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Abstract: Real Lie bialgebras and matched pairs for a Lie algebra of formal

vector fields and for Lie algebras of smooth vector fields with fixed zeros on

the circle are constructed.

1. Introduction

The construction of a quantum group generalization of the group Diff+(S1)
(the group of orientation preserving C∞ -diffeomorphisms of S1 ) is an open prob-
lem. On the classical level we have the corresponding problem of the construction
of Poisson Lie groups or of matched pairs for the diffeomorphism group (cf. [D],
[Ta]).

There is some progress in this direction on the Lie algebra level. In [B-M],
[M] and [T] various matched pair structures for certain Lie algebras of complex
vector fields on S1 are obtained. The choice of different function spaces for the Lie
algebra of vector fields sheds a different light on the problem. In [M] the author
considers polynomial vector fields and recursive sequences for the dual Lie algebra.
In [B-M] certain spaces of analytic functions are considered. However, these
structures are not compatible with the subalgebra of real vector fields. Therefore,
they do not admit an integration to the matched pair group level because there is
no complexification of Diff+(S1) (cf. [P-S]).

In this article we classify additional Lie bialgebras and matched pair struc-
tures and obtain the structures of [B-M], [M] as special cases. Every structure is
parametrized by a subalgebra h and by a moment b of h (or [h, h]) of the Lie
algebra g for which the bilinear form h× h 3 (x, y) 7→ b([x, y]) is invertible. The
inverse plays the role of the classical r-matrix. In the case h = g the matched
pair structures are self-dual. For the Lie algebra of vector fields we first choose a
space of semi-infinite formal power series. Such completions of the Witt algebra
occur in conformal field theory (cf. [W1]). We give an explicit description of the
structures and single out the real structures. Next we choose Lie algebras gc of
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smooth functions with fixed zeros. These function spaces allow the construction
of real matched pairs. These Lie algebras correspond to Lie groups Gc with fixed
points of a certain order (see the Remark after Definition 4.2). The structures cor-
respond to subalgebras h(n)

c and certain moments. We hope that some matched
pairs allow an integration to matched pairs for the Lie groups Gc .

The paper is organized as follows: In Section 2 we generalize the foundations
of the finite-dimensional situation to the infinite-dimensional case. In Section 3
we classify Lie bialgebra and matched pair structures for the case of semi-infinite
formal vector fields on the circle. In Section 4 we obtain matched pair structures
for smooth vector fields with fixed zeros on the circle.

I would like to thank the referee for his helpful comments concerning this
paper.

2. Preliminaries

In this section we generalize some well-known results about Lie bialgebras
and matched pairs (cf. [B-M], [D]) to the infinite-dimensional case.

2.1. Construction of matched pairs of Lie algebras. The goal of this subsec-
tion is to introduce matched pair structures for dual pairs of infinite-dimensional
vector spaces without any topology. The constructions of Propositions 2.3 and 2.4
provide the foundation of Section 4.

Definition 2.1. Let g be a (possibly infinite-dimensional) Lie algebra. We say
that g′ is a dual of g if and only if

(i) there is a bilinear form 〈−,−〉 : g × g′ → C such that g, g′, 〈−,−〉 forms a
reflexive pair of vector spaces (i.e., g and g′ separate the points of g′ and g
respectively).

(ii) the coadjoint action K of g on g′ is well-defined
(i.e., ∀x ∈ g, y ∈ g′, ∃ z =: adTx y = −Kxy ∈ g′ given by 〈adxu, y〉 =
〈u, z〉 ∀u ∈ g′ ).

Definition 2.2. A matched pair (g1, g2, α, β) is a pair of Lie algebras g1, g2

with the Lie algebra representations α : g1 × g2 → g2 and β : g2 × g1 → g1 such
that, for all x, y ∈ g1 and u, v ∈ g2 ,

αx([u, v]) = [αx(u), v] + [u, αx(v)] + αβv(x)(u)− αβu(x)(v),

and

βu([x, y]) = [βu(x), y] + [x, βu(y)] + βαy(u)(x)− βαx(u)(y).

We say that (g1, g2, α, β) is a coadjoint matched pair if there is a bilinear form
〈−,−〉, such that (g1; g2; 〈−,−〉) is a dual pair of vector spaces and α, β are the
corresponding coadjoint actions.

Further we say that the linear map ω : g → g′ is a 2-cocycle, if and only if
the bilinear form ω : g × g → C specified by (x, y) 7→ 〈ω(x), y〉 is antisymmetric
and a 2-cocycle, i.e., ω([p, q], r) + ω([q, r], p) + ω([r, p], q) = 0 ∀p, q, r ∈ g .
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Matched pairs can be constructed by invertible 2-cocycles (cf., [W2, page
49]).

Proposition 2.3. Let g be a Lie algebra, g′ a dual to g , and ω a 2-cocycle for
g . Further suppose that ω has an inverse map r : g ′ → g . Set

[x, y]g′ := ω([r(x), r(y)]) x, y ∈ g′,
αe := −adTe e ∈ g,
βx := r αr(x)ω x ∈ g′.

Then (g, g′, α, β) forms a coadjoint matched pair of Lie algebras.

We remark that r : g′ → g is a Lie algebra isomorphism and g is self dual
with respect to the bilinear form 〈ω(−),− 〉. Therefore we can identify g and g ′

and reformulate Proposition 2.3 and obtain a self-dual representation.

Proposition 2.3.a. Under the the assumptions of Proposition 2.3, if α′ := r ◦α ◦
(id×ω) then (g, g, α′, α′) with α′ := rαω and (g, g′, α, β) are isomorphic matched
pairs of Lie algebras.

The next proposition generalizes Proposition 2.3. We show that every
invertible r-matrix of a subalgebra allows the construction of a matched pair.

Let g be a Lie algebra with dual g′ , and let h be a subalgebra with dual
h′ ⊂ g′ . We introduce the following notation:
h⊥ := {x ∈ g′|〈h, x〉 = 0} while h′⊥ := {e ∈ g|〈e, h′〉 = 0}.

Proposition 2.4. Let g be a Lie algebra with dual g ′ , let h be a subalgebra with
dual h′ ⊂ g′ , and let g′ = h′

.
+ h⊥ and g = h

.
+ h′⊥ be direct sum decompositions

of g′ and g respectively, as vector spaces. Further let ω : h → h′ be a 2-cocycle
with inverse r : h′ → h. Set

[x, y]g′ :=





ω([r(x), r(y)]) x, y ∈ h′
−adTr(x)y x ∈ h′, y ∈ h⊥

0 x, y ∈ h⊥ ,
αe := −adTe e ∈ g ,

βx(e) :=





rPh′αr(x)ω(e) x ∈ h′, e ∈ h
Ph′⊥[r(x), e] x ∈ h′, e ∈ h′⊥
r(αex) x ∈ h⊥, e ∈ g.

Then (g, g′, α, β) is a matched pair of Lie algebras. Here Ph′⊥ denotes the projec-
tion to h′⊥ , and Ph′ denotes the projection to h′ .

Example 2.5. Let g = W = lin{ei|i ∈ ZZ } with [ei, ej] = (j − i)ei+j be the
2-sided Witt algebra with dual g′ = W ′ = lin{fi|i ∈ ZZ } where 〈ei, fj〉 = δi,j .
Further let hn = lin{e0, en} (n ∈ ZZ , n 6= 0) be Lie subalgebras with hn

′ =
lin{f0, fn}. Up to a nonzero scalar factor there is a unique 2-cocycle ωn = fn ∧ f0

with inverse rn = e0 ∧ en . We obtain

[fi, f0] = (2n− i)fi−n if i 6= 0
[fi, fn] = ifi if i 6= 0, n
[fi, fj] = 0 if i, j 6= 0, n ,
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αeifj = (2i− j)fj−i ,
and

βfiej =





(n− j)ej+n if i = 0; j 6= −n
jej i = n; j 6= 0, n
−ne0 i = n; j = 0
(i− 2n)e0 j = i− n; i 6= 0, n
−ien i = j; i 6= 0, n
0 i = 0; j = −n

or i = j = n
or i 6= 0, n; j 6= i, i− n.

These structures were first obtained by Michaelis [M], then by Taft [T].

2.2. Lie bialgebras, Classical r-matrices and CYBE. In this subsection we
consider a class of infinite-dimensional graded Lie bialgebras (cf., Definition 2.9,
below) for which we have at our disposal the main results of the finite-dimensional
situation. The results of this subsection are applied in Section 3.

By a locally convex Lie algebra we mean a locally convex vector space with a
continuous Lie bracket. By ⊗π we denote the completed projective tensor product
of locally convex vector spaces (cf. [K2, Chapter 41]).

Let τ, ad(2)
x (for x ∈ g), and ξ , respectively denote the unique continuous

extensions to g⊗πg and, respectively, to g⊗πg⊗πg (cf. [K2, Chapter 41]) of the
continuous linear maps τ, ad(2)

x : g ⊗ g → g ⊗ g and ξ : g ⊗ g ⊗ g → g ⊗ g ⊗ g
given, respectively, by τ(x ⊗ y) = y ⊗ x, ad(2)

x (y ⊗ z) = [x, y] ⊗ z + y ⊗ [x, z],
ξ(x⊗ y ⊗ z) = y ⊗ z ⊗ x.

Definition 2.6. A locally convex Lie bialgebra (g; [, ];4) is a locally convex Lie
algebra (g; [, ]) with a cobracket 4, i.e. a continuous linear map 4 : g → g⊗πg ,
which satisfies the anti-commutativity condition

τ ◦ 4x = −4 f,

the Jacobi identity

(1 + ξ + ξ2) ◦ (4⊗πid)4 = 0,

and the compatibility condition

4([x, y]) = ad(2)
x 4 (y) + ad(2)

y 4 (x).

Remark 2.7. The operator 4⊗πid is the well-defined continuous extension of
4⊗ id from g ⊗ (g⊗πg) to g⊗π(g⊗πg) = g⊗πg⊗πg .

Let {Vi | i ∈ ZZ } be a set of finite-dimensional vector spaces. Denote by∑+ Vi the vector space of semi-infinite direct formal sums {∏i≤a ei|ei ∈ Vi, a ∈ ZZ }.
We endow

∑+ Vi with the topology which arises from the isomorphism∑+ Vn ∼=
∏
n<0 Vn ⊕

∑
n≥0 Vn . We define the locally convex space

∑− Vi anal-
ogously. If V =

∑+ Vi , and if, ∀i ∈ ZZ , V ∗i is the dual space of the finite-
dimensional vector space Vi , then we obtain V ∗ =

∑− V ∗i as the continuous dual
of V ; and (V, V ∗) forms a reflexive pair of locally convex vector spaces (cf. [K1,
Chapter 30]).
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Lemma 2.8. (i) V⊗πV ∼= L(V ∗, V ),

(ii)
∑+Vi⊗π

∑+Vi =
∑
i<i0(j),j<j0(i) Vi ⊗ Vj ,

(iii)
∑+ Vi⊗π

∑+ Vi⊗π
∑+ Vi =

∑
i<i0(j,k);j<j0(i,k);k<k0(i,j) Vi ⊗ Vj ⊗ Vk .

Proof. Cf. [K2, Chapter 41].

Definition 2.9. A locally convex Lie algebra g is an upper semibounded graded
Lie algebra (G+ -Lie algebra) if g =

∑+ gi where the gi are finite-dimensional
subspaces of g and [gi, gj] = gi+j .

In analogy to the finite-dimensional case we make the following definition.

Definition 2.10. Let g be a G+ -Lie algebra. We say that
r =

∑
i,j,n a

n
i ⊗ bnj ∈ g⊗πg , (ani ⊗ bnj ∈ gi ⊗ gj) is a classical r-matrix if it satisfies

the Classical Yang Baxter Equation (CYBE)
∑

i,j,k,l,n

[ani , a
n
k ]⊗ bnj ⊗ bnk + ani ⊗ [bnj , a

n
k ]⊗ bnl + ani ⊗ ank ⊗ [bnk , b

n
l ] = 0. (1)

Remark 2.11. Because of Lemma 2.4(iii) we have in the CYBE only finite
summations in the graded components gi ⊗ gj ⊗ gk .

Classical r-matrices can be constructed by certain 2-cocycles.

Proposition 2.12. Let g be a G+ -Lie algebra, let h be a Lie subalgebra, and
let ω : h → h∗ be an invertible 2-cocycle. Further let i : h → g be the imbedding
operator. Then the extension r = iω−1iT : g∗ → g of ω−1 : h∗ → h is a classical
r-matrix for g .

Lie bialgebras can be given by classical r-matrices.

Proposition 2.13. Let g be a G+ -Lie algebra, and let r ∈ g⊗πg be a classical
r-matrix. Then 4 : g → g⊗πg defined by 4(x) := ad(2)

x r is a well-defined
continuous operator and (g; [, ];4) is a locally convex Lie bialgebra. (We call
g a triangular G+ -Lie bialgebra (cf. [D, page 804]).)

Finally we consider the connection between Lie bialgebras and coadjoint
matched pairs. Both concepts are equivalent in the finite-dimensional case whereas
in the infinite-dimensional situation matched pairs are more general.

Lemma 2.14. (i) Let (g; [, ];4) be a G+ -Lie bialgebra. Let [, ]g∗ := 4T , let
α be the coadjoint action of g on g∗ , and let β be the coadjoint action of g∗

on g . Then (g, g∗, α, β) is a coadjoint matched pair of Lie algebras.

(ii) Let (g, g∗, α, β) be a finite-dimensional coadjoint matched pair. Then
(g; [, ]g; [, ]Tg∗) is a Lie bialgebra.

2.3. Real structures. Let g be a complex Lie algebra with dual g ′ . Let
I : g → g be an antilinear involution given by x 7→ x and let gIR := {x ∈ g|x = x}
be the real subalgebra. We say that I defines a real structure on g . We remark
that IT : g′ → g′ defines a real structure on g′ . We say that a linear map a : g → g′

is real if a ◦ IT = I ◦ a.
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Lemma 2.15. (i) Let g be a G+ -Lie algebra (over C) and let r be an r-
matrix. Then (gIR; [, ]|gIR;4|gIR) is a G+ -Lie algebra over IR if and only if
r is real.

(ii) Under the assumptions of Proposition 2.2 let I be an real structure of g .
Then (gIR, g

′
IR, α|gIR, β|g′IR) is a real matched pair if and only if r : h → h′

is real.

3. The case of formal power series

3.1. Construction of r-matrices. In this section we consider completions of
the Witt algebra W and of its finite dual W ′ defined in Example 2.5.

Let

W+ :=
∑+

Cei

W− :=
∑−

Cfi

be the spaces of semi-infinite formal linear combinations of the elements ei and
fi , respectively. W+ is a Lie algebra with respect to the canonical extension of
the Lie bracket of W , namely,


∑

i≤a
aiei,

∑

i≤b
biei


 =

∑

i≤a,j≤b
(j − i)aibjei+j.

W− is the continuous dual of W+ (i.e. W+∗ = W− ) and if we set
〈

a∑

i=−∞
aiei,

∞∑

i=b

bifi

〉
:=

∞∑

i=−∞
aibi =

a∑

i=b

aibi

then (W+,W−, 〈−,−〉) forms a dual pair of vector spaces.

Now we apply the Propositions 2.12, 2.13 for the construction of Lie bial-
gebras. We choose g = W+ , g∗ = W− , h = W+

n =
∑+ Cenk (n ∈ lN+ ) and

h∗ = W−
n =

∑− Cfnk . For h∗ 3 b =
∑∞
i=a bifin , (fna 6= 0) we consider the

2-cocycle ωnb : h× h→ C defined by

ωnb (x, y) := 〈b, [x, y]〉 =
∑

i,j

n(j − i)xiyjbi+j

where x =
∑
i xiein and y =

∑
i yiein . According to the identity ωbn(x, y) =

〈ωbn(x), y〉 we can view ωnb as a well-defined linear map ωb : h→ h∗ given by

ωnb (emn) =
∑

k

n(k −m)bk+mfkn.

Let a be an odd integer and consider the infinite system of equations in the
variables (ci)i≥−a−1

2

∑

k+l+m=s

ckclbm = δs,−1, s = −1, 0, 1, 2, ... (1)
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i.e.,

c2
−a−1

2
ba = 1

2c−a−1
2
c−a+1

2
ba + c2

−a−1
2
ba+1 = 0

... .

Lemma 3.1. (i) The equation system (1) has the two solutions
±(ci)i≥−a−1

2
.

(ii) Conversely every semi-infinite sequence (ci)i≥−a−1
2

is the solution of an equa-

tion system (1) for certain (bi).

(iii) Every solution of the equation system (1) is also a solution of the equation
system

∑

k+l=s

(2l + k + 1)bkcl = 0 s ∈ ZZ .

Proof. (i) The first equation has the two solutions c−a−1
2

= ±
√

1
ba

. Both

solutions admit the unique successive solution of the remaining equations.

(ii) Fix (ci) and consider (1) as an equation system for the (bi). This triangular
equation system has a unique solution.

(iii) (1) corresponds to the formal power series identity b(z)c(z)2 = 1 where
b(z) =

∑
k bkz

k+1 and c(z) =
∑
k ckz

k . If we differentiate the identity b(z)c(z)2 = 1
and divide the result by c(z) we obtain the identity b′(z)c(z)+2b(z)c′(z) = 0 which
in turn yields the identities.

∑

k+l=s

(2l + k + 1)bkcl = 0 s ∈ ZZ .

Consider an element W ′ 3 b := baz
a + ba−1z

a−1 + ... ∈ W ′ with ba 6= 0. We
say that b is even (respectively, odd) if a is even (respectively, odd ).

Proposition 3.2. (i) If b is odd then ωnb is invertible and as the inverse the
map rnb : W+ → W− defined by

rnb (fmn) =
1

n

∑

k,l

clc−k−l−m−1

2m+ 2l + 1
ekn.

(ii) If b is even then ωb is not invertible and we have dim Ker ωnb = 1.
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Proof. (i) It is easy to verify that rnb maps W+ into W− . Further we have

ωnb r
n
b (fmn) = ωb(

1

n

∑

k,l

clc−k−l−m−1

2m+ 2l + 1
ekn)

= n
∑

j

(j − k)bj+k
1

n

∑

k,l

clc−k−l−m−1

2m+ 2l + 1
fjn

=
∑

j,k,l

clc−k−l−m−1bk+j
j − k

2m+ 2l + 1

Because of Lemma 3.1(iii) we have
∑

k, l
j + k + l = s

(−2l − k − 2m− 1 + k + j)bk+jc−k−l−m−1 = 0 for s ∈ ZZ .

Using this identity and (1) we obtain

ωnb r
n
b (fmn) =

∑

j,k,l

clc−k−l−m−1bk+j
j − k

2m+ 2l + 1
= δj−m−1,−1 = δj,m.

The proof of rnb ω
n
b = id is analogous.

(ii) For simplicity consider the case n = 1. ωb has the following matrix represen-
tation with respect to the bases ej, fj .




· · · · · · · · · · · ·
· · · 0 0 0
· · · 0 0 0
· · · 0 0 0

∣∣∣∣∣∣∣∣∣

· · ·
0
0
0

∣∣∣∣∣∣∣∣∣

· · · · · · · · · · · ·
0 0 −6b0 · · ·
0 −4b0 −5b1 · · ·
−2b0 −3b1 −4b2 · · ·

· · · 0 0 0
∣∣∣ 0

∣∣∣ −b1 −2b2 −3b3 · · ·
· · · 0 0 2b0

· · · 0 4b0 3b1

· · · 6b0 5b1 4b2

· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣

b1

2b2

3b3

· · ·

∣∣∣∣∣∣∣∣∣

0 −b3 −2b4 · · ·
b3 0 −b5 · · ·
2b4 b5 0 · · ·
· · · · · · · · · · · ·




=:




O o D1

oT 0 −d
D2 dT B




Let g 3 e =
∑
i≤k aiei ∈ Ker ωb . It follows that a1 = ... = ak = 0, a0 = γ ∈C and

that, for i ≤ 0 the ai are determined by the equation system D2a
T = −γdT

where a = (..., a−2, a−1). That is, Ker ωb = 1.

By Lemma 3.1 all operators ωnb are parametrized by semi-infinite sequences
(ci)i≤l (up to multiplication with −1). By Lemma 2.8(i) we can also write

rnb =
1

2

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
ekn ∧ emn.

As a consequence of Proposition 2.12 and 3.2 we can classify all r-matrices which
arise from invertible 2-cocycles ωnb on W+

n . That is the content of the following
result.
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Theorem 3.3. Let (ci)i≥a for a ∈ ZZ be a semi-infinite complex sequence.
Then

rnb =
1

2

∑

k,l,m

clc−k−l−m−1

2m + 2l + 1
ekn ∧ emn

is a classical r-matrix.

Now we consider two special cases.

Examples 3.4. 1. n=1: We have

r1
b =

1

2

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
ek ∧ em.

These r-matrices correspond those in [B-M, page 27]. But in their paper, instead
considering the spaces W± of formal power series, Beggs and Majid consider
certain spaces of analytic functions.

2. b = fu = f−2a−1 , (ci = ±δi,a ): This is the simplest nontrivial case. The
summation reduces to one summation parameter. We obtain

rnu=−2a−1 =
1

2n

∑

m

1

2m− ue(u−m)n ∧ emn.

3.2. Construction of Lie bialgebras and matched pairs. Next we describe
the Lie bialgebra and matched pair structures which arise from the r-matrices of
Theorem 3.3.

Proposition 3.5. Set

4n
b (ei) := ad(2)

ei
rnb =

1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
(mn− i)emn+i ∧ ekn.

Then (W+,4n
b ) is a locally convex Lie bialgebra.

Proof. The assertion follows from Propostion 2.13, Theorem 3.3 and the cal-
culation

4n
b (ei) = adei

1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
emn ⊗ ekn

=
1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
[ei, emn]⊗ ekn + emn ⊗ [ei, ekn]

=
1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
(mn− i)emn+i ⊗ ekn + (kn− i)emn ⊗ ekn+i

=
1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
(mn− i)emn+i ∧ ekn.
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Example 3.6. Let r = rnu=−2a−1 . We obtain

4n
b (ei) =

∑

m

1

2m− uemn+i ∧ e(u−m)n.

Proposition 3.7. Let b ∈ h∗ = W−
n =

∑−Cfnk even. Set

[frn, fsn]W− =
∑

j

clc−r−s+j−l−1
(r−s)(2(l+j)+1)

(2(r−j+l)+1)(2(s−j+l)+1)
fjn, (1)

[frn, fq]W− = − 1

n

∑

j

clc−r−j−l−1
(2jn− q)

2j + 2l + 1
fq−jn if n/| q, (2)

[fp, fq]W− = 0 if n/| p, q, (3)

αeifj = (2i− j)fj−i, (4)

βx(e) =





rcPhc′αrc(x)ω(e) x ∈ hc′, e ∈ hc
Phc′⊥[rc(x), e] x ∈ hc′, e ∈ hc′⊥

rc(αex) x ∈ hc⊥, e ∈ gc .
(5)

Then M
(n)
b = (W+,W−, α, β) is a matched pair of Lie algebras.

Proof. We calculate the matched pair structure using Lemma 2.14(i). It suffices
to examine the following formula in 3 separate cases:

〈ei, [fp, fq]〉 = 〈4n
b (ei), fp ⊗ fq〉 .

=
1

n

∑

k,l,m

clc−k−l−m−1

2m+ 2l + 1
(mn− i)(δmn+i,pδkn,q − δkn,pδmn+i,q)fi (6)

Case 1 : n|p and n|q . In this case formula (1) follows upon taking p = rn, q = sn
and i = jn.

Case 2 : n|p but n/| q . In this case the first summand in (6) vanishes. Formula
(2) follows upon taking p = rn and i = q − jn 6= 0.

Case 3 : n/| p and n/| q . In this case formula (3) follows since both summands
vanish in (6).

The formula for α follows from the fact that

〈αeifj, ek〉 = 〈−adTeifj, ek〉 = 〈fj, [ek, ei]〉 = (i− k)δj,i+k.

Now let n=1 and choose the basis gi = ωb(ei) in W− . Then the matched
pairs of Proposition 3.7 take on the following self-dual form.
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Proposition 3.8. Let b ∈ W− . Then M
(1)
b = (W+,W−, α, β) is given by

[ei, ej] = (j − i)ei+j [gi, gj] = (j − i)gi+j,

αeigj =
∑

k,l,m

(m+ i− j)(i−m)

2m+ 2l + 1
bm+i+jclc−k−l−m−1ek,

and

βgiej =
∑

k,l,m

(m+ i− j)(i−m)

2m+ 2l + 1
bm+i+jclc−k−l−m−1gk.

Example 3.9. Consider the special case where b = fun = f(−2a−1)n (i.e.,
ci = δi,a ). Then

[frn, fsn] =
(r − s)(2r + 2s+ 3u)

(2s+ u)(2r + u)
f(r+s+u)n,

[frn, fq] = −2rn+ q + 2un

2rn+ un
frn+q+un if n/| q ,

and

[fp, fq] = 0 if n/| p, q .

Now let n=1. After the basis change gi := (u− 2i)f−i+u (i.e., 〈ei, gj〉 =
−(2j+n)δi+j+n,0) we get mutually non-equivalent structures parametrized by odd
integers u in a self-dual form

[ei, ej] = (j − i)ei+j, [gi, gj] = (j − i)gi+j,

αeigj =
(2j − u)(2i+ j − u)

2i+ 2j − u gi+j, and βgiej =
(2j − u)(2i+ j − u)

2i+ 2j − u ei+j.

α , β are not compatible with the real structure described next in section 3.3.

3.3. The real case. Consider the real structure Iek := −e−k .

Remark 3.10. This involution is motivated by the function space representa-
tion ek = −i exp(ikx) d

dx
.

Proposition 3.11. (gIR,4|IR) and (gIR, g
′
IR, α, β) are real if and only if cl =

c−l−1 (∀l ∈ ZZ ) or cl = −c−l−1 (∀l ∈ ZZ ).
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Proof. According to Lemma 2.15 (gIR,4IR) and (gIR, g
′
IR, α, β) are real if and

only if r
(n)
b is real.

(i) Let cl = ±c−l−1 (∀l ∈ ZZ ). Because of ITfk = −f−k we have to show that
rnb (fj) = −rnb (f−j) (∀j ∈ ZZ ). The relation is satisfied if n/| j . Now let j = mn.
We have

r
(n)
b (fmn) =

1

n

∑

k,l

clc−k−l−m−1

2m+ 2l + 1
ekn =

1

n

∑

k,l

c−l−1ck+l+m

2m+ 2l + 1
ekn

=
1

n

∑

k,l

clc−k−l−m−1

−2m− 2l − 1
e−kn = −rnb (f−mn).

(ii) Let r(fj) = −r(f−j). It follows that

∑

l

clc−k−l−m−1 − c−l−1ck+m+l

2m+ 2l + 1
= 0 ∀m.

Because the last equation is true for all m we obtain

clc−k−l−m−1 − c−l−1ck+m+l = 0 ∀k +m, l. (1)

In other words there is a constant γ ∈C with

cl = γc−l−1 ∀l. (2)

¿From (1) and (2) we find that γ2 = 1, i.e., cl = ±c−l−1 ∀l.

Remark 3.12. (i) It follows from cl = ±c−l−1 that c is a finite power series.

(ii) Let rnb be real. Then the operator ωnb = r−1
b is complex, since b = 1

c2 is an

infinite power series for finite c.

Example 3.13. n = 1, c0 = c−1 = 1. W+
IR has the real base

uk = i
2
(ek + e−k), vk = 1

2
(ek − e−k). We obtain

r =
∑
m

1
2m+1

(vm− ium)⊗ (v−m−1− iu−m−1) + 1
2m−1

(vm− ium)⊗ (v−m+1− iu−m+1)

+( 1
2m+1

+ 1
2m−1

)(vm − ium)⊗ (v−m − iu−m).

4. The case of smooth functions

In this section we apply Proposition 2.3 and 2.4 to obtain real Lie bialgebras
for Lie algebras of smooth functions with fixed zeros on the circle. In [B-M] the
authors obtain a class of complex matched pairs for certain Lie algebras of analytic
vector fields and indicate an obstruction for the case of real structures. These
structures are parametrisized by certain moments b ∈ g ′ . We obtain additional
structures by restriction to subalgebras gc of g and by an enlargement of g′ to
gc
′ (cf. 4.1) and secondly by application of the construction of proposition 2.4 (cf.

4.2).

4.1. Matched pairs Mc . First we introduce the function class D . We identify
2π(respectively, 4π)-periodic functions with functions which are defined on S1

(respectively, on S1(2) , the double cover of S1 ).
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Definition 4.1. Let D be the class of real C∞ -functions c(x), which are
defined on the double cover S1(2) of S1 and which have the following properties:

(i) c(x+ 2π) = −c(x).

(ii) c(x) has zeros x1, ..., x2k of orders p1, ..., p2k (pi ∈ lN)
with p1 + p2 + ... + p2k = 2u (u odd). (We remark that because of (i) we
have xj+k = xj + 2π, pj+k = pj .)

Example 4.2. c(x) = sin nx
2

(n odd). We have k = n, xj = (j − 1)2π
n

, pj = 1
(j = 1, ..., 2n).

For the following we fix an element c ∈ D . We consider the points xj also
as elements of S1 (i.e., xj = xj+k ).

Definition 4.3. (i) For c ∈ D , gc is the subspace of C∞(S1) generated by
all real C∞ -vector fields f for which f(xj) = f ′(xj) = ... = f (pj−1)(xj) = 0
∀j ∈ {1, ..., k}.

(ii) gc
′ is the vector space of C∞ -functions on S1 with poles at xj of order not

greater than pj .

Remark 4.4. gc is a Lie subalgebra with odd codimension of the Lie algebra
g of all real C∞ -vector fields (s. Lemma 4.6 (i)). gc corresponds the Lie subgroup
Gc of Diff+(S1) with

Gc =
{
φ ∈ Diff+(S1)

∣∣∣φ(xi) = xi, φ
′(xj) = ... = φ(pk−1)(xj) = 0

}
.

Now consider the linear maps ωc : gc → gc
′ and rc : gc

′ → gc defined,
respectively, by

ωc(f) =
−2fc′

c3
+

2f ′

c2
,

and by

rc(p) = −1

4
c(x)

∫ x+2π

x
c(y)p(y)dy.

Lemma 4.5. (i) ωc is a well-defined linear map.

(ii) rc is a well-defined linear map.

(iii) ωcrc = idg′ , rcωc = idg .

Proof. (i) ωc changes the zeros at xj of order ≥ pj into poles of order ≤ pj .
The only nontrivial case is a pj -zero at xj . Without loss of generality let xj = 0
and f(x) = a1(x)xpj , c(x) = a2(x)xpj (ai(0) 6= 0). We obtain

ωc(f) =
−2

c3
(fc′ − f ′c)
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=
−2

x3pja3
2

(pjx
2pj−1a1a2 + x2pja1a

′
2 − pjx2pj−1a1a2 − x2pja′1a2)

=
1

xpj

(
−2a1(x)a2

′(x)

a2(x)3
+

2a1
′(x)

a2(x)2

)
. (1)

In the second line of (1) the (pj + 1)-poles for the first and the third summand
cancel and so we have a pj -pole. Consequently ωc is well-defined on gc .

(ii) Let p ∈ gc′ . rc(p) is smooth and 2π -periodic because of Def. 4.1(i). Obviously
rc(p) has at least a pj -zero at xj . That is rc(p) ∈ gc .
(iii)

ωcrc(f) = −1

4
ωc


c(x)

x+2π∫

x

c(y)p(y)dy


 = −1

4

−2c′(x)c(x)
∫ x+2π
x c(y)p(y)dy

c(x)3

−1

4

2c(x)c′(x)
∫ x+2π
x c(y)p(y)dy− c(x)(c(x + 2π)p(x+ 2π)− c(x)p(x))

c(x)2

= −1

4

−2 · 2c(x)p(x)

c(x)2
= p(x)

and

rcωc(f) = rc(
−2fc′

c3
+

2f ′

c2
) = −1

4
c(x)

∫ x+2π

x

−2fc′

c2
+

2f ′

c
dy

= −1

4
c(x)

∫ x+2π

x
2(
f

c
)′dy = −1

4
2c(x)

(
f(x+ 2π)

c(x+ 2π)
− f(x)

c(x)

)
= f(x) .

Lemma 4.6. (i) gc is a Lie subalgebra of the Lie algebra g of all real C∞ -
vector fields on S1 .

(ii) gc
′ is a dual of gc (cf. Def.2.1) with respect to the bilinear form

〈f(x), p(x)〉 =
∫

S1 f(x)p(x)dx .

(iii) ωc is a 2-cocycle (cf. 2.1).



Leitenberger 251

Proof. (i) One has to show that [f, g] has a zero of order pj at xj . This follows
from the formula

[f, g](n) = fg(n+1) +
n−1∑

i=0

[(
n

i

)
−
(

n

i + 1

)]
f (i+1)g(n−i) − f (n+1)g.

(ii) Clearly gc , (respectively, gc
′ ) separates the points of gc

′ , (respectively, gc ).
Then K(f)p = fp′+ 2f ′p acts invariantly on g because if f has an rth -order zero
at xj and if p has an sth -order pol at xj then K(f)p has at most a pole of order
s− r − 1 ≥ −1 ≥ −pj at xj .

(iii) We have

〈ωc(f), g〉 =
∫

S1

−2fgc′

c3
+

2f ′g

c2
dy =

∫

S1

−1

c2
(fg)′ +

2f ′g

c2
dy

= −
∫

S1

1

c2
(fg′ − f ′g)dy = −

〈
1

c2
, [f, g]

〉
.

The assertion follows from the Jacobi identity.

Remark 4.7. We have 〈ωb(f), g〉 = −〈b, [f, g]〉 (cf. the proof of Lemma
4.6(iii)). Because of the behavior of c at the poles xi , b = 1

c2 6∈ gc′ and therefore

b is not a moment of gc but we can consider b as a moment of [gc, gc].

Proposition 4.8. Let c(x) ∈ D , and let

[p, q]gc′ =
2c′p+ cp′

4

∫ x+2π

x
cqdy − 2c′q + cq′

4

∫ x+2π

x
cpdy,

αfp = fp′ + 2f ′p,

and

βpf = c
∫ x+2π

x

f(cp′ + 2c′p)

4
dy +

1

2
c2fp+

1

4
(c′f − f ′c)

∫ x+2π

x
cpdy.

Then Mc = (gc, gc
′, α, β) is a real matched pair of Lie algebras.

Proof. The assumptions of Proposition 2.3 are satisfied by Lemmas 4.5 and
4.6. One calculates the above formulas by Proposition 2.3.

Because of [p, q]gc′ = ωc([rc(p), rc(q)]) we can identify gc and gc
′ . Applying

Proposition 2.1.a we obtain a self-dual representation for Mc .

Theorem 4.9. Set

α′fg =
1

2
c(x)

∫ x+2π

x

(
3fg′c′

c2
+
fgc′′

c2
− 3fg(c′)2

c3
+

2f ′gc′

c2
− 2f ′g′

c
− fg′′

c

)
dy.

Then (gc, gc, α
′, α′) and Mc are isomorphic matched pairs of Lie algebras.
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Proof. One calculates the above expression for α′ by α′ = rαω .

Example 4.10. Let c(x) = sin x
2

. Then gc turns out to be the space of real
analytic functions with f(0) = 0 while gc

′ is the space of real analytic functions
possibly having a simple pole at 0. We obtain rc(p)(x) = sin x

2

∫ x+2π
x sin y

2
f(y)dy

and

α′fg =
1

2
c(x)

∫ x+2π

x

(3fg′ + 2f ′g) cos y

sin2 y
− fg(1 + 2 cos2 y)

sin3 y
− 2f ′g′ + g′′f

sin y
dy.

Remark 4.11. With respect to some weaker topology of the Lie algebra gc and
a certain completion gc⊗gc of the algebraic tensor product gc ⊗ gc , the matched
pairs Mc correspond to r-matrices

gc⊗gc 3 r = r(x, y) = −1

4
χ(x, y)c(x)c(y), χ(x, y) =

{
−1 if y ∈ [0, x)
+1 if y ∈ [x, 2π)

and Lie bialgebras (gc,4 : gc → gc⊗gc) with

4(f) =
1

4
χ(x, y)(c(x)c(y)(f ′(x) + f ′(y))− f(x)c′(x)c(y)− f(y)c(x)c′(y)).

4.2. Matched pairs M (n)
c . Finally we generalize Proposition 4.8 in the spirit

of Proposition 2.4. Fix an element c(x) ∈ D and consider also cn(x) := c(nx)
as an element of D . Let cn have zeros xj of order pj (j = 1, ..., 2nk ) with
p1 + ...+ p2nk = 2nu and u odd. We have xj+k = xj + 2π

n
and pj = pj+k . We can

consider the elements xj ∈ S1(2) as elements of S1 (i.e., xj+nk = xj + 2π ).

Definition 4.12. (i) g(n)
c is the vector space of C∞ -vector fields on S1 with

zeros xj of order at least pj ,

(ii) g(n)
c

′
is the vector space of C∞ -functions on S1 with poles xj of order at

most pj ,

(iii) h(n)
c is the subspace of g(n)

c of 2π
n

-periodic vector fields,

(iv) h(n)
c

′
is the subspace of g(n)

c

′
of 2π

n
-periodic functions.

Lemma 4.13. (i) g(n)
c , h(n)

c are subalgebras of g .

(ii) With respect to the pairing 〈f(x), p(x)〉 =
∫
S1 f(x)g(x)dx the spaces g(n)

c

′
,

(respectively, h(n)
c

′
) are duals of g(n)

c (respectively h(n)
c ) (cf. Def. 2.1).

(iii) We have the direct decompositions g(n)
c = h(n)

c

.
+ h(n)⊥

c

′
and g(n)

c

′
= h(n)

c

′ .
+

h(n)⊥
c .
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Proof. (i), (ii) See the proof of Lemma 4.6(i),(ii).

(iii) Let f ∈ g(n)
c . The first identity follows from the decomposition

f(x) =
1

n

n∑

j=1

f(x+
2πj

n
) +


f(x)− 1

n

n∑

j=1

f(x +
2πj

n
)


 .

The proof of the second identity is analogous.

Define linear maps ω(n)
c : h(n)

c → h(n)
c

′
and r(n)

c : h(n)
c

′ → h(n)
c by setting

ω(n)
c (f) =

−2fcn
′

c3
n

+
2f ′

c2
n

,

and

r(n)
c (p) = −1

4
cn(x)

∫ x+2π

x
cn(y)p(y)dy.

Lemma 4.14. ω(n)
c is a 2-cocycle and r(n)

c ,ω(n)
c are well-defined linear maps

with r(n)
c ω(n)

c = id
h(n)
c

, ω(n)
c r(n)

c = id
h(n)
c

′ .

Proof. See the proof of Lemma 4.5.

Theorem 4.15. Let c ∈ D and set

[p, q] =
2cn
′p+ cnp

′

4

∫ x+2π

x
cn(y)q(y)dy− 2cn

′q + cnq
′

4

∫ x+2π

x
cn(y)p(y)dy

if p, q ∈ h(n)
c

′
;

[p, q] = c2
npq −

1

4
(cnq

′ + 2cn
′q)
∫ x+2π

x
cnpdy

if p ∈ h(n)
c

′
, q ∈ h(n)⊥

c ;

[p, q] = 0

if p, q ∈ h(n)⊥
c ;

αfp = fp′ + 2f ′p ;

and

βx(e) =





r(n)
c Ph′αr(n)

c (x)
ω(n)
c (e) x ∈ h(n)

c

′
, e ∈ h(n)

c

Ph′⊥[r(n)
c (x), e] x ∈ h(n)

c

′
, e ∈ h(n)

c

′⊥

r(n)
c (αex) x ∈ h(n)

c

⊥
, e ∈ g(n)

c .

Then M (n)
c = (g(n)

c , g(n)
c

′
, α, β) is a real matched pair of Lie algebras.

Proof. The proof is analogous to Proposition 4.8 and follows from Lemma 4.5,
4.6 and Proposition 2.4.
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5. Some problems

Possibly additional structures can be classified by the consideration of addi-
tional classes of subalgebras. Our method does not work in the case of subalgebras
of odd dimension (e.g. sl(2,C)) and for quasi-triangular r-matrices of subalgebras.

The next step in the direction of a quantization is the integration to matched
pairs of Lie groups and Poisson Lie groups.

Another question is whether there are extensions of matched pairs for gc to
matched pairs of the Lie algebra of all smooth vector fields on the circle.
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