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Constant Yang-Mills potentials

Elke Mundt

The sourceless Yang-Mills equations on a manifold (E, g) for a potential A =
Aαdx

α with values in some Lie algebra L read

DαF
αβ = ∂αF

αβ + [Aα, F
αβ] = 0

where [., .] denotes the commutator in L, Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ] are the
field strength components, ∂α = ∂

∂xα
the partial derivative with respect to the local

coordinates xα of x ∈ E , Dα the gauge-covariant derivative and g = gαβdx
αdxβ

a Riemannian metric. We want to discuss Yang-Mills potentials A with constant
components Aα in some gauge and choice of coordinates. The Yang-Mills equations
DαF

αβ = 0 then collapse to the algebraic equations

[Fαβ, A
β] = [[Aα, Aβ], Aβ] = 0 (YM)

A general solution of (YM) is not available. It depends on the structure of L
and the signature of g whether or not there exists a non-trivial solution of (YM).
We can decide this problem for special types of Lie algebras - Abelian, nilpotent,
compact - and for all Lie algebras L of a dimension ≤ 5. If there exists a non-
trivial solution of (YM) at all, then the problem arises to find all solutions of (YM).

Let E be an n-dimensional vector space and E∗ its dual. Let further {eα} =
{e1, . . . , en} be a base of E and {eβ} = {e1, . . . , en} the dual base of E∗ . A
scalar product g on E has components gαβ := g(eα, eβ); we set (gαβ) := (gαβ)−1 .
The pair (E, g) is interpreted as the (flat) physical space and the spacetime if g is
Euclidean and Lorentzian respectively. Let L be an N -dimensional real Lie algebra
and {Xi} = {X1, . . . , XN} a base of L, ckij the structure constants of L with
respect to {Xi}, that means [Xi, Xj] = ckijXk for i, j, k = 1, . . . , N . Physically
interpreted, L is the Lie algebra of some Lie group G of gauge symmetries.

An element A = aiαe
α ⊗Xi ∈ E∗ ⊗ L, aiα ∈ R , is called a one-form or a potential

on E with values in L. The field strength F ∈ (∧2E∗) ⊗ L1 and the current
J ∈ E∗ ⊗ L2 of A are defined by

F (x, y) := [A(x), A(y)]

J(x) := gαβ[A(eα), F (x, eβ)]

for x, y ∈ E . Note the antisymmetry: F (x, y) = −F (y, x).

There is a component representation with Greek indices α, β, γ, . . . = 1, . . . , n:
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A = eα ⊗ Aα, where Aα ≡ A(eα) := aiαXi ∈ L,

F = (eα ∧ eβ)⊗ Fαβ, where Fαβ ≡ F (eα, eβ) := [Aα, Aβ],

J = eα ⊗ Jα, where Jα ≡ J(eα) := [Aβ, Fαβ],

and another representation with Latin indices i, j, k, . . . = 1, . . . , N :

A = ai ⊗Xi, where ai := aiαe
α ∈ E∗ ,

F = f k ⊗Xk, where f k := ckija
i ∧ aj ,

J = jm ⊗Xm, where jm := cmklf
k 6 al.,

The Greek indices are raised and lowered by means of (gαβ) and (gαβ) respectively.
The inner multiplication with respect to g of a tensor by a one-form is denoted by
6 . The potential A is called flat if F = 0; it is called a Yang-Mills (abbreviated
YM) potential if J = 0. A flat potential is trivial in the sense that it can be gauge-
transformed to zero. We search for potentials A such that F 6= 0 and J = 0.

Now we specialize the type of the Lie algebra L in order to make the problem
tractable. The following three structural theorems are essential.

Theorem 1. Let L = LI ⊕ LII be the direct sum of Lie algebras LI , LII and
let A = AI +AII be the corresponding decomposition of an L-valued potential into
an LI -valued potential AI and an LII -valued potential AII . The YM equations
for A are equivalent to both the YM equations for AI and AII .

Theorem 2. Let L = LI
�� LII be the semidirect sum of an ideal LI and a

subalgebra LII and let A = AI + AII be the corresponding decomposition of a
potential. The YM equations for A imply the YM equations for AII .

Theorem 3. If a Lie subalgebra M of L admits a non-flat YM potential then
so does L.

The proofs are easy and omitted here.[1]

Theorem 4. Every YM potential A with values in a 3-nilpotent Lie algebra L
is a constant YM potential.

Proof. (YM) holds identically: [[L, L], L] = 0⇒ [[Aα, Aβ], Aβ] = 0.

Example . The Heisenberg algebra H(2m + 1) has the only non-vanishing
structure relations [Xi, Yi] = Z for i = 1, . . . , m with respect to some base
{X1, . . . , Xm, Y1, . . . , Ym, Z}. It is 3-nilpotent.
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Corollary . Every non-Abelian nilpotent Lie algebra L admits a non-flat YM
potential A.

Proof. It is known that the 3-dimensional Heisenberg algebra appears as a
subalgebra of every nilpotent Lie algebra L: H(3) ⊆ L.

Theorem 5. If L′ = [L, L] is Abelian and of codimension 1 in L then L admits
only flat YM potentials.

Proof. Let a base {X1, . . . , XN−1} of L′ be completed to a base {X0, X1, . . .,
XN−1} of L. Since L′ is Abelian, the only non-trivial commutator relations are
[Xp, X0] = cqp0Xq , where p, q = 1, . . . , N − 1. Since L′ has dimension N − 1, the
matrix c = (cqp0) is regular and so is its square b = (bqp) := c2 . Now F and J reduce
to the components f r = 2crq0(aq ∧ a0) and jp = bpq(a

q ∧ a0) 6 a0 respectively. The
YM equations become equivalent to (aq ∧ a0) 6 a0 = 0. Hence each pair (aq, a0),
p = 1, . . . , N − 1, is linearly dependent and F = 0.

Theorem 6. A constant YM potential on a Euclidean or Minkowski space with
values in a compact Lie algebra is flat.[1]

Corollary . Let L = LI
�� LII be the semidirect sum of an ideal LI and a

compact subalgebra LII and let A = AI +AII be the corresponding decomposition
of a potential. There exists a gauge in which the YM equations for A reduce to
the YM equations for AI and to AII = 0.

Concisely expressed: Compact right summands in a semidirect decomposition of
a Lie algebra can be ignored. The situation may appear as a special case to the
Levi-Malcev theorem which states that every Lie algebra is the semidirect sum
L = I
�� S of a solvable ideal I and a semisimple subalgebra S .

Now we want to consider low values of dimL ≤ 5 and Euclidean (E, g). We make
use of the classification of the isomorphy types of Lie algebras. The Levi-Malcev
theorem allows to reduce the problem of classification of all Lie algebras to the
following subproblems:

Classification of the solvable Lie algebras. Solvable Lie algebras are completely
classified in the literature up to dimension 6. ([2], [3], [4], [5], [6], [7])

Classification of all semisimple, or rather, simple Lie algebras. Simple Lie algebras
are completely classified nowadays.

Classification of the derivations of solvable Lie algebras. This problem is solved
up to dimension 9. [8]

The number of isomorphy types of N -dimensional Lie algebras rapidly increases
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with N :

dimL = N Number of Number of
isomorphy types indecomposable types

1 1 1
2 2 1
3 8 6
4 19 10
5 – 40
6 – > 100

Let us follow Mubarakzyanov’s notation for the isomorphy types of indecom-
posable Lie algebras: Lh,...N,k means the k -th type of the Lie algebra of dimension
N . Eventual superscripts h, . . . stand for the continous parameters on which L
depends. Mubarakzyanov further abbreviates the direct sum of m copies of a Lie
algebra L by mL.

We use the Levi-Malcev theorem and, moreover, the following structure results to
reduce the big number of isomorphy types of low-dimensional Lie algebras:

– Mubarakzyanov classifies solvable Lie algebras with respect to their max-
imal nilradical NR , where dimNR ≥ N

2
. Furthermore he classifies with

respect to the dimension of the centre Z(L) of L, where dimZ(L) ≤
2 dimNR − N . Only the fact whether Z(L) = 0 or Z(L) 6= 0 matters
here.

– Every indecomposable solvable Lie algebra with a non-vanishing centre Z(L)
6= 0 contains the 3-dimensional Heisenberg algebra as a subalgebra. Accord-
ing to Theorem 3 the corresponding (YM) has a non-flat solution.

In view of the above theorems we should work inductively with respect to N .

The existence of non-flat YM potentials remaines open only for

- non-compact simple Lie algebras and

- indecomposable solvable Lie algebras with Abelian nilradical of
dimNR ≤ N − 2 and with Z(L) = 0.
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Lie algebra L (dimL = N )

decomposable

THEOR.1

indecomposable semidirect sum
THEOR.2

solvable simple compact

THEOR.6

nilpotent

THEOR.4

dimNR = N − 1 dimNR = N − 2

non-compact ?

Abelian non-A. Abelian non-A.
THEOR.3 THEOR.3

Z(L) = 0 Z(L) 6= 0 Z(L) = 0

?

Z(L) 6= 0

THEOR.5 THEOR.3 THEOR.3

Let us now go through all isomorphy types of Lie algebras with N ≤ 4 and the
open cases for N = 5 in the following tables.
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dimL ≤ 3

Non-vanishing
LhN,k commutator relations Remarks

L1 Abelian ⇒ Every A is flat.
2L1 decomposable ⇒ THEOR.1
L2 [X1, X2] = X1 (YM) ⇒ (a1 ∧ a2) 6 a2 = 0

⇒ a1, a2 linearly dependent
⇒ (a1 ∧ a2) = 0, hence F = 0,
i. e. A is flat

3L1 decomposable ⇒ THEOR.1
L2 ⊕ L1 [X1, X2] = X1 decomposable ⇒ THEOR.1
L3,1 [X2, X3] = X1 L3,1

∼= H(3)
nilpotent ⇒ THEOR.4

L3,2 [X1, X3] = X1 NR = 2L1, Z(L) = 0
[X2, X3] = X2 ⇒ THEOR.5

Lh3,3 [X1, X3] = X1 NR = 2L1, Z(L) = 0
[X2, X3] = hX2 ⇒ THEOR.5
h ≤ |1|, h 6= 0

Lp3,4 [X1, X3] = pX1 −X2 NR = 2L1, Z(L) = 0
[X2, X3] = X1 + pX2 ⇒ THEOR.5
p ≥ 0

L3,5 [X1, X2] = X3 L3,5
∼= so(3)

[X2, X3] = X1 compact ⇒ THEOR.6
[X3, X1] = X2

L3,6 [X1, X2] = −X3 L3,6
∼= sl(2, R)

[X2, X3] = X1 (YM) ⇒ f 3 6 a2 = f 2 6 a3,
f 3 6 a1 = −f 1 6 a3, f 2 6 a1 = f 1 6 a2

⇒ a1, a2, a3 linearly dependent,
hence F = 0, i. e. A is flat

If L has dimension N ≤ 3 and admites a non-flat YM potential then L ∼= H(3).
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dimL = 4 (indecomposable)

Non-vanishing
LhN,k commutator relations Remarks

L4,1 [X2, X4] = X1,[X3, X4] = X2 nilpotent ⇒ THEOR.4
Lα4,2 [X1, X4] = αX1,[X2, X4] = X2 NR = 3L1, Z(L) = 0

[X3, X4] = X2 +X3, α 6= 0 ⇒ THEOR.5
L4,3 [X1, X4] = X1 NR = 3L1, Z(L) = 0

[X2, X4] = X1 +X2 ⇒ THEOR.5
[X3, X4] = X2 +X3

Lβ,γ4,4 [X1, X4] = X1,[X2, X4] = βX2 NR = 3L1, Z(L) = 0
[X3, X4] = X2 +X3, β, γ 6= 0 ⇒ THEOR.5

Lα,p4,5 [X1, X4] = αX1 NR = 3L1, Z(L) = 0
[X2, X4] = pX2 −X3 ⇒ THEOR.5
[X3, X4] = X2 + pX3

α 6= 0, p ≥ 0
L4,6 [X1, X4] = X1,[X3, X4] = X2 NR = 3L1, Z(L) 6= 0

⇒ THEOR.3
L4,7 [X2, X3] = X1,[X1, X4] = 2X1 NR = H(3)

[X2, X4] = X2 ⇒ THEOR.3
[X3, X4] = X2 +X3

Lh4,8 [X2, X3] = X1 NR = H(3)
[X1, X4] = (1 + h)X1 ⇒ THEOR.3
[X2, X4] = X2,[X3, X4] = hX3

h ≤ |1|,h 6= 0
Lp4,9 [X2, X3] = X1,[X1, X4] = 2pX1 NR = H(3)

[X2, X4] = pX2 −X3 ⇒ THEOR.3
[X3, X4] = X2 + pX3, p ≥ 0

L4,10 [X1, X3] = X1,[X2, X3] = X2 NR = 2L1, Z(L) = 0
[X1, X4] = −X2,[X2, X4] = X1 ∃ a non-flat A*

* A = (e1 + e2)⊗ (X1 +X2) + e3⊗X3 + e4⊗X4 on a Euclidean space (E, g) with
orthonormal base {e1, . . . , e4} of E∗ is a non-flat YM potential:
F13 = F23 = X1 +X2 , F14 = F24 = X1 −X2 , but J = 0.
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If L has dimension N ≥ 4 then the number of Lie algebras which admits a
non-flat YM potential are predominant.

dimL = 5

with L indecomposable, solvable, NR = 3L1 , Z(L) = 0

Lαβ5,33: [X1, X4] = X1, [X3, X4] = αX3, [X2, X5] = X2, [X3, X5] = βX3,
(α, β) 6= (0, 0)

(YM) ⇒ (a1 ∧ a4) 6 a4 = 0, (a2 ∧ a5) 6 a5 = 0,
(a3 ∧ b) 6 b = 0, b := αa4 + βa5

⇒ (a1, a4), (a2, a5), (a3, b) linearly dependent
⇒ F = 2(a1 ∧ a4)⊗X1 + 2(a2 ∧ a5)⊗X2 + 2(a3 ∧ b)⊗X3 = 0,

i. e., A is flat

Lα5,34: [X1, X4] = αX1, [X2, X4] = X2, [X3, X4] = X3, [X1, X5] = X1,
[X3, X5] = X2

H(3) is a subalgebra ⇒ THEOR.3

Lαβ5,35: [X1, X4] = αX1, [X2, X4] = X2, [X3, X4] = X3, [X1, X5] = βX1,
[X2, X5] = −X3, [X3, X5] = X2, (α, β) 6= (0, 0)

L4,10 is a subalgebra ⇒ THEOR.3
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