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Maximal Ol’shanskĭı Semigroups
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Abstract. In this article we show for simple complex groups GC that

if a subsemigroup S contains a real form G such that G is not isolated

in S , then S contains a minimal Ol’shanskĭı semigroup and is contained
in a maximal Ol’shanskĭı semigroup. It follows in particular that maximal

Ol’shanskĭı semigroups are maximal semigroups.

Let G be a real form for a complex Lie group GC . A complex Ol’shanskĭı semi-
group in GC is one of the form Γ(C) = exp(iC)G , where C is an AdG -invariant
convex cone in the Lie algebra g of G . These semigroups are noncommutative
analogues of tube domains and play an important role in the representation the-
ory of G ([13], [12]) and also arise in a variety of contexts of harmonic analysis
on G ([5]). Their structure is presented in more detail in Section 1.

When one tries to establish in a concrete situation that a certain semi-
group is an Ol’shanskĭı semigroup, it is generally much easier to show that the
appropriate Ol’shanskĭı semigroup is contained in the given semigroup than to
show the reverse containment. This paper provides an important theoretical tool
for showing the reverse containment in the case of simple groups: if a subsemi-
group S contains a real form G of GC such that G is not isolated in S , then S
contains a minimal Ol’shanskĭı semigroup and is contained in a maximal Ol’shan-
skĭı semigroup. The preliminary background is recalled in the first two sections
and the proof is given in Sections 3 and 4. Section 5 discusses some important
consequences and applications of this result.

It is a corollary of what is done here that in the context of simple groups
maximal complex Ol’shanskĭı semigroups are maximal semigroups, a fact first
established by Hilgert and Neeb [7, Chapter 8]. The proof given here relies
heavily on their earlier work, but there is also a significant simplication. In
particular, one no longer needs the theory of highest weight representations nor
San Martin’s theory of invariant control sets [17]. This not only makes the proof
shorter and more accessible, but also enables the generalization given in this
paper. For related results in the real analytic case, see [8].
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1. Complex Ol’shanskĭı Semigroups

By a wedge or cone in a finite dimensional real or complex vector space,
we mean a non-empty subset that (i) is closed under addition, (ii) is closed with
respect to scalar multiplication by non-negative scalars, and (iii) is topologically
closed. The terms “wedge” and “cone” are thus interchangeable; we shall,
however, use the term “wedge” when we wish to emphasize the likelihood that
the edge W ∩ −W of W is non-trivial. We shall tend to think of cones C as
pointed, i.e., as satisfying C ∩ −C = {0} . We shall generally be interested in
cones or wedges C that are generating, i.e., that satisfy C − C is the whole
vector space. Note that C is generating if and only if it has non-empty interior,
which we denote by C◦ . In particular, C always has interior in C−C ; we call
this interior the algebraic interior and denote it by algint(C).

In the Lie theory of semigroups, one assigns to a closed subsemigroup S
of G an appropriate wedge L(S) (consisting of subtangent vectors to S at e)
in the Lie algebra L(G) of G , a process that extends the the usual assigning to
an analytic subgroup of the group G its subalgebra in L(G).

We recall basic facts from the Lie theory of semigroups concerning this
assignment (see, for example, [6]). Let S be a closed subsemigroup of a Lie group
G with Lie algebra L(G). We define the subtangent set of S at e by

L(S) = {X ∈ L(G): exp(tX) ∈ S for all t ≥ 0}.
It turns out that W := L(S) is always a Lie wedge, i.e., W is a wedge which
satisfies (i) the edge W∩−W (which is the largest vector subspace contained in
W ) is a subalgebra, and (ii) the wedge W is invariant under the adjoint action of
any connected analytic subgroup with Lie subalgebra the edge (equivalently W
is invariant under eadX for all X ∈W∩−W ). We say that S is infinitesimally
generated if the subsemigroup generated by the exponential image of L(S) is
dense in S and is strictly infinitesimally generated if the semigroup generated by
the exponential image of L(S) is all of S .

Let g be a Lie algebra, and let G be a corresponding Lie group. We
denote by Aut(g) the group of automorphisms of g . The group of inner auto-
morphisms is the group Inn(g) := 〈ead g〉 ; if G is connected, it agrees with the
group Ad(G).

A cone C ⊆ g is called an invariant cone if C is invariant under the
adjoint action of G0 , the identity component of G . Note that this is equivalent
to the invariance of the cone under all automorphisms of the form exp(adX) for
X ∈ g , since these automorphisms generate the adjoint group. Thus invariance
may be viewed as strictly a Lie algebra phenomenon.

These invariant cones give rise to one of the most standard and basic
constructions for Ol’shanskĭı semigroups (see [13], Section V.4 of [6], Chapter
VII of [7] and [10]).

Definition 1.1. Let C be an invariant generating pointed cone in a finite
dimensional real Lie algebra g . Let gC = g+ ig be the complexification of g and
let GC be a connected Lie group with Lie algebra gC . A closed subsemigroup
S of GC is called the complex Ol’shanskĭı semigroup associated to C and GC if
the following conditions are satisfied:
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(i) The semigroup S is closed in GC and satisfies S = (exp iC)G0 =
G0(exp iC), where G0 is the analytic subgroup generated in GC by
exp g and is itself a closed subgroup of GC .

(ii) (X, h) 7→ (exp iX)h: C × G0 → S is a homeomorphism (and a diffeo-
morphism if that is appropriately defined for this context). Thus each
s ∈ S admits a unique (Ol’shanskĭı) polar decomposition s = (exp iX)h ,
X ∈ C , h ∈ G0 . The left-right dual also holds.

(iii) The interior S◦ of S is a dense semigroup ideal, S◦ = (exp iC◦)G0 ,
where C◦ is the interior of C in g , S◦ is a complex manifold, and the
multiplication on S◦ is holomorphic.

(iv) The mapping s 7→ s∗:S → S defined by s∗ = g−1 exp iX if s =
(exp iX)g is a continuous antiautomorphism of order 2 on S , called the
adjoint involution. It is antiholomorphic on S◦ . For s ∈ S , s∗ = s−1 if
and only if s ∈ G0 and s∗ = s if s ∈ exp iC .

(v) The polar decomposition is uniquely determined as s = exp(iX)h ∈
exp(iC)G0 , where X is the unique member of C such that exp(2iX) =
ss∗ and h = exp(−iX)s .

(vi) The semigroup S is strictly infinitesimally generated and L(S) = g⊕C .

The complex Ol’shanskĭı semigroup associated to C and GC is denoted by
Γ(C, GC), or simply Γ(C) if GC is understood.

The next theorem is an existence theorem in the semisimple setting
for complex Ol’shanskĭı semigroups which is very close to the original one of
Ol’shanskĭı [13]. More general results can be found in [10] and [7].

Theorem 1.2. Let g be finite dimensional semisimple Lie algebra which
contains a pointed generating invariant cone C , let GC be a connected Lie
group with Lie algebra gC = g + ig , and let G0 be the analytic subgroup of GC
generated by the exponential image of g in GC . Then the complex Ol’shanskĭı
semigroup Γ(C) always exists for the data C and GC . Furthermore, if complex
conjugation on gC integrates to a conjugation involution on GC , then G0 is the
identity component of the fixed point set, and the adjoint involution on Γ(C) is
the restriction of the anti-isomorphism on GC given by g 7→ g∗ := g−1 .

2. Invariant Cones in Semisimple and Hermitian Algebras

In the remainder of the paper let g denote a finite dimensional semisimple
Lie algebra which contains a compact Cartan algebra t (i.e. ead t is a compact
subgroup of Inn g). We summarize the basic theory of invariant cones in such
algebras as it appears in [15], [16], and Chapter 7 of [7] (see also [19], [14], [18],
Chapter III of [6], and [11]). Associated to the Cartan subalgebra tC in the
complexification gC is a root decomposition as follows. For a linear functional
λ ∈ t∗C we set

gλC := {X ∈ gC : (∀Y ∈ tC)[Y,X] = λ(Y )X}
and

∆ := ∆(gC, tC) := {λ ∈ t∗C \ {0} : gλC 6= {0}}.
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Then

gC = tC ⊕
⊕

λ∈∆

gλC,

λ(t) ⊆ iR for all λ ∈ ∆ and σ(gλC) = g−λC , where σ denotes complex conjugation
on gC with respect to g . Let k ⊇ t denote a maximal compactly embedded
subalgebra; k always exists and is uniquely determined by t . Then a root is said
to be compact if gλC ⊆ kC .

We write ∆k for the set of compact roots and ∆p for the set of non-
compact roots. A subset ∆+ ⊆ ∆ is called a positive system of roots if there exists
an element X ∈ it such that ∆+ = {α ∈ ∆:α(X) ≥ 0} and ∆+ ∩ −∆+ = Ø.
The Weyl group associated to t is the group

Wk := NG(t)/ZG(t) ∼= NK(t)/ZK(t)

which coincides with the Weyl group of the compactly embedded Lie algbra k .
A positive system ∆+ is said to be k-adapted if ∆+

p is invariant under the Weyl
group.

For a positive system ∆+ of roots we define the cone

cmax := cmax(∆+
p ) := {X ∈ t: (∀α ∈ ∆+

p )iα(X) ≥ 0}

and

cmin := cmin(∆+
p ) := cone{i[Xα, Xα]:α ∈ ∆+

p , Xα ∈ gαC},

where for a subset A of a vector space cone(A) denotes the smallest closed
convex cone containing A . For a cone C in a vector space V we write C? :=
{ν ∈ V ∗: ν(C) ⊆ R+} for the dual cone.

The next theorem is the major one on the existence of invariant cones in
the semisimple case.

Theorem 2.1. Let g be a finite dimensional semisimple real Lie algebra,
which contains a pointed generating invariant cone C . Then compact Cartan
algebras t exist. For any compact Cartan subalgebra t and the (unique) maximal
compact algebra k containing it, there exists 0 6= Z ∈ z(k) ⊆ t and a k-adapted
positive system of roots ∆+ such that such that (i) Z is in the interior of C ,
(ii) Z is in the interior of the elliptic (= compactly embedded) elements of g ,
(iii) iα(Z) > 0 for all α ∈ ∆+

p , and (iv) for ∆+
p

cmin ⊆ C ∩ t ⊆ cmax.

The invariant pointed generating cones containing cmin are in one-to-one corre-
spondence via intersection with t with those cones in t containg cmin , contained
in cmax , and invariant under the action of the Weyl group Wk . In particular,
there exist largest and smallest pointed generating invariant cones Cmax and
Cmin containing cmin and these satisfy Cmax ∩ t = cmax and Cmin ∩ t = cmin .
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The simple Lie algebras which contain pointed generating invariant cones
are precisely the hermitian simple ones, those for which the maximal compactly
embedded subalgebras have a non-trivial (one-dimensional) center. Let g be a
hermitian simple Lie algebra, let k be a maximal compact subalgebra, and let
Bθ(·, ·) be the positive-definite form on g given by Bθ(X,Y ) = −κ

(
X, θ(Y )

)
,

where κ is the Cartan-Killing form and θ is the Cartan involution which fixes
k . Let Z ∈ k span the center of k , and let t be a compact Cartan subalgebra of
g contained in k . Then Z ∈ t , by maximal commutativity of t , and there exists
a k -adapted positive system of roots ∆+ such that iα(Z) > 0 for all α ∈ ∆+

p .
The following conditions hold (see [15]):

(I) cmin contains Z in its algebraic interior, and cmax = (cmin)∗ , where the
dual is taken in t with respect to the restriction of Bθ(·, ·).

(II) Each pointed generating invariant cone in g contains either Z or −Z in
its interior.

(III) For each pointed generating invariant cone C , we have (C∩t)∗ = C∗∩t ,
where the first dual cone is computed in t and the second in g , both with
respect to Bθ(·, ·).

3. Maximal Semigroups and Cartan Subalgebras

Let S be a subsemigroup of a Lie group G such that the interior S◦ of
S in G is non-empty. We set

L∞(S) := {X ∈ G: exp(tX) ∈ S◦ for some t > 0}.

We list some elementary properties of L∞(S), which hold in an arbitrary Lie
algebra.

Lemma 3.1. Let S 6= G be a subsemigroup with non-empty interior in a
connected Lie group G with Lie algebra g . Then the following hold:

(i) The set L∞(S) is topologically open and is closed under multiplication
by positive scalars.

(ii) If X ∈ L∞(S) , then there exists T > 0 such that t ≥ T implies
exp(tX) ∈ S .

(iii) If exp(sX) ∈ S for some s > 0 (in particular, if X ∈ L∞(S)) and if
Y ∈ L∞(S) and [X,Y ] = 0 , then X + Y ∈ L∞(S) .

(iv) If X ∈ L∞(S) , then exp(−tX) 6∈ S for t > 0 . In particular, 0 6∈
L∞(S) .

(v) If g, g−1 ∈ S and X ∈ L∞(S) , then Ad g(X) ∈ L∞(S) .

Proof. (i) Consider the mapping Φ: (0,∞) × g → G defined by Φ(t,X) =
exp(tX). Then Φ is continuous and L∞(S) is projection into the second co-
ordinate of the open set Φ−1(S◦), hence open. That L∞(S) is closed under
multiplication by positive scalars is immediate.

(ii) Suppose that X ∈ L∞(S) and exp(tX) ∈ S◦ for t > 0. Then there
exists ε > 0 such that exp(sX) ∈ S◦ for t − ε < s < t+ ε . Note that for each
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n > 0, exp(n · (t − ε, t + ε)X) ⊆ S◦ , since the latter is a semigroup. As n is
chosen larger, the intervals n·(t−ε, t+ε) expand in length. Hence if N is chosen
large enough, then the intervals n ·(t−ε, t+ε) overlap each other for consecutive
integers greater than N , and thus their union over all n > N contains the open
ray (Nt,∞). (Indeed one can choose N so that 1/N < (t+ ε)/(t− ε)− 1.) One
now chooses T = Nt+ 1.

(iii) Suppose that exp(sX) ∈ S for s > 0. By (ii) there exists T > 0
such that exp(tY ) ∈ S◦ for t ≥ T . Pick n ∈ N such that ns > T . Then for
t := ns ,

exp
(
t(X + Y )

)
= exp(tX) exp(tY ) ∈ SS◦ ⊆ S◦,

so X + Y ∈ L∞(S).

(iv) Suppose X ∈ L∞(S) and exp(−tX) ∈ S for some t > 0. By parts
(i) and (iii), 0 ∈ L∞(S). Thus S◦ contains some open neighborhood exp(B) of
e , and hence is all of G , since G is connected, a contradiction.

(v) Suppose g, g−1 ∈ S , and s := exp(tX) ∈ S◦ for t > 0. Pick an open
symmetric neighborhood B of the identity e so small that BsB ⊆ S◦ . Then
there exist b, d ∈ B such that gb, dg−1 ∈ S . Then

gsg−1 = gbb−1sd−1dg−1 ∈ SBsBS ⊆ SS◦S ⊆ S◦.

Thus exp t
(

Ad g(X)
)

= exp
(
Ad g(tX)

)
= g exp(tX)g−1 ∈ S◦ . It follows that

Ad g(X) ∈ L∞(S).

We record a lemma that will be useful for our later calculations.

Lemma 3.2. Let B be a neighborhood of 0 in sl(2,C) and let a be the one-
dimensional subspace of diagonal matrices in SL(2,R) . Then there exists m ∈ N
such that Am = SL(2,C) , where A := exp a ∪ expB .

Proof. Let U be an open set containing the identity e and contained in
expB . Then the maximal compact subgroup K := SU(2) is contained in Un

for some n , since these increasing open sets cover K . Let D = exp a be the
one-dimensional subgroup of diagonal matrices of determinant one with positive
real entries on the diagonal. Then

SL(2,C) = KDK ⊆ UnDUn ⊆ A2n+1,

where the first equality follows from the Cartan decomposition of a semisimple
Lie group (see e.g. Theorem IX.1.1 of [4]), or can be deduced directly by writing
any matrix in its polar decomposition as a product of a special unitary and a
positive definite hermitian matrix, and then converting the latter to a diagonal
matrix by an orthonormal change of basis.

In the next lemma we let g be a semisimple Lie algebra containing a
pointed generating invariant cone C .

We assume the notation and setting of Theorem 2.1. We thus have in
the complexification gC of g a positive system of roots ∆+ such that iα(Z) > 0
for all α ∈ ∆+ , where Z ∈ z(k). For each non-compact positive root α ∈ ∆+

p ,
we set

gC(α) := gαC + g−αC + [gαC, g
−α
C ].
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Note that gC(α) is isomorphic to sl(2,C).

Let GC be a complex Lie group for gC for which complex conjugation
integrates to GC , and let G be the connected component of the fixed point set.
Then G is closed and has Lie subalgebra g in gC . We henceforth consider only
closed subsemigroups S of GC with non-empty interior S◦ and with the property
that G ⊆ S 6= GC .

Lemma 3.3. Suppose iZ ∈ L∞(S) . If for α ∈ ∆+
p , there exists X ∈ t such

that iX ∈ L∞(S) and iα(X) < 0 , then gC(α) ∩ it ⊆ L∞(S) ∩ it .

Proof. By hypothesis, we have that iZ ∈ L∞(S)∩it , where Z is appropriately
chosen as above in the center of k , and by choice of the positive system α(iZ) > 0.
Thus there exists a positive number r such that iα(rZ + X) = 0. By Lemma
3.1(iv), Y := i(rZ + X) 6= 0, and by Lemma 3.1(iii), Y ∈ L∞(S). We can
replace Y with a positive multiple such that exp(tY ) ∈ S◦ ; it remains true
that α(tY ) = 0. We again call this new element Y . Consider the subalgebra
gC(α) = gαC + g−αC + [gαC, g

−α
C ] . Then gC(α) is isomorphic to sl(2,C) and

g[α] := gC(α) ∩ g is a real form isomorphic to sl(2,R) (see e.g. Section 3.6
of [6] or Sections 7.1 and 7.2 of [7]). Since α(Y ) = 0, we see directly that
[gC(α), Y ] = 0. Thus expY commutes with expU for all U ∈ gC(α). Pick
an open set B containing 0 in gC(α) such that exp(B + Y ) ⊆ S◦ . Set A :=
expB∪exp(g[α] . Since the subgroup generated by exp(gC(α)) is a homomorphic
image of the simply connected group SL(2,C), it follows directly from Lemma
3.2 that H := 〈exp gC(α)〉 ⊆ Am for some positive m . Let U ∈ gC(α). Then
expU ∈ Am , so expU = expX1 · · · expXm , where for each i , Xi ∈ B or
Xi ∈ g[α] . Then

exp(mY + U) = exp(mY ) expU = expY expX1 expY expX2 · · · expY expXm

= exp(Y +X1) · · · exp(Y +Xm).

If Xi ∈ B , then exp(Y + Xi) ∈ S◦ and if Xi ∈ g[α] , then exp(Y + Xi) =
expY · expXi ∈ S◦S ⊆ S◦ since Xi ∈ g . Thus the product exp(mY + U) ∈ S◦ .
Suppose further that U ∈ gC(α)∩it . From the preceding paragraph, mY +nU ∈
L∞(S)∩ it for each n , and (1/n)(mY +nU) converges to U . Hence U is in the
closure of L∞(S) ∩ it .

We specialize now to the case that g is hermitian simple. As noted above,
these are precisely the simple Lie algebras which contain an invariant cone.

Lemma 3.4. Let t be a compact Cartan subalgebra of g . If L∞(S) ∩ it 6= Ø ,
then either ±iZ ∈ L∞(S) , where Z spans the center of the maximal compact
subalgebra k of g containing t .

Proof. Pick X ∈ t such that iX ∈ L∞(S). Consider the element Y :=∑
γ∈Wk

γ(iX). Then Y ∈ t and Y ∈ L∞(S) by (iii) and (v) of Lemma 3.1 since
K ⊆ S , where L(K) = k . It then follows from 3.1(iv) that Y 6= 0. Since Y is
fixed by the action of the Weyl group Wk , it must be in the center of k . Since
the center of k is one-dimensional, the result follows from 3.1(i).
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Remark 3.5. By interchanging Z and −Z and the positive and negative
roots if necessary, we can in light of Lemma 3.4 assume that iZ ∈ L∞(S).
We henceforth assume this to be the case.

Theorem 3.6. Let g be a hermitian simple Lie algebra, let GC be a complex
Lie group for gC for which complex conjugation integrates to GC , and let G be
the connected component of the fixed point set.

Furthermore assume that t is a compact Cartan subalgebra of g , k is the
unique maximal compact subalgebra containg t , Z ∈ t spans the one-dimensional
center of k , and ∆+ is a k-adapted system of positive roots satisfying α(iZ) > 0
for each α ∈ ∆+

p .

If S is a subsemigroup of GC containing G and having non-empty
interior, then either L∞(S) ∩ it ⊆ cmax or L∞(S) ∩ it ⊆ −cmax .

Proof. We assume that L∞(S)∩ it 6= Ø, otherwise there is nothing to prove.
By Lemma 3.4 and Remark 3.5, we may assume without loss of generality that
iZ ∈ L∞(S). In this case we show L∞(S) ∩ it ⊆ cmax . Indeed, if this is not the
case, then there exists X ∈ t such that iX ∈ L∞(S) and iα(X) < 0 for some
α ∈ ∆+

p , by the definition of cmax .

Let 0 6= Xα ∈ gαC . Then it is standard that Xα ∈ g−αC (see e.g., Theorem
7.4 of [7]), and thus −i[Xα, Xα] ∈ gC(α) ∩ −cmin , by the definitions of gC(α)
and cmin . Since igC(α) = gC(α), We have

Y := [Xα, Xα] = i(−i)[Xα, Xα] ∈ gC(α) ∩ −icmin ⊆ gC(α) ∩ it.
It follows from Lemma 3.3 that Y ∈ L∞(S) ∩ it .

Consider U :=
∑
γ∈Wk

γ(Y ). Since Y ∈ −icmin , which is invariant
under the action of the Weyl group Wk , we conclude that 0 6= U ∈ −icmin .
Since U is invariant under the action of Wk and is in −icmin , we conclude that
U is some negative multiple of iZ . If Yn → Y , where Yn ∈ it ∩ L∞(S), then
Un :=

∑
γ∈Wk

γ(Yn) is in L∞(S) from parts (iii) and (v) of Lemma 3.1 and

the sequence converges to U . Then −Un converges to −U ∈ (R+ \ {0})(iZ) ⊆
L∞(S). It follows (Lemma 3.1(i)) that −Un ∈ L∞(S) for large n , and hence
0 = −Un + Un ∈ L∞(S) by Lemma 3.1(iii), but a contradiction to Lemma
3.1(iv).

4. Maximal Subsemigroups

In this section we work in the following setting. Let g be a hermitian
simple Lie algebra, let gC be its complexification, let GC be a corresponding
complex Lie group for which complex conjugation integrates to σ:GC → GC ,
and let G be the identity component of the fixed point set. Then G is a closed
connected Lie subgroup with Lie algebra g . Let g∗ := σ(g)−1 denote the adjoint
involution, the involutive antiautomorphism arising from σ .

We further assume that S is a subsemigroup of GC which contains G
such that G is not isolated in S , i.e., (S∩GU)\G 6= Ø for all open neighborhoods
U of the identity. Our goal in this section and the main goal of the paper to
establish the following:
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Theorem 4.1. A subsemigroup S 6= GC of GC containing G such that G
is not isolated in S contains a minimal Ol’shanskĭı semigroup and is contained
in the corresponding maximal Ol’shanskĭı semigroup. In particular, a maximal
Ol’shanskĭı semigroup is maximal in the class of all proper subsemigroups.

After the work of Section 3, the proof requires only minor modification
of the proof of Hilgert and Neeb of the maximality of the maximal Ol’shanskĭı
semigroup. We recall the following proposition from their work which, although
it is non-trivial, can be derived rather quickly using fairly standard Lie theory
(see Proposition 8.48 of [7] and the preceding Proposition 8.32 and Lemma 8.47).

Proposition 4.2. Let g be a simple hermitian Lie algebra, let t ⊆ g be a
compact Cartan subalgebra contained in the maximal compact subalgebra k , let
∆+ be a k-adapted system of positive roots, and let cmax be the corresponding
maximal cone in t . If S ⊆ GC is a closed subsemigroup which contains G and
has dense interior and if

S ∩ exp(it) ⊆ exp(icmax ∪ −icmax),

then
S ⊆ GNGC(t)G,

where NGC(t) is the normalizer of t in GC .

Proof of Theorem 4.1. Let S be a subsemigroup of GC containing G such that
G is not isolated in S . For a countable base Un at e , pick tn = gnun ∈ S \G ,
where gn ∈ G and un ∈ Un . Then the sequence sn := g−1

n tn is a sequence in
S \G converging to e .

Step 1: S contains a minimal Ol’shanskĭı semigroup.

For large n , we may write sn = (expXn)(exp iYn), where Xn, Yn ∈ g converge
to 0 (see, e.g., Lemma IV.7.10 of [6]). Then tn := exp(−Xn)sn = exp(iYn) is
also a sequence in S converging to e , since G ⊆ S . So the tangent Lie wedge
L(S) must meet ig non-trivially, since any limit point of iYn/‖Yn‖ will be in
L(S). Since ig and L(S) are invariant under AdG , their intersection is an
invariant cone in ig , and hence must contain a minimal invariant cone iC . Since
S is closed, it is standard that S contains exp

(
L(S)

)
, and hence contains the

minimal Ol’shanskĭı semigroup exp(iC)G .

Step 2: S is contained in the closure of GNGC(t)G .

Since the minimal Ol’shanskĭı semigroup has the identity e in the closure of its
interior, so does S , and hence S has dense interior. We choose a compact Cartan
subalgebra t of g , let k be the corresponding maximal compactly embedded
subalgebra, and choose a k -adapted positive root system ∆+ so that iC ∩ it =
icmin ⊆ exp−1(S) ∩ it . We deduce from Theorem 3.6 that the hypotheses of
Proposition 4.2 are satisfied, and we thus conclude

S ⊆ GNGC(t)G.

Before we proceed to Step 3, we need some additional notation. Let cmax

be the corresponding maximal cone in t for the positive root system ∆+ just
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introduced. Let W denote the big Weyl group of it with respect to gC (i.e., the
normalizer of it in Ad(GC) modulo the centralizer of it in Ad(GC )), and let
Wk denote those members of W which have representatives of the form Ad(g),
where g ∈ K = exp k . Note this agrees with our previous definition of Wk ,
except now we consider the action on it instead of t .

Step 3: If γ ∈ W and γ·icmin ⊆ icmax , then γ ∈ Wk .

Pick iX ∈ icmin such that the stabilizer of iX in W is trivial (this is possible
since icmin has interior in it). Then γ·iX ∈ icmax , and from the definition
of cmax , α(γ·iX) = iα(γ·X) ≥ 0 for all α ∈ ∆+

p . We can rotate γ·iX to a

∆+
k -positive chamber by an element of Wk , i.e., there exists γ′ ∈ Wk such that

α(γ′γ·iX) ≥ 0 for each α ∈ ∆+
k . Now since ∆+ is k -adapted, it is still the case

that α(γ′γ·iX) ≥ 0 for each α ∈ ∆+
p . Similarly since iX ∈ icmin ⊆ icmax , we

can find γ′′ ∈ Wk such that α(γ′′·iX) ≥ 0 for all α ∈ ∆+ . Since each closed
Weyl chamber is a fundamental domain for W (e.g., [1, Ch. V, §3, no. 3.3, Thm.
2]), it follows that γ′γ·iX = γ′′·iX , and hence that γ′γ = γ′′ from the triviality
of the stabilizer of iX . Thus γ = (γ ′)−1γ′′ ∈ Wk .

Step 4: S◦∩NGC(t) ⊆ Smax , where Smax is the unique maximal Ol’shan-
skĭı semigroup containing the minimal one appearing in step 1.

Let s ∈ S◦ ∩ NGC(t). Let γ := Ad(s)|it be the member of the Weyl group
corresponding to s . It follows from the finiteness of the Weyl group W that
there exists n ∈ N such that γn = Ad(sn)|it = idit . Then

exp(γ·icmin)sn = Ad(s)
(
exp(icmin)

)
sn = s exp(icmin)sn−1 ⊆ S◦SS◦ ⊆ S◦,

since exp(icmin) ⊆ S from step 1.

On the other hand, it is standard that sn ∈ ZGC(t) = exp tC , so that there
exists t ∈ T := exp t and Y ∈ it such that sn = t exp(Y ). Let A := exp(it). It
follows that

exp(γ·icmin)t exp(Y ) = t exp(γ·icmin + Y ) ⊆ S◦ ∩ (TA) = T (S◦ ∩ A) ⊆ T exp(icmax).

The last equality follows from T ⊆ G ⊆ S and the last containment follows from
Theorem 3.6.

It now follows from the uniqueness of the polar decomposition GC =
K ′ exp(p + ik), where K ′ = exp(k + ip), that γ·icmin + Y ⊆ icmax . For each
X ∈ cmin , γ · iX+(1/n)Y = 1

n
(nγ · iX+Y ) ∈ icmax . Thus γ · iX ∈ icmax . Hence

γ · icmin ⊆ icmax , and thus from step 3, γ ∈ Wk . Consequently γ = Ad(k)|it
for some k ∈ NK(t). Now Ad(k−1s) restricted to it is the identity, i.e., k−1s ∈
ZGC(it) = exp tC . Thus s ∈ NK(it)(exp tC) ∩ S . Since NK(it) ⊆ K ⊆ G ⊆ S
and exp tC = TA , we have

NK(it)(TA) ∩ S = NK(it)
(
(TA) ∩ S

)
= NK(it)T (S ∩A)

⊆ NK(it)T exp(icmax) ⊆ G(iCmax) = Smax,

and thus s ∈ Smax .

Step 5: S ⊆ Smax , the appropriate maximal Ol’shanskĭı semigroup.

Since S◦ is dense in S and Smax is closed, it suffices to show S◦ ⊆ Smax . Let
s ∈ S◦ , and let B be any open set containing s such that B ⊆ S◦ . We have
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already seen that S is contained in the closure of GNGC(t)G , so there exists
x ∈ B ∩ GNGC(t)G . Pick g1, g2 ∈ G and y ∈ NGC(t) such that x = g1yg2 .
Then y = g−1

1 xg−1
2 ∈ GS◦G ⊆ S◦ . It follows from step 4 that y ∈ Smax . Since

also G ⊆ Smax , we conclude that x = g1yg2 ∈ Smax . Since B was arbitrary
containing s , we conclude s ∈ Smax = Smax . This concludes the proof.

The last assertion follows by beginning with Smax , supposing it is con-
tained in some proper subsemigroup S , and applying the first part of the theorem
to conclude that S ⊆ Smax .

Corollary 4.3. Let GC satisfy the hypotheses at the beginning of this section
and let S 6= GC be a closed subsemigroup which contains G and exp(icmax) .
Then S is the maximal Ol’shanskĭı semigroup corresponding to cmax .

Proof. Since S contains exp(icmax), the hypotheses of Theorem 4.1 are
satisfied. Hence S ⊆ Smax , the maximal Ol’shanskĭı semigroup corresponding
to cmax . On the other hand, L(S) ∩ ig is a G -invariant wedge in ig containing
icmax , and hence must be the maximal invariant cone iCmax (see Section 2).
Thus Smax = exp(iCmax)G ⊆

(
expL(S)

)
G ⊆ SS = S .

5. Applications and Reflections

We state first of all what is essentially a reformulation of the major result,
Theorem 4.1.

Theorem 5.1. Let G be a complex Lie group with complex Lie algebra g ,
and let g0 ⊆ g be a simple algebra which is a real form of g . If S 6= G is a
closed subsemigroup of G such that S contains the connected subgroup G0 with
Lie algebra g0 and G0 is not isolated in S , then g0 is a hermitian Lie algebra,
and there exist unique minimal and maximal Ol’shanskĭı semigroups Smin and
Smax each with group of units G0 such that Smin ⊆ S ⊆ Smax .

Proof. We first consider the G0 -invariant Lie wedge L(S). It follows directly
that iC := L(S) ∩ ig0 is invariant and proper in ig (since S 6= G). Thus C
is an invariant wedge in g0 , and hence is a pointed generating cone since g0 is
simple. Thus g0 is hermitian. One is now in a position to apply Theorem 4.1.

Remark 5.2. The Theorems 4.1 and 5.1 give general conditions for concluding
that a semigroup is a subsemigroup of an Ol’shanskĭı semigroup. Once one
obtains this conclusion, then one has the Ol’shanskĭı polar factorization in S ,
and each of the factors will also belong to S since S contains G0 . The availabilty
of this factorization can be a useful theoretical tool. For example, one easily
derives the polar decompositions in contraction semigroups found in the work of
Brunet and Kramer ([3] and [2]) by this means.

Remark 5.3. It is a consistent feature of Lie theory to try to reduce the study
of various problems and objects to the study of Cartan subalgebras. We remark
that this is the case for those semigroups arising in Theorems 4.1 and 5.1. Indeed



28 Lawson

if S is such a closed semigroup, then S = G(S ∩ it)G , where t is any compact
Cartan subalgebra of the Lie algebra of the group of units of S . This follows
directly from the facts that S has dense interior, that the interior of the maximal
Ol’shanskĭı semigroup is of the form G exp(iC◦)G , and that G ⊆ S ⊆ Smax .
Hence determining S reduces to determining S ∩ it . The latter is generally
a much more manageable problem. It might be an interesting problem to try
to determine precisely which sets between icmin and icmax are traces of such
semigroups.

Remark 5.4. Ol’shanskĭı [13] has shown that that the compression semigroups
of simple hermitian symmetric spaces are maximal Ol’shanskĭı semigroups. The
difficult direction in his proof is showing that the compression semigroup is
contained in the maximal Ol’shanskĭı semigroup, but this can be easily deduced
using Corollary 4.3. Similar observations apply to the compression semigroup of
complex linear transformations of determinant 1 preserving the set of positive
(or negative) elements of a pseudohermitian form.
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