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Atypical representations of the
Lie superalgebra sl(1,n) for n greater than 1

Hartmut Schlosser

1. Preliminaries

The Lie superalgebra (LSA) sl(1, n) with n > 1 is a concrete form of the
classical LSA A(0, n− 1) (in the classification of Kac ([K78]); cf. also [B92]). We
can realize sl(1, n) by (n+ 1)× (n+ 1)-matrices:

G = sl(1, n) =





∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

a00 a01 · · · a0n

a10 a11 · · · a1n

. . . . . . . . . . . . . . . . .
an0 an1 · · · ann

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
; aij ∈ C, a00 − (a11 + · · ·+ ann) = 0





(identical representation). The even part G0 is characterized by the condition
a0i = ai0 = 0 for i = 1, . . . , n. G0 is isomorphic to gl(n).

We choose the Cartan subalgebra H as the set of diagonal matrices of G
and G0 resp.

Let eij be denote the (n+ 1)× (n+ 1)-matrix with 1 at the place (i, j) and
0 everywhere (i, j = 0, . . . , n) . Then we get by h1 = e00 + e11 , hi = ei−1,i−1 − eii
(i = 2, . . . , n) a basis of H . The sets

∆+ = {eij; i < j, i, j = 0, . . . , n},∆+
1 = {e0j ; j = 1, . . . , n}

are the positive and the odd positive root vectors (we define ∆+
0 ,∆

−,∆−1 ,∆
−
0 in an

analogous way). {hi, ei = ei−1,i, fi = ei,i−1; i = 1, . . . , n} build a Chevalley basis
of sl(1, n).

The representation theory of the classical LSAs developed by Kac gives
some general results which we formulate for G = sl(1, n) in the following.

Let Λ be a linear functional over H. It is possible to construct for every such
Λ a G-module W (Λ) by a standard induction process. W (Λ) contains a proper
maximal G-submodule I(Λ) which can be the null space. We denote W (Λ)/I(Λ)
by W (Λ): W (Λ) is the irreducible G-module with the highest weight Λ.

Proposition 1.1.

a) W (Λ1) ∼= W (Λ2) ⇐⇒ Λ1 = Λ2 (Λ1,Λ2 ∈ H∗).

b) Every finite dimensional irreducible G-module is equivalent to a module W (Λ).

c) W (Λ) is finite dimensional ⇐⇒ ai = Λ(hi) ∈ Z+ , i = 2, . . . , n; a1 = Λ(h1)
can be an arbitrary complex number.
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In the following we look only to finite dimensional representations and G-
modules resp. We use both the language of representations and the language of
modules.

The n-tuple (a1, a2, . . . , an) introduced in c) determines the linear func-
tional Λ completely, because the hi are a basis of H . So we can replace Λ
by (a1, a2, . . . , an)(also denote as highest weight), where a1 ∈ C , ai ∈ Z+ for
i = 2, . . . , n; in many cases the signature [m]n+1 = [m1, . . . , mn]n+1 defined by
m1 = a1, mi = a1− (a2 + · · ·+ai) for i = 2, . . . , n is used to denote the representa-
tion determined by Λ. This we will do now. The mi are complex numbers having
all the them imaginary part; furthermore mi−mi+1 = ai+1 ∈ Z+ (i = 1, . . . , n−1)
such that m1 ≥ m2 ≥ . . . ≥ mn if m1 = a1 ∈ Z+ . We assume that this condition
is always fulfilled in the following because for the atypical case below considered
we have this condition.

The index n+ 1 at the right bracket of the signature we take to differ the
representation of the LSA sl(1, n) from the representation of the even part gl(n)
with the same signature known from the classical theory.

The induced G-module W ([m]n+1) can be irreducible; but if it is reducible
then it is not completely reducible. So we have two possible cases which we describe
by the following definition:

The module W ([m]n+1) (the representation [m]n+1 ) is typical if the max-
imal invariant subspace I([m]n+1) = {0} or W ([m]n+1) = W ([m]n+1); W ([m]n+1)
is atypical or nontypical if I([m]n+1) 6= {0} or W ([m]n+1) 6= W ([m]n+1).

So, in the atypical case we have to distinguish between W ([m]n+1) and
W ([m]n+1). Both modules have the same highest weight and the same signa-
ture. For this we will denote the atypical irreducible representation (given by
W ([m]n+1)) with [m]irrn+1 = [m1, . . . , mn]irrn+1 in difference to the indecomposable
representation (given by W ([mn+1])). The last one and the typical representation
are denoted by [m]n+1 = [m1, . . . , mn]n+1 .

A simple criterion for the atypical case is the existence of a k with mk =
k− 1. It is easy to see that only one k with this property can exist in a signature
[m]n+1 .

2. Weight diagrams for sl(1,2)

In [P87] Palev describes the action of the generators of sl(1, n) of a rep-
resentation [m]n+1 in a Gelfand-Zetlin-basis. The vectors in such a basis are
weight vectors and can be indicated by the n-tuples of eigenvalues of the operators
h1, . . . , hn ( we denote the images of the elements of sl(1, n) by a representation
with the same symbol as by the identical representation). The h1, . . . , hn act diag-
onally in this basis. The n-tuples of eigenvalues from h1, . . . , hn build the weight
diagram for [m]n+1 . For instances, we have at the identical representation [1, 1]irr3

of sl(1, 2) the weight diagram (the left diagram in the following picture)
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h1 =

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1 0 0
0 1 0
0 0 0
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∣∣∣∣∣∣∣
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(1, 0) is the highest weight.

To describe the action of sl(1, n) it is enough to describe the action of the
Chevalley basis {ei, fi, hi}. If (j1, j2) is a pair of eigenvalues then the symbol
|j1, j2 > denotes a corresponding basis vector. We draw in the following an arrow
from (j1, j2) to (k1, k2) with the name g if g(|j1, j2 >) = α|k1, k2 > for some
α ∈ C, α 6= 0. So in the case [1, 1]irr3 we get the right diagram (above drawn). The
action of the hi is known by construction of the weight diagram. All operators of
the representation we can compose by the drawn actions.

The identical representation is an atypical representation (m2 = 1). We will
consider the more general case [s, s]3 ,s ∈ Z . The representations [s, s]3 have the
smallest dimension (namely 4) which is possible if we look to the representations
[m1, m2]3 (cf. 3).

In [P87] we find explicit formulas of the action of the Chevalley basis and
hence we can compute the eigenvalues of the hi . The mentioned formulas describe
the representations [m]n+1 but not the cases [m]irrn+1 . So the weight diagram of
[s, s]3 has the form:

-
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If s = 1 or s = 0 we have the atypical case. What is the speciality there?
In both cases the action of one of the odd operators f1 = e10, e1 = e01 will be zero
at some places where it does not vanish for s 6= 1 and s 6= 0 resp. So we get the
following diagrams (left: [1, 1]3 , right: [0, 0]3 ):
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We see that for s = 1 the subspace I = {0}, for s = 0 the subspace I =
span{|0, 1 >, | − 1,−1 >, | − 1, 0 >} is invariant. But the representations [1, 1]3
and [0, 0]3 are indecomposable because the complement of I is not invariant.
Furthermore the subspace I and the factor space W/I are spaces of irreducible
representations: In [1, 1]3 we find [1, 1]irr3 and [0, 0]irr3 and in [0, 0]3 we find [0, 0]irr3

and [0,−1]irr3 . We see that [0, 0]irr3 is contained in [1, 1]3 by I , in [0, 0]3 by W/I .
It is possible to generalize this property for all indecomposable representations of
sl(1, 2) (sl(1, n); cf. 3): All atypical irreducible representations we find pairwise
in the indecomposable representations [m1, 1] and [0, m2]. These pairs are:

m1 > 1, m2 = 1: [m1, 1]irr3 , [m1 − 1, 1]irr3

m1 = 1, m2 = 1: [1, 1]irr3 and [0, 0]irr3

m1 = 0, m2 ≤ 0: [0, m2]irr3 and [0, m2 − 1]irr3 .
If we draw the [m1, m2] with real numbers m1, m2 as 2-tuples in a diagram we see
the atypical representations along two rays:

-

6 b b b b

b

b
b m1

m2

m2 = 1

m1 = 0

The pairs above mentioned are neighbouring. The rays are connected by the pair
[1, 1]irr3 , [0, 0]irr3 .

3. Connections between atypical representations of sl(1,n)

We will generalize the results of 2. For this first we descibe the structure
of an induced finite dimensional module W ([m]n+1) following Palev([P87]). The
restriction to the even part sl(1, n)0

∼= gl(n) is the direct sum of finite dimensional
irreducible gl(n)-modules. Every such submodule is a module with highest weight;
the corresponding signatures are given in an one-by-one condition by aid of so-
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called Θ-tuples (Θ1, . . . ,Θn) where Θi ∈ {0, 1} for all i = 1, . . . , n. We set

m(Θ) = (m1 + Θ1 −
n∑

j=1

Θj, . . . , mn + Θn −
n∑

j=1

Θj).

If (Θ1, . . . ,Θn) ranges through all Θ-tuples then [m(Θ)]n+1 ranges trough the
signatures of the irreducible gl(n)-submodules of W ([m]n+1). We denote these
submodules with V (m(Θ)). In the atypical case (mk = k − 1 for some k ) the
maximal invariant submodule I is the direct sum of all V (m(Θ)) where Θk = 1:

I ∼=
∑

Θ,Θk=1

V (m(Θ)) (1)

W/I ∼=
∑

Θ,Θk=0

V (m(Θ)) (2)

In general, the signature [m′]irrn+1 = [(m − 1)k]irrn+1 of the atypical sl(1, n)-module
I is given by Θk = 1,Θj = 0 everywhere; the signature of W/I is described by
Θi = 0 everywhere. Both irreducible representations are paired in [m]n+1 . But
we have to look to exceptional cases for k > 1: If for some κ > 0 is valid:

mk−κ−1 > mk−κ = · · · = mk = k − 1

then the signature [m′]irrn+1 is given by Θk−κ = · · · = Θk = 1 and Θj = 0
everywhere. Here atypical representations are connected which belong to mk =
k − 1 and mk−κ = k − κ− 1. For κ = 0 we go back to the general case.

These facts we can see from the formulas in [P87]:The images of the vectors
|m >, |m′ > are zero by the positive root vectors.

Proposition 3.1. Atypical finite dimensional irreducible sl(1, n)-modules are
contained pairwise in the induced finite dimensional sl(1, n)-modules with signature
[m]n+1 = [m1, . . . , mk = k − 1, . . . , mn]n+1 . The maximal invariant submodule I
is given by

[(m− 1)k]irrn+1 = [m1 − 1, . . . , mk−1 − 1, mk, mk+1 − 1, . . . , mn − 1]irrn+1

the factormodule W/I by

[m]irrn+1 = [m1, . . . , mk, . . . , mn]irrn+1.

Particular, we have the condition

dim([(m− 1)k]irrn+1) + dim([m]irrn+1) = 2n dim([m]n) = 2n
∏

i<j
i,j=1,...,n

mi −mj + j − i
j − i

In the exceptional cases are fullfilled also these conditions; we have to change only
[(m− 1)k]irrn+1 in an way above mentioned.

The proposition follows from the theory developed in [P87] and [P88]. The
right side of the dimension formula we get from the classical theory.
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4. The polynomial solution of the equation
g(x1, . . . , xn) + g(x1 − 1, . . . , xn − 1) = 2n+1x1 · · ·xn

The computation of the dimension of an atypical representation will be
reduced in the following to the solution of an equation of the form

g(x1, . . . , xn) + g(x1 − 1, . . . , xn − 1) = 2n+1x1 · · ·xn. (3)

For the solution of this difference equation we use some ideas from the theory
of difference equations in one variables (cf. [G58]) and some own ideas. Let be
σl(x1, . . . , xn) denote the l-th elementary symmetric function in n variables:

σl(x1, . . . , xn) = x1 · · ·xl + x1 · · ·xl−1xl+1 + · · ·+ xn−l+1 · · ·xn.

The solution of (3) is a linear combination of the σi with coefficients Hl at σn−l ;
the Hl have some remarkable properties.

Computations with a computer give the following values:

l 0 1 2 3 4 5 6 7 8 9 10 11
Hl 1 1/2 0 -1/4 0 1/2 0 -17/8 0 31/2 0 -691/4

It seems that Hl = 0 if l is even; the Hl could be similar to the Bernoulli
numbers Bl . Furthermore, for the given numbers in the table we have

Hl =
2(2l+1 − 1)

l + 1
Bl+1. (4)

So, we come to the idea that a generating function belongs to the Hl . It is possible
to prove the following lemma ([S93]):

Lemma 4.1.

2
et

et + 1
=
∞∑

l=0

Hl
tl

l!
.

Now we can show the relation (4) between Hl and the Bernoulli numbers
Bl+1 . By [G58] B1 = −1/2 holds, and for small t:

t

et − 1
=
∞∑

l=0

Bl
tl

l!
. (5)

Now we get

2
et

et + 1
= 2

et(et − 1)

(et + 1)(et − 1)
=

2

t
(t− t

et − 1
+

2t

e2t − 1
)

= 2− 2

t

∞∑

l=0

Bl
tl

l!
+

2

t

∞∑

l=0

Bl
(2t)l

l!
= 2− 2

t
(
∞∑

l=2

(Bl − 2lBl)
tl

l!
)− 2B1 + 4B1

= 1 +
∞∑

l=1

2(2l+1 − 1)Bl+1
tl

(l + 1)!
=
∞∑

l=0

Hl
tl

l!
(6)

and

H0 = 1, Hl =
2(2l+1 − 1)

l + 1
Bl+1 (7)
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for l = 1, 2, . . .

Similar to the Bernoulli numbers the Hl satisfy some recurrence relations.
For instances we obtain:

a)From

2et = (et + 1)
∞∑

l=0

Hl
tl

l!

and development in power series we get by comparison of coefficients 2H0 =
2, 2H1 +H0 = 2, 2H2 + 2H1 +H0 = 2 etc. and in general

k∑

l=0

(
k

l

)
Hl = 2−Hk

. b)From

2 = (e−t + 1)
∞∑

l=0

Hl
tl

l!

and development in potency series we get

k∑

l=0

(−1)k−l
(
k

l

)
Hl = Hk.

Furthermore, it is easy to express the Hl by aid of the important values Bl(1/2)
and Bl(1) of the Bernoulli polynomials Bl(x).

Proposition 4.2. The unique polynomial solution of (3) is

g(x1, . . . , xn) = 2n
n∑

l=0

Hlσn−l(x1, . . . , xn).

Proof. By the foregoing we have to prove the uniqueness only. For this we look
to the equation

g(x1, . . . , xn) + g(x1 − 1, . . . , xn − 1) = 0 (8)

and show that the only polynomial solution is the null polynomial. From this fact
it is easy to get the uniqueness of the solution of (8) with an arbitrary polynomial
on the right side.

Let cxt11 · · ·xtnn be a summand in g with maximal degree t1 + · · ·+ tn and

g(x1, . . . , xn) = cxt11 · · ·xtnn + d(x1, . . . , xn).

On the left side of (8) we get

cxt11 · · ·xtnn + c(x1 − 1)t1 · · · (xn − 1)tn + d(x1, . . . , xn) + d(x1 − 1, . . . , xn − 1) =

2cxt11 · · ·xtnn + h(x1, . . . , xn)

where h contains only summands of the degree less or equal to t1 + · · ·+ tn and
the summands with this maximal degree are linear independent from the first
summand. Then c must be zero and g has no summand of maximal degree.



22 Schlosser

5. The dimension of a finite dimensional irreducible representation of
sl(1,n)

We use the denotations of 1.-3.

The dimension D of W ([m]n+1) is determined by the finite dimensional
irreducible gl(n)-module with the signature [m]n . The dimension of [m]n is given
by the expression (cf. 3)

dim([m]n) =
∏

i<j
i,j=1,...n

mi −mj + j − i
j − i =

∏

i<j
i,j=1,...,n

rij
j − i (9)

where rij = mi −mj + j − i (for the following we extend the definition of rij on
the case i > j also) and

D = 2n dim([m]n).

So we can consider the dimension of a typical finite dimensional irreducible sl(1, n)-
module as known.

On the other side by the sum decomposition given by (1) and (2) it is
possible to describe D in the following way: Let for a given Θ-tuple (Θ1, . . . ,Θn)
be rst(Θ) = ms,n+1 −mt,n+1 + t− s+ Θs − Θt. Then

D =
∑

Θ

∏

s<t
s,t=1,...,n

rst(Θ)

t− s (10)

where the summation goes over all possible Θ−tuple. If W ([m]n+1) is indecom-
posable and mk = k − 1 then the dimensions
D1 = dim I and D2 = dimW ([m]n+1)/I
are given by the same formula (10) with the difference that the summation goes
over all possible Θ-tuple with Θk = 1 and Θk = 0 resp. (cf. (1),(2)). This
gives a possibility for the numerical calculation of the dimension of an atypical
finite dimensional irreducible sl(1, n)-module. In the following we will prove an
explicit formula for such dimensions. We assume first that for k > 1 we have
mk−1 > mk = k − 1.

We look to the maximal invariant subspace I of W ([m]n+1). I itself is an
atypical finite dimensional irreducible sl(1, n)-module with the signature

[m′]n+1 = [m1 − 1, . . . , mk, . . . , mn − 1]n+1

and the same k as in W ([m]n+1)/I in the general case. Hence we can compute D1

by the same formula as D2 replacing mi by m′i and rst by r′st , where r′sk = rsk−1
for s < k , r′kt = rkt + 1 for t > k and r′st = rst in all other cases. On the
other side from the analogous formula to (10) we see that D2 is a polynomial
f(r12, . . . , rn−1,n). So we have to look to a polynomial f which satisfied the func-
tional equation

f(r12, . . . , rn−1,n) + f(r′12, . . . , r
′
n−1,n) = 2n

∏

s<t
s,t=1,...,n

rst
t− s. (11)

Because rst = rsk + rkt for arbitrary s, t, k we look to the polynomial f as a
polynomial in n− 1 variables only. We choose x1 = r1k, . . . , xk−1 = rk−1,k, xk+1 =
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rk,k+1, . . . , xn = rk,n as such variables which are independent. On the right side of
(11) we separate the factor

2n
∏

s=1,...,k−1

rsk
∏

t=k+1,...,n

rkt = 2n
∏

i=1,...,n
i6=k

xi

from the rest Rkn and consider the equation

fk(x1, . . . , xk−1, xk+1, . . . , xn) + fk(x1 − 1, . . . , xk−1 − 1, xk+1 + 1, . . . , xn + 1) =

= 2n
∏

i=1,...,n
i6=k

xi (12)

and for k = n

fn(x1, . . . , xn−1) + fn(x1 − 1, . . . , xn−1 − 1) = 2n
∏

i=1,...,n−1

xi (13)

It is easy to see that Rknfk(r1k, . . . , rk−1,k, rk,k+1, . . . , rkn) is a solution of (11)
where fk solves (12). Furthermore, the solutions of (11) and (12) resp. are unique
by the same arguments as in the proof of the proposition of 4.

Now we compare (12) for an arbitrary k with the case (13). If we replace
rkt by −rkt = rtk , we see by (10) that

fk(x1, . . . , xk−1, xk+1, . . . , xn) = (−1)n−kfn(x1, . . . , xk−1,−xk+1, . . . ,−xn).

So it is enough to solve (13) obtaining the solution of (11). But (13) is solved by
the proposition of 4.

Theorem 5.1. Let Yk([m]n+1) = W ([m]n+1)/I be an atypical finite dimen-
sional irreducible sl(n)-module with signature [m1, . . . , mk = k − 1, . . . , mn]. For
all possible s,t,k we set:

rst = ms −mt + t− s,

Rkn =
∏

s<t
s,t=1,...,n

1

t− s
∏

i<j,i 6=k,j 6=k
i,j=1,...,n

rij.

The dimension of Yk([m]n+1) we get by the following formula:

dim(Yk([m]n+1)) =

2n−1Rkn

n−1∑

l=0

(−1)n−kHlσ(n−1)−l(r1k, . . . , rk−1,k,−rk,k+1, . . . ,−rkn)

where the σ(n−1)−l are the elementary symmetric functions of the first kind and
the Hl are the coefficients determined in 4. More exact, because mk = k − 1 we
have

rsk = ms − s+ 1,−rkt = mt − t+ 1

such that
dim(Yk([m]n+1) =

2n−1Rkn

n−1∑

l=0

(−1)n−kHlσ(n−1)−l(m1, m2−1, . . . , mk−1−(k−2), mk+1−k, . . . , mn−(n−1))
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The theorem is correct also in the exceptional case: There for a natural
number κ > 0 we have mk−κ−1 > mk−κ = · · · = mk = k − 1. Only this case we
have to prove. The proof consists in a series of calculations and in producing a
connection to the general case ([S93]). As examples we list the explicit expressions
for the dimensions of the atypical irreducible sl(1, 3) modules:

dimY3([m1, m2, 2])

= 4 · 1
2
(m1 −m2 + 1)

(
H0σ2(m1, m2 − 1) +H1σ1(m1, m2 − 1) +H2

)

= (m1 −m3 + 2)(−2m1m3 + 3m1 −m3 + 2),

dimY2([m1, 1, m3])

= 4 · 1
2
· (−1)(m1 −m3 + 2)

(
H0σ2(m1, m3 − 2) +H1σ1(m1, m3 − 2) +H2

)

= (m1 −m3 + 2)(−2m1m3 + 3m1 −m3 + 2),

dimY1([0, m2, m3])

= 4 · 1
2
(m2 −m3 + 1)

(
H0σ2(m2 − 1, m3 − 2) +H1σ1(m2 − 1, m3 − 2) +H2

)

= (m2 −m3 + 1)(2m2m3 − 3m2 −m3 + 1).
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