[X_{3}, X_{4}\right]=X_{3},\left[X_{1}, X_{5}\right]=\beta X_{1}, } \\
& {\left[X_{2}, X_{5}\right]=-X_{3},\left[X_{3}, X_{5}\right]=X_{2},(\alpha, \beta) \neq(0,0) }
\end{aligned}
$$

$L_{4,10}$ is a subalgebra \Rightarrow THEOR. 3

References

[1] Schimming, R. and E. Mundt, Constant potential solutions of the YangMills equation, J. Math. Phys. 33 (1992), 1-5.
[2] Morozov, V. V., Classificaziya nilpotentnych algebrach Lie shestovo poryadka, Izv. Vyss. Uchebn. Zaved. Mat. 5 (1958), 161-171 (Russian).
[3] Mubarakzyanov, G. M., O rasreshimych algebrach Lie, Izv. Vyss. Uchebn. Zaved. Mat. 32 (1963), 114-123 (Russian).
[4] Mubarakzyanov, G. M., Classificaziya veshestvennych structur algebr Lie pyatovo poryadka, Izv. Vyss. Uchebn. Zaved. Mat. 34 (1963), 99-105 (Russian).
[5] Mubarakzyanov, G. M., Classificaziya rasreshimych algebr Lie shestovo poryadka s odnim nenilpotentnym bazisnym elementom, Izv. Vyss. Uchebn. Zaved. Mat. 35 (1963), 104-116 (Russian).
[6] Mubarakzyanov, G. M., Necotorye theoremy o rasreshimych algebrach Lie, Izv. Vyss. Uchebn. Zaved. Mat. 55 (1966), 95-98 (Russian).
[7] Turkowski, P., Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990), 1344-1350.
[8] Turkowski, P., Low-dimensional real Lie algebras, J. Math. Phys. 29 (1988), 2139-2144.

Fachbereich Mathematik/Informatik
Ernst-Moritz-Arndt-Universität
Greifswald
Friedrich-Ludwig-Jahn-Str.15a
O-2200 Greifswald, Germany

Received March 31, 1993
and in final form April 14, 1993

