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Abstract. We show that the sum of two adjoint orbits in the Lie algebra

of an exponential Lie group coincides with the Campbell-Baker-Hausdorff

product of these two orbits.

Introduction

N. Wildberger and others have recently investigated the structure of the hyper-
group of the adjoint orbits in relation with the class hypergroup of compact Lie
groups. A generalization of the notion of this type of hypergroup to non-compact
groups, for instance to nilpotent or exponential Lie groups, leads to the prob-
lem of determining a precise relation between the sum of adjoint orbits in the
Lie algebra and the product of the corresponding conjugacy classes in the group
(see [1], and [4]). In ([3]) Wildberger has shown that for nilpotent Lie groups G
the exponential of the sum of two adjoint orbits Ω1 + Ω2 is equal to the product
exp Ω1 ·exp Ω2 in G . In this paper we consider the same problem for exponential
groups.

Let us recall that by the definition of exponential Lie groups, the map-
pings

exp: g→ G and log:G→ g

are diffeomorphisms. We can transfer the group multiplication in G via exp to
a group multiplication in the Lie algebra g and we shall denote it by the symbol
∗ . We obtain the so called Baker-Campbell-Hausdorff multiplication in g , which
is given by

U ∗ V = U + V +
1

2
[U, V ] +

1

12
[U, [U, V ]] +

1

12
[V, [V, U ]] + · · ·

for small U and V in g .

Let X and Y be two elements of the Lie algebra g of the exponential
group G . We denote by AX = Ad(A)X the adjoint action of the element A of
G on X , and by

GX = {AX | A ∈ G}
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the adjoint orbit of X . For h ∈ G , let

C(h) = {g · h · g−1 | g ∈ G}

be the conjugacy class of h .

We show in this note that exp(GX+GY ) is equal to C(expX)·C(expY ).

Theorem A. Let G be an exponential Lie group with Lie algebra g . For any
elements X and Y of g we have

GX + GY = GX ∗ GY.

In fact in order to prove this identity, it suffices (see the end of the proof
of Theorem A, after Lemma 11) to take two elements X and Y in g and to
show that there exist C,D,K,L in the subalgebra h of g generated by X and
Y , such that

X ∗ Y = CX + DY, X + Y = KX ∗ LY.
If we consider these identities on a purely formal level, they are almost trivial.
Indeed, if h∞ is the free Lie algebra generated by X and Y , then we can form
the formal CBH product U ∗V as infinite power series in the brackets of X and
Y and we obtain in this fashion a group structure on h∞ . It is easy to see (for
instance [3]) that

(0.1) h∞X ∗ h∞Y = X + Y + [h∞, h∞] = h∞X + h∞Y.

If h is nilpotent then we get from this formal identity that

(0.2) hX ∗ hY = X + Y + [h, h] = hX + hY.

In the exponential non-nilpotent case, (0.2) is no longer true (see the first example
in the last section of this paper) and we are forced to use closures.

Theorem B. Let H be an exponential Lie group with Lie algebra h . If h is
generated by two elements X and Y , then

(HX + HY )− = X + Y + [h, h] = (C(X) ∗ C(Y ))−.

(the symbol ‘− ’ here means topological closure in h).

We see that in order to prove Theorem A we cannot use the result of
Theorem B. In fact, Theorem A is much more delicate. Its proof requires a
detailed analysis of the structure of a solvable Lie algebra generated by two
elements.

The second example in the last section shows that in general solvable
Lie groups the exponential of the sum of two adjoint orbits Ω1 and Ω2 may be
much smaller than the product of exp Ω1 with exp Ω2 .

This example allows us finally to present in Theorem C a new character-
isation of solvable exponential groups.
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Proof of Theorem A

The proof of Theorem A needs some preparations.

Definition . Let h be an exponential Lie algebra generated by two elements
X and Y . Let b be an ideal of h . We denote by S∗b , resp. by S+

b , the set of all
pairs (C,D), resp. (K,L) in G×G , such that

(1) X ∗ Y = CX + DY mod b, resp. X + Y = KX ∗ LY mod b.

If b = {0} , then we abbreviate S∗β , resp. S+
β to S∗ , resp. S+ .

Remark . If c is another ideal of g contained in b , then obviously

S∗c ⊂ S∗b resp. S+
c ⊂ S+

b .

We need the following well known formula. For any t ∈ R define

f(t) = (−t)−1(e−t − 1).

Let us write for a linear operator Ψ on a finite dimensional vector space a

e(Ψ) = exp(Ψ) =

∞∑

k=0

1

k!
Ψk,

f(Ψ) =
∞∑

k=1

1

k!
(−Ψ)k−1

= ((−Ψ)−1(e(−Ψ)− 1) if Ψ is invertible).

With these notations we have

Lemma 1. Let G be an exponential Lie group with Lie algebra g , let a and
T be two abelian subalgebras of g such that [T, a] ⊂ a . Write Ψ = adT|a for
T ∈ T . Then for any T, T ′ ∈ T, A,A′ ∈ a we have

(4) (T + A) ∗ (T ′ + A′) = T + T ′ + f(Ψ + Ψ′)
−1

(e(−Ψ′) · f(Ψ)A+ f(Ψ′)A′).

In particular,

T ∗ f(Ψ)A = T +A = (e(Ψ) · f(Ψ)A) ∗ T.
Proof. Let c = T + a and let us realize the exponential group C of c as a
semi-direct product of T with a , i. e.,

C = T× a with multiplication (T,A) · (T ′, A′) = (T + T ′, exp(−Ψ′)A+A′)



108 Arnal and Ludwig

for any T, T ′ ∈ T, A,A′ ∈ a . It is easy to see that the exponential mapping
exp: c→ C is given by:

exp(T + A) = (T, f(Ψ)A).

Indeed, for any α and β ∈ R we have

(αT, f(αΨ)αA) · (βT, f(βΨ)βA)

= ((α+ β)T, exp(−βΨ) · f(αΨ)αA+ f(βΨ)βA))

= ((α+ β)T, f((α+ β)Ψ)A).

Hence our mapping exp satisfies the functional equation:

exp(αX) · exp(βX) = exp(α+ β)X.

Also,
d

dt
exp(tX)|t=0 = X for any X ∈ c, α, β ∈ R.

Hence exp must be the exponential mapping. The inverse mapping log is thus
given by:

log(T,A) = T + f(Ψ)−1A, T ∈ T, A ∈ a.

We can now compute the CBH product ∗ on C . Indeed

(T + A) ∗ (T ′ + A′) = log(exp(T +A) · exp(T ′ +A′))

= log((T, f(Ψ)A) · (T ′, f(Ψ′)A′))

= log((T + T ′, e(−Ψ′) · f(Ψ)A+ f(Ψ′)A′))

= (T + T ′) + f(Ψ + Ψ′)−1 · (e(−Ψ′) · f(Ψ)A+ f(Ψ′)A′).

This finishes our proof.

Remark . If aC is the complexification of a then we can extend Ψ, f(Ψ) and
e(Ψ) C -linearly to aC ; we shall use the following relations for Z = X+ iY ∈ aC :

(1.1) <(Ψ(Z)) = Ψ(X), <(f(Ψ)(Z)) = f(Ψ)(X), <(e(Ψ)(Z)) = e(Ψ)(X).

The next lemma gives us special minimal ideals in h which we shall use in the
determination of the sets S∗ and S+ .

Lemma 2. Let h be an exponential Lie algebra which is generated by two
elements X and Y . Let m be a noncentral ideal in h . Then m contains an
ideal b of h which is one of the following five types.

(i) b = RU is one dimensional. There exists a nontrivial homomorphism
Ψ: h→ R such that

[A,U ] = Ψ(A)U for any A ∈ h

and Ψ(X) 6= 0 or Ψ(Y ) 6= 0 .
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(ii) b = RU1 + RU2 is two-dimensional. There exists a complex nontrivial
homomorphism Ψ of h such that

[A,U1 + iU2] = Ψ(A)(U1 + iU2) for any A ∈ h

and Ψ(X) 6= 0 or Ψ(Y ) 6= 0 .

(iii) b = RU + RZ is two-dimensional and Z is contained in the center z
of h . There exists a nontrivial linear functional ϕ : h → R , which is
a homomorphism on [h, h] , and a nontrivial homomorphism Ψ : h → R
such that

[A,U ] = Ψ(A)U + ϕ(A)Z, for all A ∈ h

and Ψ(X) ·Ψ(Y ) 6= 0, ϕ(X) 6= 0 or ϕ(Y ) 6= 0 .

(iv) b = RU1 + RU2 + RZ1 + RZ2 is three or four dimensional and Z1, Z2

are contained in the center of h . We have [U1, U2] = 0 and there exist
a nontrivial linear functional ϕ: h → C , which is a homomorphism on
[h, h] , and a complex valued homomorphism Ψ: h→ C such that

[A,U1 + iU2] = Ψ(A)(U1 + iU2) + ϕ(A)(Z1 + iZ2)

and Ψ(X) ·Ψ(Y ) 6= 0, ϕ(X) 6= 0 or ϕ(Y ) 6= 0 .

(v) there exists an element U 6= 0 in m such that (0) 6= [X,U ] , resp.,
0 6= [Y, U ] is contained in the center of h and b = R[X,U ] , resp.
b = R[Y, U ] .

Proof. Suppose first that there exists a minimal abelian ideal b of h contained
in m such that the intersection of b with the center z of h is trivial. Since h is
solvable, b must be of dimension 1 or 2. Furthermore since b is not central we
must have that [h, b] 6= (0). This gives us the cases (i) and (ii).

If no such ideal exists then z′ = m ∩ z 6= (0), since now any minimal

ideal of h contained in m is central. Let us choose a proper minimal ideal b̃ in
m̃ = h/z′ . If b̃ is central in h̃ then b̃ is necessarily one dimensional since it is

minimal, so we are in case (v). If b̃ is one dimensional and not central then we

choose U ′ in m such that R(U ′ mod z′) = b̃ . We have for any A ∈ h

[A,U ′] = Ψ(A)U ′ + ZA

for some Ψ(A) in R and some ZA in z′ . We can assume that the homomorphism

Ψ of h is not trivial, since otherwise b̃ would be central in h̃ . Hence either
Ψ(X) 6= 0 or Ψ(Y ) 6= 0. If Ψ(X) = 0 and if ZX = 0 then R(U ′+ Ψ(Y )−1 ·ZY )
is ad(X) and ad(Y ) invariant and hence is a noncentral ideal of h contained in
m , which is impossible. If Ψ(X) = 0 but [X,U ′] 6= 0, then we are in case (v). If
Ψ(X) 6= 0, we replace U ′ by U = U ′ + Ψ(X)−1ZX . Whence [X,U ] = Ψ(X)U
and [Y, U ] = Ψ(Y )U+Z for some Z in z′ . The vector Z is not 0 since then RU
would be a minimal noncentral ideal of h contained in m . Now since Y and X
generate h , we must have that [h, U ] ⊂ RU + RZ . An easy computation shows
that ϕ is a homomorphism on ker Ψ ⊃ [h, h] . This is case (iii).
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Similarly, if b̃ is two-dimensional then we can find U ′1 and U ′2 in m such

that b̃ = span(U ′1, U
′
2) mod z′ and such that for any A in h :

[A,U ′1 + iU ′2] = Ψ(A)(U ′1 + iU ′2) + ZA

for some Ψ(A) in C and some ZA in (z′)C . The homomorphism Ψ is not trivial

since b̃ is two-dimensional. If Ψ(X) = 0 then we are either in the case ii) or in the
case v). If Ψ(X) 6= 0, we replace U ′1 + iU ′2 by U1 + iU2 = U ′1 + iU ′2 + Ψ(X)−1ZX
and we get for Ξ = U1 + iU2 the relations

[X,Ξ] = Ψ(X)(Ξ), [Y,Ξ] = Ψ(Y )(Ξ) + Z

for some Z in (z′)C . The vector Z cannot be 0 since otherwise span(U1, U2)
would be a minimal noncentral ideal in h . Since [Ξ,Ξ] ∈ CZ , necessarily,
0 = [X, [Ξ,Ξ]] . On the other hand, [X, [Ξ,Ξ]] = (Ψ(X) + Ψ(X))[Ξ,Ξ]. Since G
is exponential, we have (Ψ(X)+Ψ(X)) 6= 0, hence [Ξ,Ξ] = 0. This is case (iv).

Definition . We say that an ideal b of h is dangerous if it has the form (iii)
or (iv) in Lemma 2.

Lemma 3. (a) Let h be an exponential Lie algebra. Let U1 and U2 be two
elements in h such that [U1, U2] = 0 and such that there exists a nontrivial
complex valued homomorphism Ψ of h with

[A,U1 + iU2] = Ψ(A)(U1 + iU2)

for any A in h .

Let X and Y be two elements in h and suppose that Ψ(Y ) 6= 0 . Let B
be an element in b = span(U1, U2) . Then there exists for any (α1, α2) in R2 an
element (β1, β2) such that

(α1U1+α2U2)X + (β1U1+β2U2)Y = X + Y + B.

Furthermore there exists for any (α1, α2) in R2 another element (β1, β2) such
that

(α1U1+α2U2)X ∗ (β1U1+β2U2)Y = X + Y +B.

(b) Let h be an exponential Lie algebra. Let U be an element in h such
that there exists a nontrivial real valued homomorphism Ψ of h such that

[A,U ] = Ψ(A)U

for any A in h .

Let X and Y be two elements in h and suppose that Ψ(Y ) 6= 0 . Let B
be an element in b = span(U) . There exists for any α in R an element β in R
such that

αUX + βUY = X + Y + B.
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Furthermore there exists for any α in R another element β such that

αUX ∗ βUY = X ∗ Y + B.

Proof. (a) We must make some precise computations involving the complex-
ification hC of h . Any vector C = γ1U1 + γ2U2 of b can be written as

C = <(γ · Ξ),

where γ = γ1 − iγ2 ∈ C and where Ξ = U1 + iU2 . Let us write

B = <(ωΞ).

Now if we set α = −α1 + iα2, β = −β1 + iβ2 , we get

(3.1)

(α1U1+α2U2)X + (β1U1+β2U2)Y

=X + [α1U1 + α2U2, X] + Y + [β1U1 + β2U2, Y ]

=X + Y + <((Ψ(X)α+ Ψ(Y )β)Ξ).

We see now that for every α in C we find β in C such that Ψ(X)α+Ψ(Y )β = ω ,
i.e. such that

(α1U1+α2U2)X + (β1U1+β2U2)Y = X + Y + B.

In the same way we treat:

(α1U1+α2U2)X ∗ (β1U1+β2U2)Y

= (X + [α1U1 + α2U2, X]) ∗ (Y + [β1U1 + β2U2, Y ])

= (X + <(Ψ(X)αΞ)) ∗ (Y + <(Ψ(Y )βΞ))

= X ∗ (<(f(Ψ(X))Ψ(X)αΞ)) ∗ (<(e(Ψ(Y ))f(Ψ(Y ))Ψ(Y )βΞ) ∗ Y
= X ∗ Y
+ <(f(Ψ(X) + Ψ(Y ))−1{(e(−Ψ(Y ))f(Ψ(X))Ψ(X)α+ f(Ψ(Y ))Ψ(Y )β)Ξ})

(by Lemma 1). Whence if we set

(3.2) f(Ψ(X) + Ψ(Y ))−1{e(−Ψ(Y ))f(Ψ(X))Ψ(X)α+ f(Ψ(Y ))Ψ(Y )β} = ω,

then we get for every (α1, α2) in R2 an element (β1, β2) in R2 such that

(α1U1+α2U2)X ∗ (β1U1+β2U2)Y = X ∗ Y +B.

Part (b) is similar.
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Lemma 4. (a) Let h be an exponential Lie algebra. Let U1 and U2 be two
elements of h such that [U1, U2] = 0 and such that there exist a complex
homomorphism Ψ , a complex linear functional ϕ of h , and a central vector
Z1 + iZ2 = Z 6= 0 in hC , such that

[A,Ξ] = Ψ(A)(Ξ) + ϕ(A)Z

for every A in h , where Ξ = U1 + iU2 .

Let X and Y be two elements in h so that Ψ(X) ·Ψ(Y ) 6= 0 . Suppose
furthermore that

det

∣∣∣∣
Ψ(X) Ψ(Y )
ϕ(X) ϕ(Y )

∣∣∣∣ 6= 0.

Let C = <(γZ) and B = <(ρΞ) , for some γ, ρ ∈ C . Then there exist (α1, α2)
and (β1, β2) in R2 such that

(α1U1+α2U2)X + (β1U1+β2U2)Y = X + Y + B + C.

Furthermore there exist (ω1, ω2) and (τ1, τ2) in R2 such that

(ω1U1+ω2U2)X ∗ (τ1U1+τ2U2)Y = X ∗ Y + B + C.

(b) Let h be an exponential Lie algebra. Let U be an element of h such
that there exists a real homomorphism Ψ and a real linear functional ϕ of h and
a central vector Z 6= 0 in h , with

[A,U ] = Ψ(A)U + ϕ(A)Z for any A ∈ h.

Let X and Y be two elements in h so that Ψ(X)·Ψ(Y ) 6= 0 . Suppose furthermore
that

det

∣∣∣∣
Ψ(X) Ψ(Y )
ϕ(X) ϕ(Y )

∣∣∣∣ 6= 0.

Let C = cZ and B = rU for some c, r ∈ R .

Then there exist α and β in R such that

αUX + βUY = X + Y +B + C.

Furthermore there exists for any ω in R another element τ such that

ωUX ∗ τUY = X ∗ Y + B + C.

Proof. (a) We set

α = −α1 + iα2, resp. β = −β1 + iβ2,

and have

(α1U1+α2U2)X + (β1U1+β2U2)Y

= X + [α1U1 + α2U2, X] + Y + [β1U1 + β2U2, Y ]

= X + <([X,α · Ξ]) + Y + <([Y, β · Ξ])

= X + Y + <((αΨ(X) + βΨ(Y )) · Ξ) + <((αϕ(X) + βϕ(Y ))Z).
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Since det | | 6= 0, there exists a unique pair (α, β) in C2 such that

(4.1) αΨ(X) + βΨ(Y ) = ρ and αϕ(X) + βϕ(Y ) = γ.

This means of course that

X + Y +B + C = (α1U1+α2U2)X + (β1U1+β2U2)Y.

Finally, for ω = −ω1 + iω2 and τ = −τ1 + iτ2 ∈ C we have

E = (ω1U1+ω2U2)X ∗ (τ1U1+τ2U2)Y

= (X + <([X,ω · Ξ]) ∗ (Y + <([Y, τ · Ξ])

= (X + <(Ψ(X)ω(Ξ + Ψ(X)−1 · ϕ(X)Z))∗
∗ (Y + <(Ψ(Y )τ(Ξ + Ψ(Y )−1 · ϕ(Y )Z))

= X ∗ <(ωf(Ψ(X))Ψ(X)(Ξ + Ψ(X)−1 · ϕ(X)Z))

∗ <(τ · e(Ψ(Y ))f(Ψ(Y ))Ψ(Y )(Ξ + Ψ(Y )−1 · ϕ(Y )Z)) ∗ Y
= X ∗ <((ωf(Ψ(X))Ψ(X) + τe(Ψ(Y ))f(Ψ(Y ))Ψ(Y ))Ξ) ∗ Y

+ <((ωf(Ψ(X))ϕ(X) + τe(Ψ(Y ))f(Ψ(Y ))ϕ(Y ))Z).

by Lemma 1. Let us set

ωf(Ψ(X))Ψ(X) + τe(ΨY ))f(Ψ(Y ))Ψ(Y ) = a

and
ωf(Ψ(X))ϕ(X) + τe(Ψ(Y ))f(Ψ(Y ))ϕ(Y ) = b.

Then

E = X ∗ <(a(Ξ + Ψ(Y )−1ϕ(Y )Z)) ∗ Y + <((−aΨ(Y )−1ϕ(Y ) + b)Z)

= X ∗ Y ∗ <(e(−Ψ(Y ))a(Ξ + Ψ(Y )−1ϕ(Y )Z)) + <((−aΨ(Y )−1ϕ(Y ) + b)Z)

= X ∗ Y ∗ <(e(−Ψ(Y ))a)Ξ + <((a(−Ψ(Y )−1ϕ(Y )

+ e(−Ψ(Y ))Ψ(Y )−1ϕ(Y )) + b)Z)

= X ∗ Y ∗ <(e(−Ψ(Y ))a(Ξ + Ψ(X ∗ Y )−1ϕ(X ∗ Y )Z))

+ <((a{−Ψ(Y )−1ϕ(Y )− e(−Ψ(Y ))Ψ(X ∗ Y )−1ϕ(X ∗ Y )

+ e(−Ψ(Y ))Ψ(Y )−1ϕ(Y )}+ b)Z)

= X ∗ Y + <((f(Ψ(X ∗ Y ))−1e(−Ψ(Y ))a)Ξ)

+ <((a{f(Ψ(X ∗ Y ))−1e(−Ψ(Y ))Ψ(X ∗ Y )−1ϕ(X ∗ Y )−Ψ(Y )−1ϕ(Y )

− e(−Ψ(Y ))Ψ(X ∗ Y )−1ϕ(X ∗ Y ) + e(−Ψ(Y ))Ψ(Y )−1ϕ(Y )}+ b)Z).

Since det | | 6= 0 we can choose ω and τ such that

(4.2) ωf(Ψ(X))Ψ(X) + τ · e(Ψ(Y ))f(Ψ(Y ))Ψ(Y ) = ρe(Ψ(Y ))f(Ψ(X ∗ Y ))

and

ωf(Ψ(X))ϕ(X) + τe(Ψ(Y ))f(Ψ(Y ))ϕ(Y )

= γ − ρe(Ψ(Y ))f(Ψ(X ∗ Y )){(f(Ψ(X ∗ Y ))−1 − 1)

e(−Ψ(Y ))Ψ(X ∗ Y )−1ϕ(X ∗ Y ) + (e(−Ψ(Y ))− 1)Ψ(Y )−1ϕ(Y )},
and we get

(ω1U1+ω2U2)X ∗ (τ1U1+τ2U2)Y = X ∗ Y + B + C.

The proof of (b) is similar to the proof (a).
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Lemma 5. (a) Let h be an exponential Lie algebra. Let U1 and U2 be two
elements in h , such that [U1, U2] = 0 , let Z1, Z2 be two central elements of h ,
such that

[A,U1 + iU2] = Ψ(A)(U1 + iU2) + ϕ(A)(Z1 + iZ2)

for any A in h . Let X and Y be two elements in h , such that Ψ(X) ·Ψ(Y ) 6= 0 ,
Ψ(X) + Ψ(Y ) = 0 , ϕ(X) = 0 , ϕ(Y ) = 1 .

Let C be any element in the span of Z1, Z2 . Then there exist α1, α2 in
R , such that

α1U1+α2U2X + α1U1+α2U2Y = X + Y + C.

Furthermore, there exist ω1, ω2 in R , such that
ω1U1+ω2U2X ∗ ω1U1+ω2U2Y = X ∗ Y + C.

(b) Let h be an exponential Lie algebra. Let U be an element in h , let
Z be a central element of h , such that

[A,U1] = Ψ(A)(U) + ϕ(A)(Z)

for any A in h . Let X and Y be two elements in h , such that Ψ(X) ·Ψ(Y ) 6= 0 ,
Ψ(X) + Ψ(Y ) = 0 , ϕ(X) = 0 , and ϕ(Y ) = 1 .

Let C be any element in the span of Z . Then there exists an α in R ,
such that

αUX + αUY = X + Y + C.

Furthermore, there exists ω in R , such that
ωUX ∗ ωUY = X ∗ Y + C.

Proof. (a) Let us use the computations from the proof of Lemma 4 (a). For
any (α1, α2) in R2 we have

(α1U1+α2U2)X + (α1U1+α2U2)Y

= X + <([X,α · Ξ]) + Y + <([Y, α · Ξ])

= X + Y + <((αΨ(X) + αΨ(Y )) · Ξ) + <((αϕ(X) + αϕ(Y ))Z)

= X + Y + <(αZ).

Hence it suffices to put α = γ , where γ is such that C = <(γZ). Furthermore
(ω1U1+ω2U2)X ∗ (ω1U1+ω2U2)Y

= (X + <([X,ω · Ξ])) ∗ (Y + <([Y, ω · Ξ]))

= (X + <(Ψ(X)ω(Ξ + Ψ(X)−1 · ϕ(X)Z)))

∗ (Y + <(Ψ(Y )ω(Ξ + Ψ(Y )−1 · ϕ(Y )Z)))

= X ∗ (<(ωf(Ψ(X))Ψ(X)(Ξ + Ψ(X)−1 · ϕ(X)Z)))

∗ (<(ω · e(Ψ(Y ))f(Ψ(Y ))Ψ(Y )(Ξ + Ψ(Y )−1 · ϕ(Y )Z))) ∗ Y
= X ∗ (<((ωf(Ψ(X))Ψ(X) + ω · e(Ψ(Y ))f(Ψ(Y ))Ψ(Y ))Ξ)) ∗ Y

+ <((ωe(Ψ(Y ))f(Ψ(Y ))ϕ(Y ))Z).

Since

ωf(Ψ(X))Ψ(X)+ω·e(Ψ(Y ))f(Ψ(Y ))Ψ(Y ) = ω(e−Ψ(X)−1+1−eΨ(Y )) = ω·0 = 0,

it suffices to put ω = (e(Ψ(Y ))f(Ψ(Y )))−1 ·γ , where γ is such that C = <(γZ).

The proof of (b) is similar.
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The structure of h

We shall now construct inductively a sequence of ideals

h ⊃ [h, h] = n ⊃ nr ⊃ nr−1 · · · ⊃ n1 ⊃ n0 = (0)

such that ni/ni−1 = bi is an ideal in h/ni of the form i) to v) in Lemma 2
(i = 1, 2, · · · , r ).

We shall use the root decomposition of h relative to some regular element
T ∈ h . Let us recall what a root Ψ of h is. We choose any Jordan-Hölder
sequence h ⊃ h1 ⊃ · · · ⊃ hp = {0} of h . The h -modules h̃j = hj/hj+1 are
irreducible, for j = 1 to p − 1, hence of dimension 1 or 2. We get in the
dimension 1 case a real homomorphism Ψj of h . In the dimension 2 case, we

have (h̃j)C = CΞ + CΞ and [A,Ξ] = Ψj(A)Ξ, [A,Ξ] = Ψj(A) Ξ, for any A ∈ h
and Ψj ,Ψj are complex homomorphisms. The homomorphisms Ψj ’s and Ψj ’s
are called the roots of h . It is easy to see that the roots do not depend on a
given Jordan-Hölder sequence and that for any T in h , the spectrum of adT on
hC is given by the numbers Ψ(T ), Ψ =root of h .

Let first T be an element of h which is in general position relatively
to the roots of h , i. e. for any two distinct roots Ψ and Ψ′ of h we have
Ψ(T ) 6= Ψ′(T ). We denote by

Ψβ , β ∈ σ,

the corresponding root of h . Hence every root Ψ of h is of the form Ψβ , for
some β ∈ σ . Furthermore, it is not difficult to see that a root Ψ, for which
Ψ(T ) = −β for some β ∈ σ , is equal to −Ψβ .

Let hC =
∑
β∈σ(hC)β be the decomposition of hC into the sum of the

nilspaces of adT , the summation being made over the spectrum σ of adT . We
have

[(hC)β, (hC)β′ ] ⊂ (hC)β+β′ , for any β, β′ in σ.

In particular (hC)0 = (h0)C is a subalgebra of hC (which is in fact nilpotent) and

[(h0)C, (hC)β ] ⊂ (hC)β

for any β in σ . Furthermore for any S in h0 , adS − Ψβ(S) is nilpotent on
(hC)β . Let

h0 = (h0)C ∩ h, hβ = ((hC)β + (hC)β)) ∩ h = ((hC)β + (hC)β) ∩ h.

Then h =
∑
β∈σ hβ and hβ ⊂ n for any β 6= 0. If b is any ideal of h then

b = b ∩ h0 +
∑

β∈σ\0
(hβ) ∩ b

def
= b0 +

∑

β∈σ\0
bβ
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and
h/b = (h/b)0 +

∑

β∈σ\0
(h/b)β = (h0/b) +

∑

β∈σ\0
(hβ/b).

Furthermore, let Ψ be a root of h and let β = Ψ(T ). Suppose that −β is
also an eigenvalue of adhC T . Let Ψ′ be the root of h corresponding to −β . If
(hC)0 ⊃ [(hC)β , (hC)−β ] 6= {0} , then for any S in h0 , since adS−(Ψ(S)+Ψ′(S))
is nilpotent on [(hC)β, (hC)−β ] , we must have that Ψ(S) + Ψ′(S) = 0. On the
other hand every root of h is trivial on

∑
β∈σ\0 hβ and so Ψ′ = −Ψ.

We begin by choosing in [n, n] an ideal b1 as in Lemma 2, if [n, n] is not
central. If [n, n] is central, but n is not, we choose the ideal b1 in n . If n is
central, but h is not abelian, we choose b1 in h . If h is abelian, we do nothing.
Set n1 = b1 .

If b1 is dangerous, then we have Ξ1 in (hC)β for some β 6= 0 in σ and
Z1 6= 0 in (h0)C and we obtain the linear functional ϕ = ϕ1 of (iii) in Lemma 2
and the homomorphism Ψ1 , where

[A,Ξ1] = Ψ1(A)Ξ1 + ϕ1(A)Z1, A ∈ h,

and we let 1n = kerϕ1 ∩ n = {U ∈ n | [U,Ξ1] = 0} . Thus 1n is an ideal in h . If
b1 is of the form (i), (ii) or (v) then we set 1n = n . Continuing in this fashion,
we find inductively the ideals n2 ⊂ · · · ⊂ nj of h (contained in [n, n] as long as
[n, n]/nj−1 is not central in h/nj−1 ), the ideals 1n ⊃ · · · ⊃ jn ⊃ [n, n], jn ⊃ nj .
If jn/nj is not central in h/nj , then we again find an ideal bj+1 in jn/nj . In
the case where bj+1 is of the form (iii) or (iv) we have Ξj in (hC)β for some
βj = β 6= 0 in σ and Zj in (h0)C and we obtain the linear functional ϕ = ϕj of
iii) and the homomorphism Ψj in Lemma 2 where

(5.1) [A,Ξj] = Ψj(A)Ξj + ϕj(A)Zj mod (nj)C, A ∈ h,

and we set j+1n = jn ∩ kerϕj = {U ∈ jn | [U,Ξj ] = 0 mod (nj)C} . Hence j+1n
is an ideal in h . If bj is of the form i), ii), or v) then we set j+1n = jn . Let nj+1

be the set of all elements x in h , such that x mod nj ∈ bj+1 . This finishes step
j .

We continue this process until we find some r in N , for which rn/nr is
central in h/nr . We set

m = rn.

We give now a precise description of h/m .

Definition 1. Let J be the set of all the indices j in {1, · · · , r} for which bj
is dangerous.

Thus
[n, n] ⊂ m = n ∩ {

⋂

j∈J
kerϕj} ⊂ n

and m is an ideal of h . Indeed n ∩ kerϕj = {u ∈ n | [u, bj] = {0} mod nj−1} is
an ideal of h for any j in J . Furthermore we see from (5.1) that for every j in
J , since [h0, (hC)β] ⊂ (hC)β ,

(5.2) ϕj(h0 ∩ n) = {0}.
Hence

h0 ∩ n ⊂ m.
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Lemma 6. Let h̃ = h/m . For any β 6= 0 in the spectrum σ̃ of adT on h̃
there exists j in J such that Ψβ = −Ψj .

Proof. Suppose that β is not real. Choose a vector θ in (hC)β , such that
θ /∈ mC and such that

[T, θ] = βθ mod mC = Ψβ(T )θ mod mC.

Since θ /∈ mC , there exists j in J such that ϕj(θ) 6= 0. Choose Ξj and Zj 6= 0
in (bj)C such that

[A,Ξj] = Ψj(A)Ξj + ϕj(A)Zj mod (nj−1)C

for any A in h . Hence

[[A, θ],Ξj] = [A, [θ,Ξj]]− [θ, [A,Ξj]] = 0− [θ,Ψj(A)Ξj ] mod nj−1.

Hence [[A, θ]+Ψj(A)θ,Ξj] = 0 in (h/nj−1)C and so also ϕj([A, θ]+Ψj(A)θ) = 0,
i.e.

[A, θ] = −Ψj(A)θ mod (kerϕj)C for all A ∈ h.

Since also
[T, θ] = βθ mod mC = βθ mod (kerϕj)C

we see that Ψj(T ) = −β . Hence Ψβ = −Ψj by 5.0.

In Lemma 7 and 8 we give a precise description of the elements X and
Y modm and in Lemma 9 we determine the structure of h/nr .

Lemma 7. Let h̃ = h/m . For any β 6= 0 in the spectrum σ̃ of adT on h̃ ,

((h̃)C)β is one dimensional and for T ′ in h0 , θ in (hC)β , we have [T ′, θ] =

Ψβ(T ′)θ mod mC . Furthermore h̃0 is one or two-dimensional.

Proof. Since [h0, h0] ⊂ m by (5.2) we have [h̃0, h̃0] = {0} . Furthermore

[(hC)β, (hC)γ ] ⊂ [n, n] ⊂ m for all β, γ 6= 0 in σ

implies that
[(h̃C)β, (h̃C)γ] = {0}, for all β, γ 6= 0 in σ.

Let us show that for any T ′ in h0 , [T ′, θ]−Ψβ(T ′)θ ∈ mC . Indeed, we have

[T ′, θ] = Ψβ(T ′) · θ + θ1 for some θ1 in ((hC)β)

and θ is not a scalar multiple of θ1 , since ad(T ′)−Ψβ(T ′) is nilpotent on ((hC)β).
The vector θ1 must be contained in m . Since otherwise we would have an index
j in J , such that ϕj(θ1) 6= 0. Since θ1 is in ((hC)β), [θ1,Ξj ] /∈ (nj−1)C implies
that β + Ψj(T ) = 0 by 5.0 and so Ξj must be in (hC)−β . Hence

[[T ′, θ],Ξj] = [T ′, [θ,Ξj]]− [θ, [T ′,Ξj ]] = 0−Ψj(T
′)ϕj(θ)Zj mod (nj−1)C.
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On the other hand we also have that

[[T ′, θ],Ξj] = [Ψβ(T ′)θ + θ1,Ξj ] = (Ψβ(T ′)ϕj(θ) + ϕj(θ1))Zj mod (nj−1)C.

Thus ϕj(θ1) = 0, a contradiction and θ1 must be an element of mC .

Suppose that (h̃C)β is of dimension ≥ 2. Let V1 and V2 be two linearly

independent vectors in ((h̃)C)β and let Bβ ⊂ ((h̃)C)β be a supplementary
subspace, i.e.:

((h̃)C)β = CV1 ⊕ CV2 ⊕Bβ.

Let

n′′ = Bβ +
∑

β′ 6=β,β′ 6=0

(h̃C)β′ , h′ = h̃C/n
′′, θi = Vi mod n′′, i = 1, 2.

Since X and Y generate h , the vectors X ′ = X mod n′′ and Y ′ = Y mod n′′

generate h′ . Furthermore the subspace h′β of h′ is spanned by θi, i = 1, 2 and

h′ = h′0 + h′β . We also have that [h′β, h
′
β] and [h̃0, h̃0] = (0). Let us write

X ′ = TX + α1θ1 + α2θ2, Y
′ = TY + β1θ1 + β2θ2,

where TX and TY are the components of X ′ , resp. of Y ′ , in (h′)0 . WHence

[X ′, Y ′] = Ψβ(X)(β1θ1 + β2θ2)−Ψβ(Y )(α1θ1 + α2θ2).

We see that h′1 = span(X ′, Y ′,Ψβ(X)(β1θ1 + β2θ2)−Ψβ(Y )(α1θ1 + α2θ2)) is a
subalgebra of h′ containing X ′ and Y ′ and so h′ = h′1 . But then (h′)β is of

dimension 1, a contradiction. Obviously, since h0 ∩ n ⊂ m , we have dim(h̃)0 ≤
dim(h/[h, h]) ≤ 2.

Let now
σ′ = σ̃ \ {0}.

We have seen in Lemma 7 that for any β in σ′ , ((h)C)β mod mC is of dimension
1 over C . We choose a vector θ′β 6= 0 in (hC)β mod mC and we write:

X = TX +
∑

β∈σ′
Xβθ

′
β mod mC,

Y = TY +
∑

β∈σ′
Yβθ

′
β mod mC,

where TX , resp. TY ∈ h0 . We want to determine the Xβ ’s, resp. Yβ ’s.

Lemma 8. We can assume that for any β in σ′ , there exists a unique θβ in
(hC)β with the following property: for every j in J we have ϕj(θβ) = 1 or 0 .
Furthermore

X = TX mod m, Y = TY + <(
∑

β∈σ′
θβ) mod m.



Arnal and Ludwig 119

For every j in J , there exists a unique β in σ′ , such that ϕj(θβ) = 1, ϕj(θγ) = 0
for all γ in σ′, γ 6= β , and such that Ψj = −Ψβ where Ψβ is as in Lemma 7.

Proof. Let R = <(
∑
β∈σ′ Ψβ(X)−1 · Xβθ

′
β) and let X ′ = RX, Y ′ = RY .

Then X ′ = TX mod m and Y ′ = TY +
∑

β∈σ′ Yβθ
′
β mod mC for some new

coefficients Yβ . We remark that h is also generated by X ′ and Y ′ , since R ∈ h
and so h = Rh . We shall work from now on with X ′ and Y ′ and we shall
show that there exist C,D,K,L in h such that CX ′ + DY ′ = X ′ ∗ Y ′ and
KX ′ ∗ LY ′ = X ′ + Y ′ . But this means that

R−1∗C∗RX + R−1∗D∗RY = X ∗ Y and R−1∗K∗RX ∗ R−1∗L∗RY = X + Y.

We can thus forget about X and Y and write X = X ′, Y = Y ′ .
Let now j ∈ J . There exists some γ in σ and some Ξj in (hC)γ ∩ nj

and Zj in (hC)0 \ nj−1 such that (nj)C mod (nj−1)C = CΞj + C(Ξj)
− + CZj +

C(Zj)
− mod (nj−1)C and such that

[A,Ξj ] = Ψj(A) · Ξj + ϕj(A) · Zj mod (nj−1)C, for all A ∈ h.

Since ϕj(n) 6= 0, there exists some β in σ′ such that ϕj(θ
′
β) 6= 0 which implies

that γ = −β , whence Ψ−β = Ψj . Furthermore [θ′µ,Ξj] ⊂ ((hC)µ−β ∩ (nj)C) ⊂
(nj−1)C for all µ 6= β . Hence ϕj(θ

′
µ) = 0 for such a µ . Since X = TX mod m we

have ϕj(X) = 0 and so ϕj(Y ) must be 6= 0 for every j . On the other hand, for
any β in σ′ , since θ′β /∈ mC , there exists an index j in J , such that ϕj(θ

′
β) 6= 0.

By rescaling Zj , we may even assume that ϕj(Y ) = 1 and so Yβ · ϕj(θ′β) = 1
for any j in J associated with β . Replacing now θ′β by Yβ · θ′β = θβ for all β
in σ′ , we finally get:

Y = TY +
∑

β∈σ′
θβ mod mC.

(8.1) Remark. We have just seen that for any j in J , the restriction of
the linear functional ϕj to n is of the form ϕ−β for some unique β in σ′ ,
where ϕ−β(θβ) = 1, ϕ−β(θβ′) = 0 for β′ 6= β, ϕ−β([n, n]) = ϕ−β(m) = {0} .
Furthermore Ψ−β = Ψj .

Since rn/nr is central in h/nr we see from Lemma 8 that (h)C/(nr)C =
(h0)C =

∑
β∈σ′ Cθβ mod (nr)C and thus we can write

(8.2) X = TX mod nr, Y = TY +
∑

β∈σ′
θβ mod (nr)C

for some new elements TX , TY in h0 . Let us set

(8.3) S = [TX , TY ] ∈ [h0, h0].

Lemma 9.

hC = CTX + CTY +
∑

β∈σ′
Cθβ + CS +

∑

β∈σ′
C[θβ, θ−β] + (nr)C.
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Proof. First we observe that [h,m] ⊂ nr , since by the definition of nr, m/nr
is central in h/nr . This implies especially that for β ∈ σ′, ((hC)β) ∩ m is
already contained in (nr)C , since adTX is injective on ((hC)β). Especially,
[θβ , θ

′
β] ⊂ nr , for β′ 6= −β . Since for any β in σ′, [θβ , θ−β] ⊂ nC ∩ (h0)C ⊂ mC ,

we thus have that [h, [θβ, θ−β]] ⊂ (nr)C . We have seen in Lemma 7 that for
β ∈ σ′, T ′ ∈ h0, [T ′, θβ] = Ψβ(T ′)θβ mod mC . Since [T ′, θβ] ∈ (hβ)C , we know
now that [T ′, θβ] = Ψβ(T ′)θβ mod (nr)C .

Since by (5.2) [h0, h0] ⊂ m , necessarily [[h0, h0], h] ⊂ (nr)C .

Now h′ = CTX + CTY +
∑
β∈σ′ Cθβ + CS +

∑
β∈σ′ C[θβ, θ−β] + (nr)C

is a subalgebra of hC . This subalgebra evidently contains X and Y . Hence
h′ = hC .

(9.1) Remark. Lemma 9 tells us that

(m)C = [h0, h0]C +
∑

β∈σ′
C[θβ, θ−β] + (nr)C

= CS +
∑

β∈σ′
C[θβ, θ−β] + (nr)C.

Let now for β ∈ σ′ ,
Zβ = [θβ, θ−β] ∈ (h0)C.

Inductively we choose β1, β2, · · · , βs in σ′ , such that

(9.2) Zβj /∈ spanC{Zβi , Zβi | i < j}+ (nr)C

and such that

mC = CS + spanC{Zβi , Zβi | i = 1, · · · , s}+ (nr)C.

Let

(9.3) σ+ = {β1, · · · , βs} ⊂ σ′ ⊂ σ.

In particular, condition (9.2) implies that σ+ ∩ {−(σ+)} = Ø. Let

σ− = −σ+, σ1′ = σ′ \ {σ− ∪ (σ−)}, σ0′ = σ1′ \ {σ+ ∪ σ+}.

Let us choose a subset σ0 in σ0′ such that every real β in σ0′ is contained in
σ0 and such that for any nonreal β in σ0′, {β, β} ∩ σ0 contains one element
and let

(9.4) σ1 = σ0 ∪̇σ+.

Let

(1m)C = (nr)C + spanC{θβ, θβ | β ∈ σ−}+ spanC{Zβ, Zβ | β ∈ σ+},
(2m)C = (1m)C +

∑

β∈σ1

Cθβ.
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Hence
hC = CTX + CTY +

∑

β∈σ1′

Cθβ + CS + (1m)C

= CTX + CTY + CS + (2m)C

and

(9.5) h = RTX +RTY +
∑

β∈σ1

<(Cθβ) +RS + (1m) = RTX +RTY +RS + (2m),

m1 = (1m)C ∩ h = (nr) + span{<(Cθβ) | β ∈ σ−}+ span{<(CZβ) | β ∈ σ+}.
We now begin the determination of some elements in S∗ and in S+ .

Lemma 10. S∗nr , resp. S+
nr , contains an element (C,D) resp. (K,L) such

that

0 6= det

∣∣∣∣
Ψj(X) Ψj(Y )

ϕj(
CX) ϕj(

DY )

∣∣∣∣

resp. such that

0 6= det

∣∣∣∣
Ψj(X) Ψj(Y )

ϕj(
KX) ϕj(

LY )

∣∣∣∣

for all j ∈ J .

Proof. The first step is to find a huge subset of S∗
2m ⊃ S∗1m resp. of

S+
2m ⊃ S+

1m . We want first to determine

(C,D) = (c0TY , d0TX) in S∗
2m

resp.
(K,L) = (k0Ty, l0TX) in S+

2m.

If S is an element of 1m , then we can take any c0, d0, k0 and l0 in R . If S /∈ 1m ,
then given d0 , resp. k0 , in R , we set c0 = d0 − 1

2 , resp. k0 = 1
2 + l0 .

Since 2m is an ideal, such that h/2m is nilpotent of step ≤ 2, we have
then that

CX + DY = X + Y + (d0 − c0)S = X + Y +
1

2
S = X ∗ Y mod2m.

Furthermore:

KX ∗ LY = X + Y + (
1

2
+ l0 − k0)S = X + Y mod2m.

We shall from now on fix c0, d0, k0 and l0 and we look for a large number of
elements in S∗

1m resp. S+
1m of the form

(C,D) =
(
(<(

∑

β∈σ1

cβθβ)) ∗ c0TY , (<(
∑

β∈σ1

dβθβ)) ∗ d0TX
)
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resp.

(K,L) =
(
<(
∑

β∈σ1

kβθ)) ∗ k0TY , (<(
∑

β∈σ1

lβθ)) ∗ l0TX
)
.

Since
X = TX mod 1m, Y = TY +

∑

β∈σ1

θβ mod (1m)C,

and since
X ∗ Y = TX + TY + ρ0S +

∑

β∈σ1

ρβθβ mod (1m)C,

for some ρ0, ρβ ∈ C, β ∈ σ1, we obtain the equations

(10.∗)

CX + DY

= TX −<(
∑

β∈σ1

cβΨβ(X)θβ) + TY + <(
∑

β∈σ1

(ed0Ψβ(X) −Ψβ(Y )dβ)θβ)

= TX + TY + <(
∑

β∈σ1

ρβθβ)

= X ∗ Y mod (RS + 1m),

whence for any β in σ1:

(∗β) cβΨβ(X) + (−ed0Ψβ(X) + Ψβ(Y )dβ) = −(X ∗ Y )β = −ρβ .

We see that for any cβ in R we can find a unique dβ such that (∗β) is satisfied.
In the same way

(10.+)

KX ∗ LY
= (TX −<(

∑

β∈σ1

kβΨβ(X)θβ))

∗ (TY + <(
∑

β∈σ1

(el0Ψβ(X) −Ψβ(Y )lβ)θβ)

= X + Y mod (RS + 1m)

gives us for β in σ1 the equation

(+β)
e(−Ψβ(Y ))f(Ψβ(X))Ψβ(X)(−kβ) + f(Ψβ(Y ))(Ψβ(Y )(−lβ) + eloΨβ(X))

= f(Ψβ(X) + Ψβ(Y ))(X + Y )β .

(see Lemma 1). Again for any kβ in C we find a unique lβ such that (+β) is
fulfilled.

In other words for any C = (<(
∑
β∈σ1 cβθ)) ∗ c0TY , we find a unique

D = (<(
∑
β∈σ1 dβθβ)) ∗ d0TX) such that (C,D) ∈ S∗

1m , and the numbers dβ
depend linearly on cβ , resp. for any

K = (<(
∑

β∈σ1

kβθ)) ∗ k0TY
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there exists a unique L = (<(
∑
β∈σ1 lβθβ)) ∗ l0TX so that (K,L) ∈ S+

1m , and
the numbers lβ depend linearly on kβ .

We now proceed with to investigate S∗nr . As before we write σ+ =
{β1, · · · , βs} , and now

θi = θβi , θ−i = θ−βi , Zi = Zβi , ci = cβi , di = dβi ,

Ψβi = Ψi, ϕβi = ϕi, Ψ−βi = Ψ−i, ϕ−βi = ϕ−i,

and so on, i = 1 to s .

We recall that ϕi(θ−i) = 1, ϕi(θγ) = 0 for γ 6= −βi, ϕ−i(θi) =
1, ϕ−i(θγ) = 0 for γ 6= βi . We shall use the following coordinates in the group
H = exp h . Every element g in (exp n) · expRTY can be written by (9.5) in a
unique way as a product:

g = gr ∗ (

s∏

i=1

<(c−iθ−i) ∗ (
∑

β∈σ1

re(cβθβ)) ∗ c0TY ,

where gr ∈ Nr = exp nr and where the c−i and cβ are complex numbers. We
will sometimes write

gθ−i = c−i, resp. gθβ = cβ .

Our goal is now to construct rational functions c−i, d−i, i = 1 to s and dβ, β ∈
σ1, defined on Zariski open subsets in the variables c = {cβ , β ∈ σ1} , such that
the pairs (C,D) with

C =
s∏

i=1

<(c−i(c)θ−i) ∗ (
∑

β∈σ1

<(cβθβ)) ∗ c0TY ,

D =
s∏

i=1

<(d−i(c)θ−i) ∗ (
∑

β∈σ1

<(dβ(c)θβ)) ∗ d0TX)

are in S∗nr for any c = (cβ)β∈σ1 in the common domain of the functions
c−i, dβ, d−i and that furthermore for any j in J , whenever Ψj(X)+Ψj(Y ) 6= 0,
we have

0 6= det

∣∣∣∣
Ψj(X) Ψj(Y )

ϕj(
CX) ϕj(

DY )

∣∣∣∣ .

A similar result will of course be shown for S+
nr .

Let for i = 1 to s ,

(mi)C = (nr)C +

i∑

k=1

(Cθ−k + C(θ−k)− + CZk + C(Zk)−), (m0)C = (m)C.

In particular, (ms)C = (1m)C .

The subspace mi is an ideal of h and mi/mi−1
∼= Cθ−i + C(θ−i)− +

CZi + C(Zi)
− is dangerous. We determine now by induction on i the elements

in S∗mi , resp. S+
mi , for i = s to 0.



124 Arnal and Ludwig

We have for any i in {1, · · · , s}

[A, θ−i] = Ψ−i(A) · θ−i + ϕ−i(A)Zi mod mi−1, A ∈ h.

Taking (C,D) in S∗mi we try to find

(C ′, D′) =
(
<(c−iθ−i) ∗ C,<(d−iθ−i) ∗D

)
in S∗mi−1

,

using the formulas of Lemma 3, 4 and 5.

If Ψi(X) + Ψi(Y ) = 0, we proceed in the following way. we have
CX+DY = X ∗Y +B+Z ′′ mod mi−1 for some B = <(ρθ−i) and Z ′′ = <(γZi).
By Lemma 3 we can find a unique d′−i , which depends linearly on ρ , such that

CX + d′−iθ−i∗DY = X ∗ Y + Z ′ mod (mi−1)

for some Z ′ in spanC(Zi, Zi) ∩ h . Then we can apply Lemma 5 in order to
determine c−i and d−i . By Lemma 5, we can find α in C so that

<(αθ−i)X ∗ <(αθ−i)Y = X ∗ Y − Z ′ mod mi−1.

Whence
<(αθ−i)CX + <(αθ−i)d

′
−iθ−i∗DY

= <(αθ−i)(CX + d′−iθ−i∗DY )

= <(αθ−i)(X ∗ Y + Z ′ mod (mi−1))

= <(αθ−i)X ∗ <(αθ−i)Y + Z ′ mod (mi−1)

= X ∗ Y mod (mi−1).

Let us set c−i = α, d−i = α+ d′−i; c−i and d−i are rational functions of ci and
cβ , β ∈ σ0. If Ψi(X) + Ψi(Y ) 6= 0 consider the equations (given in 4.1)

(∗−i)
c−iΨ

−i(X) + d−iΨ
−i(Y ) = (X ∗ Y )−i = ρi

c−iϕ
−i(CX) + d−iϕ

−i(DY ) = (CX + DY )Zi = γi,

where γi depends on C and D . Since

C = <(c−(i+1)θ−(i+1)) ∗ · · · ∗ <(c−sθ−s) ∗ <(
∑

β∈σ1

cβθβ) ∗ c0TY resp.

D = <(d−(i+1)θ−(i+1)) ∗ · · · ∗ <(d−sθ−s) ∗ <(
∑

β∈σ1

dβθβ) ∗ d0TX ,

we see that γi is rational in cβ , β ∈ σ0. In this way we obtain that the numbers
c−i and d−i are rational functions in the cβ ’s, β ∈ σ1 for fixed d0 .

The condition

det

∣∣∣∣
Ψ−i(X) Ψ−i(Y )

ϕ−i(CX) ϕ−i(DY )

∣∣∣∣ 6= 0
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forces us to reject all the pairs (C,D) in S∗mi for which the corresponding
determinant = 0. Since by (10.∗), resp. (10.+), we have for any β in σ′ that

(10.1) CX = X − <(cβΨβ(X)θβ) mod kerϕ−β ,

resp.
DY = Y + <(ed0·Ψβ(X) − dβΨβ(Y )θβ) mod kerϕ−β

we get ϕ−i(CX) = −ciΨi(X), ϕ−i(DY ) = ed0·Ψi(X) − diΨi(Y ) and so

0 = det

∣∣∣∣
Ψ−i(X) Ψ−i(Y )

ϕ−i(CX) ϕ−i(DY )

∣∣∣∣

= Ψ−i(X)(ed0·Ψi(X) − diΨi(Y ))−Ψ−i(Y )(−ciΨi(X)),

whence the condition det = 0 is equivalent to

(10.2) ci − di = −Ψi(Y )−1ed0·Ψi(X),

since Ψ−i + Ψi = 0.

Together with the condition (∗β) we obtain for fixed d0 a linear system
in the variables ci and di :

(∗i)
ci − di = −Ψi(Y )−1ed0·Ψi(X)

ciΨ
i(X) + diΨ

i(Y ) = ed0Ψi(X) − (X ∗ Y )i

with matrix (
1 −1

Ψi(X) Ψi(Y )

)

whose determinant is Ψi(X) + Ψi(Y ).

Since Ψi(X) + Ψi(Y ) 6= 0, there is a unique pair (ci, di) which must
be excluded, i.e. we must take out of S∗mi+1

every pair (C,D) for which the
coordinates ci , resp. di satisfy (∗i). Finally when we arrive at i = 1 we have
found elements C,D with (C,D) ∈ S∗nr , and we have just seen that we can
write C , D in the form

C = <(c−1θ−1) ∗ · · · ∗ <(c−sθ−s) ∗ <(
∑

β∈σ1

cβθβ) ∗ c0TY ,

D = <(d−1θ−1) ∗ · · · ∗ <(d−sθ−s) ∗ re(
∑

β∈σ1

dβθβ) ∗ d0TY ),

where dβ , c−i and d−i are rational functions in the cβ ’s, β ∈ σ1 and where the
c = (cβ)β∈σ1 varies in a Zariski open set.

When we try to go from S∗nr to S∗ we shall encounter the dangerous
ideals bj with j ∈ J . If the corresponding root Ψj belongs to a root −β with
β in σ1, i.e. if Ψj = Ψ−β = −Ψβ , ϕj = ϕ−β for some β in σ1, and if
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Ψj(X) + ΨJ (Y ) 6= 0, then we must again exclude all the solutions (C,D) in
S∗nr , for which

0 = det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕj(

CX) ϕj(
DY )

∣∣∣∣ .

But then the coordinates cβ and dβ are the unique solution of the system

(∗β)
cβ − dβ = −Ψβ(Y )−1ed0·Ψβ(X)

cβΨβ(X) + dβΨβ(Y ) = ed0Ψβ(X) − (X ∗ Y )β

which gives us a Zariski closed subset of the β ’s, β ∈ σ1, which we must throw
away. The case where Ψj belongs to a root βi in σ+ is much more delicate. We
recall that this means that Ψj = Ψi, ϕj = ϕi and so

[A,Ξj] = Ψi(A)Ξj + ϕi(A)Zj mod (nj−1)C, A ∈ h.

Now the coordinate c−i of C had been obtained as solution of the system of
equations:

(∗ − i)
c−iΨ

−i(X) + d−iΨ
−i(Y ) = (X ∗ Y )−i

c−iϕ
−i(CX) + d−iϕ

−i(DY ) = (CX + DY )Zi = γi,

where γi depends on the cβ ’s, β ∈ σ0. The condition

0 = det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕj(

CX) ϕj(
DY )

∣∣∣∣ = Ψj(X)ϕj(
DY )−Ψj(Y )ϕj(

CX)

⇔ c−i − d−i = Ψi(Y )−1e−d0·Ψi(X),

(see 10.1) imposes another constraint on the solution, which, we recall, is a
rational function of the cβ , β ∈ σ1.

Hence, if we determinec−i and d−i by the two equations (∗ − i) we get

c−i = {Ψ−i(X)ϕ−i(DY )−Ψ−i(Y )ϕ−i(CX)}−1{(X ∗Y )−iϕ
−i(DY )−γiΨ−i(Y )}

d−i = {Ψ−i(X)ϕ−i(DY )−Ψ−i(Y )ϕ−i(CX)}−1{−(X ∗ Y )−iϕ
−i(CX) + γiΨ

−i(X)}.

The condition c−i − d−i = Ψi(Y )−1e−d0·Ψ−i(X) imposes another relation on ci ,
namely:

Ψi(Y )−1e−d0·Ψi(X){Ψ−i(X)ϕ−i(DY )−Ψ−i(Y )ϕ−i(CX)}
= (X ∗ Y )−iϕ

−i(DY )− γiΨ−i(Y ) + (X ∗ Y )−i(ϕ
−i(CX))− γiΨ−i(X).

Since ϕ−i(CX + DY ) = ϕ−i(X ∗ Y ) = const, we obtain a nontrivial relation
between ci and the other variables cβ , β ∈ σ0:

{Ψi(Y )−1e−d0·Ψi(X)(Ψ−i(X) + Ψ−i(Y ))}ϕ−i(CX)

+ rational function in {cβ, β ∈ σ0} = 0.
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Hence, using an appropriate induction hypothesis for j = r to 1, we can conclude
that there exist rational functions c−i, i = 1 to s, dβ, β ∈ σ1, defined on Zariski
open subsets in the variables cβ , β ∈ σ1, such that the pairs

(C,D) =

(

s∏

i=1

<(c−iθ−i) ∗ (
∑

β∈σ1

<(cβθβ)) ∗ c0TY ,

s∏

i=1

<(d−iθ−i) ∗ (
∑

β∈σ1

<(dβθβ)) ∗ d0TX)

are in S∗nr for any (cβ)β∈σ1 in the common domain of the functions c−i, dβ, d−i
and that furthermore for any j in J , whenever Ψj(X) + Ψj(Y ) 6= 0, we have

0 6= det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕj(

CX) ϕj(
DY )

∣∣∣∣ .

We consider now S+
nr . First we determine by induction on i the elements in

S+
mi . We have written

[A, θ−i] = Ψ−i(A) · θ−i + ϕ−i(A)Zi mod (mi−1)C, A ∈ h.

Taking now (K,L) in S+
mi , we try to find

(K ′ = <(k−iθ−i) ∗K,L′ = <(l−iθ−i) ∗ L) in S+
mi−1

using the formulas of Lemma 3, 4 and 5.

If Ψi(X) + Ψi(Y ) = 0, we proceed in the following way. we have
KX ∗LY = X+Y +B+Z ′′ mod mi−1 for some B = <(ρθ−i) and Z ′′ = <(γZi).
By Lemma 3 we can find a unique l′−i , which depends linearly on ρ , such that

KX ∗ l′−iθ−i∗LY = (X + Y ) + Z ′ mod (mi−1)

for some Z ′ in spanC(Zi, Zi) ∩ h . Then we can apply Lemma 5 in order to
determine k−i and l−i . We can find α in C so that

<(αθ−i)X + <(αθ−i)Y = X + Y − Z ′ mod mi−1.

Whence
<(αθ−i)KX ∗ <(αθ−i)l

′
−iθ−i∗LY

= <(αθ−i)(KX ∗ l′−iθ−i∗LY )

= <(αθ−i)(X + Y + Z ′ mod (mi−1))

= <(αθ−i)X + <(αθ−i)Y + Z ′ mod (mi−1)

= X + Y mod (mi−1).
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Let us set k−i = α, l−i = α + l′−i, k−i and l−i are rational functions in
kβ , β ∈ σ0, and ki . If Ψi(X) + Ψi(Y ) 6= 0, consider the equations (4.2) for
X = KX, Y = LY, Ψ = Ψ−i, ϕ = ϕ−i . We get

(+− i)

k−if(Ψ−i(X))Ψ−i(X) + l−ie(Ψ
−i(Y )) · f(Ψ−i(Y ))Ψ−i(Y ) = ρ′i

(X + Y )Zi = k−if(Ψ−i(X))ϕ−i(KX)

+ l−ie(Ψ
−i(Y ))f(Ψ−i(Y ))ϕ−i(LY )

= γi − · · · = γ′i,

where γi depends rationally on kβ , β ∈ σ0 and where ρ′i is a constant.

In this way we see that the numbers k−i and l−i are rational functions
in the kβ , β ∈ σ0 and in ki . The condition

det

∣∣∣∣
Ψ−i(X) Ψ−i(Y )
ϕ−i(KX) ϕ−i(LY )

∣∣∣∣ 6= 0

forces us to reject all the pairs (K,L) in S+
mi for which the corresponding

determinant = 0. Since

(10.3) KX = X − <(kiΨ
i(X)θi) mod kerϕ−i,

resp.
LY = TY + <(elo·Ψ

i(X) − liΨi(Y )θi) mod kerϕ−i,

(see 10.1) we get ϕ−i(KX) = −kiΨi(X), ϕ−i(LY ) = el0·Ψ
i(X) − liΨi(Y ) and so

0 = det

∣∣∣∣
Ψ−i(X) Ψ−i(Y )
ϕ−i(KX) ϕ−i(LY )

∣∣∣∣

is equivalent to

ki − li = −Ψi(Y )−1el0·Ψ
i(X),

since Ψ−i + Ψi = 0.

Together with the condition (KX ∗LY )θi = (X+Y )θi we obtain a linear
system in the variables ki and li :

ki − li = −Ψi(Y )−1el0·Ψ
i(X)f(Ψi(X) + Ψi(Y ))−1

{e(−Ψi(Y ))f(Ψi(X))(−Ψi(X)ki) + f(Ψi(Y ))(el0Ψi(X) −Ψi(Y )li)}
= (X + Y )i.

Replacing now ki by li −Ψi(Y )−1el0Ψi(X) in the equation above, we get

f(Ψi(X) + Ψi(Y ))(X + Y )i

= (−1 + e(−Ψi(X)−Ψi(Y )))li + · · · independent of li and ki.

Hence we find a unique li and ki satisfying these equations. We must throw away
all the pairs (K,L) for which the coordinates ki and ki satisfy these equations.
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In this way we determine the elements (K,L) in S+
nr and we have just seen

that we can write them in the form:

(K,L) =
(
<(k−1θ−1) ∗ · · · ∗ <(k−sθ−s) ∗ <(

∑

β∈σ1

kβθβ) ∗ koTY ,

<(l−1θ−1) ∗ · · · ∗ <(l−sθ−s) ∗ <(
∑

β∈σ1

lβθβ) ∗ l0TY
)

where the lβ ’s, k−i ’s and l−i ’s are rational functions in the variables kβ ’s,
β ∈ σ1 defined on a Zariski open subset.

When we go from S+
nr to S+ we shall have to deal again with the

dangerous ideals bj where j ∈ J . If the correspondig root Ψj belongs to a root
−β contained in −σ1, i.e. Ψj = Ψ−β and ϕj = ϕ−β for some β in σ1 and if
Ψj(X) + Ψj(Y ) 6= 0, we must again exclude all the solutions (K,L) in S+

nr ,
for which

0 = det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕi(

KX) ϕj(
LY )

∣∣∣∣ .

But then the coordinates kβ = (K)θβ and lβ = (L)θβ are given as the unique
solution of the linear system of rank 2

kβ − lβ = −Ψβ(Y )−1el0·Ψ
β(X)

and

(+β)
e(−Ψβ(Y ))f(Ψβ(X))Ψβ(X)(−kβ) + f(Ψβ(Y ))(Ψβ(Y )(−lβ) + el0Ψβ(X))

= f(Ψβ(X) + Ψβ(Y ))(X + Y )β.

Hence it suffices to take out all the (K,L) which satisfy these two equations.

The case where Ψj belongs to a root βi in σ+ is much more delicate.
We recall that this means that

[A,Ξj] = Ψi(A)Ξj + ϕi(A)Zj, A ∈ h.

Indeed the coordinate k−i of K had been obtained as solution of the equation:

(+−i)
k−if(Ψ−i(X))Ψ−i(X) + l−ie(Ψ

−i(Y )) · f(Ψ−i(Y ))Ψ−i(Y )

= ρi · exp(Ψ−i(Y ))f(Ψ−i(X ∗ Y ))

k−if(Ψ−i(X))ϕ−i(KX) + l−ie(Ψ
−i(Y ))f(Ψ−i(Y ))ϕ−i(LY ) = γ′i.

The condition

0 = det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕj(

KX) ϕj(
LY )

∣∣∣∣ = Ψj(X)ϕj(
KY )−Ψj(Y )ϕj(

LX)

⇔ k−i − l−i = Ψi(Y )−1el0·Ψ
−i(X),
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imposes another constraint on the solution, which, we recall, is a rational function
of the kβ, β ∈ σ1. This gives us three equations relating ki = (K)θi , li = (L)θi
with k−i and l−i . The first two equations tell us that

f(Ψ−i(X)){Ψ−i(X)ϕ−i(
LY )−Ψ−i(Y )ϕ−i(KX)}k−i

= ρ′iϕ
−i(LY )− γ′i ·Ψ−i(Y )

f(Ψ−i(Y ))e(Ψ−i(Y )){Ψ−i(X)ϕ−i(
LY )−Ψ−i(Y )ϕ−i(KX)}l−i

= Ψ−i(X)γ′i − ρ′iϕ−i(KX)

where γ′i = γi − ρ′i · {(exp(−Ψ−i(Y ))− 1)Ψ−i(Y )−1 · ϕ−i(LY ) + · · ·} and where

ρ′i = ρi · exp(Ψ−i(Y ))f(Ψ−i(X ∗ Y )),

as in (4.2). If we introduce these values into the last of the three equations and
if we use the identity

(10.4) ϕ−i(
KX ∗ LY ) = e(−Ψi(Y ))f(Ψi(X))ϕ−i(

KX) + f(Ψi(Y ))ϕ−i(
LX)

we get, since γ′i = γi − · · · = −ρ′i(exp(−Ψ−i(Y )) − 1)Ψ−i(Y )−1 · ϕ−i(LY ) +
a function in the variables kβ, β ∈ σ0:

Ψi(Y )−1el0·Ψ
−i(X) · {Ψ−i(X)ϕ−i(LY )−Ψ−i(Y )ϕ−i(KX)}

= f(Ψ−i(X))−1 · (ρ′iϕ−i(LY )− γ′iΨ−i(Y ))

− (f(Ψ−i(Y ))e(Ψ−i(Y ))−1(Ψ−i(X)γ′i − ρ′iϕ−i(KX))

= ρ′if(Ψ−i(X))−1ϕ−i(LY )(1 + (exp(−Ψ−i(Y ))− 1)Ψ−i(Y )−1Ψ−i(Y ))

− ρ′if(−Ψ−i(Y ))−1{(−Ψ−i(X)(exp(−Ψ−i(Y ))− 1)Ψ−i(Y )−1ϕ−i(LY ))

− ϕ−i(KX)}+ a function in the other variables

= ρ′if(Ψ−i(X))−1f(Ψi(Y ))−1{ϕ−i(LY )((f(Ψi(Y ))(1 + (exp(Ψi(Y ))− 1)

+ f(Ψ−i(X))(−Ψ−i(X))(exp(Ψi(Y ))− 1)Ψ−i(Y )−1)

+ f(Ψ−i(X)) · ϕ−i(KX)}+ a function in the other variables

= ρ′if(Ψ−i(X))−1f(Ψi(Y ))−1.

{ϕ−i(LY )(f(Ψi(Y )) exp(Ψi(Y )) + (exp(Ψi(X))− 1)f(Ψ−i(Y )))

+ ϕ−i(KX)f(Ψ−i(X))}
+ a function in the other variables

= ρ′if(Ψ−i(X))−1f(Ψi(Y ))−1.

{ϕ−i(LY )f(Ψ−i(Y ))e(Ψi(X)) + f(Ψ−i(X))ϕ−i(KX)}
+ a function in the other variables

= ρ′i(f(Ψ−i(X))f(Ψi(Y )))−1 · (eΨi(Y )+Ψi(X)).
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{e(−Ψi(Y ))f(Ψi(X))ϕ−i(
KX) + f(Ψi(Y ))ϕ−i(

LY )}
+ a function in the other variables

= ρ′i(f(Ψ−i(X))f(Ψi(Y )))−1 · (eΨi(Y )+Ψi(X)) · ϕ−i(KX ∗ LY )

+ a function in the other variables

= a function in the other variables ,

by (10.4) and since ϕ−i(KX ∗ LY ) = ϕ−i(X + Y ) + constant .

On the other hand , using again (10.4)

Ψi(Y )−1el0·Ψ
−i(X) · {Ψ−i(X)ϕ−i(LY )−Ψ−i(Y )ϕ−i(KX)}

= · · · = Ψi(Y )−1el0·Ψ
−i(X)f(Ψ−i(Y ))−1{e−Ψi(X) − eΨi(Y )}ϕ−i(KX)

+ a function in the other variables

Hence we get an identity of the form:

ϕ−i(KX) + a rational function of the other variables = 0.

This gives us a nontrivial rational condition on the kβ ’s, β ∈ σ0 and ki .
Hence, using an appropriate induction hypothesis for j = r to 1, we can
conclude that for any l0 ∈ R , there exist rational functions li, i = 1 to s ,
lβ , β ∈ σ1, k−i, i = 1 to s in the variables kβ ∈ R, β ∈ σ1, defined on Zariski
open subsets, such that the pairs

(K,L) =

(

s∏

i=1

<(k−iθ−i) ∗ (
∑

β∈σ1

<(kβθβ)) ∗ k0TY ,

s∏

i=1

<(l−iθ−i) ∗ (
∑

β∈σ1

<(lβθβ)) ∗ l0TX)

are in S+
nr for any (kβ)β∈σ1 in the common domain of the functions k−i, lβ, l−i

and such the determinants are 6= 0.

Lemma 11. Let h be a subalgebra generated by two elements X and Y of the
exponential Lie algebra g . Then S∗ and S+ are not empty.

Proof. Let us take any element (C,D) in S∗nr with the property of Lemma
10. It is now easy to see that for some appropriate elements N,M in nr , we
have (N ∗ C,M ∗ D) ∈ S∗ . We proceed by a backwards induction on j = r
to 1. Having found (Cj , Dj) in S∗n| , such that (Cj mod nr, Dj mod nr) =

(C mod nr, D mod nr) we look for elements Nj−1,Mj−1 in hj−1 , such that
(Nj−1∗Cj ,Mj−1∗Dj) ∈ S∗nj−1

. It suffices to consider the corresponding Lemma
3, 4 or 5. Since for any N in m and U in h we have ϕj(N ∗U) = ϕj(U) we see
that in the dangerous cases

det

∣∣∣∣
Ψj(X) Ψj(Y )

ϕj(
Cj−1X) ϕj(

Dj−1Y )

∣∣∣∣ = det

∣∣∣∣
Ψj(X) Ψj(Y )
ϕj(

CX) ϕj(
DY )

∣∣∣∣ 6= 0

and so we can solve the given equations. This shows us that S∗ 6= Ø. We proceed
in the same way to show that S+ is not empty.
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End of the proof of Theorem A: Let A = CX +DY be an element of GX +GY .
Let us write CX = X ′ and DY = Y ′ . Let h′ be the subalgebra generated by
X ′ and Y ′ . By Lemma 11, there exist K ′ and L′ in h′ , such that

X ′ + Y ′ = (K
′
X ′ ∗ L′Y ′).

Hence A = (K
′∗CX) ∗ (L

′∗DY ) ∈ (GX) ∗ (GY ). If B = KX ∗ LY ∈ GX ∗ GY ,
then writing KX = X ′, LY = Y ′ , we can find by Lemma 11 elements C ′ and
D′ in the subalgebra generated by X ′ and Y ′ , such that X ′ ∗Y ′ = C′X ′+D′Y ′ .
Hence

B = KX ∗ LY = X ′ ∗ Y ′ = C′∗KX + D′∗LY ∈ GX + GY.

Proof of Theorem B

It is easy to see that HX + HY ⊂ X + Y + [h, h] , hence also

(HX + HY )− ⊂ X + Y + [h, h].

In order to prove that X + Y + [h, h] ⊂ (HX + HY )− we proceed by induction
on the dimension of h . If h is one dimensional then there is nothing to prove.

We may suppose that [h, h] = n is not central, since otherwise h is
nilpotent and we know then by Wildberger’s result that X + Y + [h, h] =
HX+HY . We look at minimal noncentral ideals b contained in n . If b∩z = {0} ,

then we consider p : h → h/b = h̃ . We have cases (i) and (ii) of Lemma 2. We
shall treat only the case (ii) and leave the other case to the reader.

There exists a basis U1, U2 of b such that for any A ∈ h ,

[A,U1 + iU2] = Ψ(A)(U1 + iU2),

where A→ Ψ(A) is a nontrivial linear functional which satisfies Ψ([h, h]) = {0} .
Let us suppose that Ψ(Y ) 6= 0 (otherwise we replace Y by X ). We shall use

now the induction hypothesis for h̃ = h/b . Let X̃ = X mod b, Ỹ = Y mod b
etc. We get:

(H̃X̃ + H̃ Ỹ )− = X̃ + Ỹ + [h̃, h̃].

Let now p ∈ [h, h] . By the induction hypothesis, there exists for ε > 0 an element
O(ε) in h of length < ε , an element B in b, C,D in h such that

X + Y + P = CX + DY + B + O(ε).

We have seen in Lemma 3 that there exists β1, β2 in R such that

CX + (β1U1+β2U2)∗DY = X + Y + P −O(ε).

We continue now with case (iv) of Lemma 2. We write as before:

[X, θ] = Ψ(X)θ, [Y, θ] = Ψ(Y )θ + Z,
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where Z ∈ z + iz and where Ψ(X) and Ψ(Y ) are the two nonreal complex
numbers, which are not purely imaginary (since h is exponential). We divide
through z′ = spanC(Z,Z−) ∩ h and we apply the induction hypothesis.

For any P ∈ [h, h] and ε > 0 there exist C,D,O( ε2 ) in h , ‖O( ε2 )‖ <
ε
2 , W in z′ such that

X + Y + P = CX + DY +W +O(
ε

2
).

We look at the complex matrices

M =

(
Ψ(X) Ψ(Y )
ϕ(CX) ϕ(DY )

)
.

If the rank of M is not 2, we take

R = (−Ψ(X))−1[X,Y ]

and we set for any δ 6= 0 in R :

C ′ = (δR) ∗ C.
The corresponding matrix

M ′ =

(
Ψ(X) Ψ(Y )

ϕ(C
′
X) ϕ(DY )

)

is then of rank 2 for all δ 6= 0. Indeed we have

[R, θ] = (−Ψ(X))−1[[X,Y ], θ] = (−Ψ(X))−1([X, [Y, θ]]− [Y, [X, θ]])

= (−Ψ(X))−1(Ψ(X)Ψ(Y )θ −Ψ(X)Ψ(Y )θ −Ψ(X)Z) = Z.

Hence

[C
′
X, θ] = δR[CX,−δRθ] = δR[CX, θ] = δR(Ψ(X)θ + ϕ(CX)Z)

= Ψ(X)θ + (ϕ(CX) + δΨ(X))Z.

Thus
ϕ(C

′
X) = ϕ(CX) + Ψ(X)δ

and
detM ′ = −Ψ(X)Ψ(Y )δ 6= 0.

For δ very small the element

O(δ) = CX − C′X

of [h, h] is of length < ε
2 and so we can write O(δ) + O( ε2 ) = O(ε) and also

X + Y + P = C′X + DY +W + O(ε)

and if we now write C instead of C ′ we can assume that rank M = 2.

By Lemma 4 we can choose α1, α2, β1, β2 in R such that
(α1U1+α2U2)∗CX + (β1U1+β2U2)∗DY = CX + DY +W.

This means of course that

X + Y + P = (α1U1+α2U2)∗CX + (β1U1+β2U2)∗DY +O(ε).

The case (v) of Lemma 2 is very easy and is left to the reader.

It has been shown by Wildberger in [3] that if H is nilpotent then we
do not need closures. In fact the following slightly stronger result holds.



134 Arnal and Ludwig

Proposition 1. Let h be a nilpotent Lie algebra generated by two elements
X and Y as an ideal. Then:

HX + HY = X + Y + [h, h] = HX ∗ HY.

Proof. Indeed, if h is abelian, then the result is clear. If not, let us proceed
by induction on the dimension of h . There exists a noncentral element U in h ,
such that [U, h] ⊂ z . If now

[X,U ] = 0 and [Y, U ] = 0,

then X and Y are contained in the centralizer z(U) of U . But z(U) is an ideal
in h . This implies that z(U) = h and so U is central in h . Hence we may
suppose that [X,U ] = Z 6= 0. We divide through RZ and we use the induction
hypothesis for h/RZ and so on.

Two examples

First Example: HX + HY 6= X + Y + [h, h] .

We give now an example of an exponential Lie algebrag generated by
two elements X,Y in g such that

GX + GY = GX ∗ GY 6= X + Y + [g, g].

Let g be a Lie algebra spanned by the vectors T, U, V, Z and equipped with the
following nontrivial brackets:

[T, U ] = −U, [T, V ] = V, [U, V ] = Z.

The Lie algebrag is an extension by T of the two step nilpotent algebra n =
[g, g] = span(U, V, Z) and the center of g is given by the span of Z . Let now

X = T + U, Y = −T + V.

X and Y generate g : indeed let g0 be the subalgebra of g generated by X and
Y . Then X + Y = U + V ∈ g0, [X,U + V ] = −U + V ∈ g0 mod RZ and thus
[U, V ] = Z ∈ g0 . Finally g0 contains T, U, V and Z and so g = g0 .

We shall realize the group G associated with g as a semidirect product
of R with n = [g, g] , i.e. G = R× n and the multiplication in G is given by:

(t,uU + vV + zZ) · (t′, u′U + v′V + z′Z)

= (t+ t′, (et
′
u+ u′)U + (e−t

′
v + v′)V + (z + z′ +

1

2
(et
′
uv′ − e−t′v′u)Z).

Let us show now that GX + GY 6= X + Y + [g, g] . We remark first that
G = [G,G] · exp(RX) = [G,G] · exp(RY ), hence

GX = [G,G]X, resp. GY = [G,G]Y
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and so
GX = {expuU∗exp vV (T + U) | u, v ∈ R}

= {T + (1 + u)U + (−v)V + (−v − uv)Z | u, v ∈ R}.
And similarly

GY = {expu′U∗exp v′V (−T + V ) | u′, v′ ∈ R}
= {−T + (−u′)U + (1 + v′)V + (u′(1 + v′)Z) | u′, v′ ∈ R}.

Hence

GX + GY =

= {(1 + u− u′)U + (1− v + v′)V + (v(−1− u) + u′(1 + v′)Z | u, v, u′, v′ ∈ R}.

Let A = αU + βV + δZ be any element in [g, g] . We try to solve the equation:

A ∈ GX + GY,

i.e.
α = 1 + u− u′, β = −v + (1 + v′), δ = v(−1− u) + u′(1 + v′),

for some u, u′, v, v′ ∈ R. If now 1 +u−u′ = α = 0, then δ = −u′v+u′(1 + v′) =
u′(−v + (1 + v′)) = u′β. Thus if β = 0, δ must also be 0 and no element

A = δZ of [g, g], δ 6= 0,

is contained in GX + GY . We also see that GX + GY contains every element
B = αU + βV + δZ , with α2 + β2 6= 0 and finally

GX + GY = [g, g] \ R∗Z.

Second Example: exp(HX + HY ) 6= C(expX) · C(expY ).

Let us show by a last example that for solvable nonexponential groups
we do no longer have that

exp(GX + GY ) = C(expX) · C(expY ).

Let g = e(2) = RT + C be the three dimensional Lie algebra with the brackets:

[T,Ξ] = i Ξ, Ξ ∈ C.

The Lie group associated with g can be described as G = E(2) = R × C with
group law:

(t,Ξ) · (t′,Ξ′) = (t+ t′, e−it
′ · Ξ + Ξ′).

In Lemma 1 we have seen that

exp(tT + Ξ) = (t,
(e−it − 1)

−it · Ξ).



136 Arnal and Ludwig

Let now X = sT, Y = tT + 1, with s · t 6= 0. Then X and Y generate g and
we have

GX = CX = sT + C,GY = tT + C and GX + GY = (s+ t)T + C

and also
C(expX) = (s,C) and C(expY ) = (t,C).

Thus
C(expX) ·C(expY ) = ((s+ t),C).

But
exp(GX + GY ) = exp((s+ t)T + C) = ((s+ t), f(s+ t)C).

Hence, if s+ t = 2kπ 6= 0, then

exp(GX + GY ) = exp(2kπ + C) = (2kπ, {0 · C})
= (2kπ, {0}) 6= exp(GX) · exp(GY ) = (2kπ,C).

Theorem C. Let G = exp g be a simply connected, connected solvable Lie
group. Then G is exponential if and only if for every X and Y in g , expX ·
expY ∈ exp(GX + GY ) .

Proof. If G is exponential, then the condition is satisfied by Theorem A. If
G is not exponential, then the exponential mapping is not surjective. However,
for any solvable Lie groupS with Lie algebra s , for any subspace w of s such
that s = w + [s, s] , we have

S = exp w · exp[s, s] = exp w · exp s.

Hence if we choose g in G , such that g /∈ exp g , then we can take X,Y in g ,
such that

g = expX · expY.

Hence g ∈ expGX · expGY , but g /∈ exp(GX + GY ).

Final Question: Would it be possible to obtain our result directly by using
a special expression for the Baker-Campbell-Hausdorff-formula (see for instance
[2] in a different context)?
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