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Introduction

We say that a finite dimensional real Lie algebra g contains invariant
cones if there exists a pointed generating invariant closed convex cone W ⊆ g
which is invariant under the group of inner automorphisms. In this paper we
obtain a classification of all Lie algebras which contain invariant cones.

This classification is the final stage of a development started in [3] and
ranging over [4], [5], [6], [22] and [12]. The work of Hilgert and Hofmann
on invariant cones in general Lie algebras which is completely documented in
Chapter III of [6] provided the basic structure theory for Lie algebras with
invariant cones.

We say that a subalgebra a of the Lie algebra g is compactly embedded
if the closure of the group generated by ead a is compact. One central fact in [6]
is that a Lie algebra with invariant cones always contains a compactly embedded
Cartan algebra t . Associated to such a Cartan algebra t is a uniquely determined
maximal compactly embedded subalgebra k containing t ([6, A.2.40]). It was
shown in [6] that a necessary condition for a Lie algebra g to contain invariant
cones is that g is quasihermitean, i.e., that the centralizer of the center z(k) of
k is not bigger than k , and that g has cone potential, a property which can
be formulated in terms of the root decomposition of g with respect to t . The
work of Spindler [22] contains a universal construction of a class of Lie algebras
containing all those with cone potential. On the basis of this construction and
the results from [6] we have given in [12] a characterization of the Lie algebras
with invariant cones as those with the following properties:

(1) g is not compact semisimple,

(2) all simple ideals contained in g are either compact or hermitean, and

(3) g has strong cone potential, another property which can be defined in
terms of the root decomposition and which implies cone potential.

Unfortunately this characterization does not give an explicit description
of all Lie algebras with invariant cones. Every finite dimensional Lie algebra g
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with Levi decomposition g = r× s decomposes into a direct sum g = g1 ⊕ s1 ,
where s1 is a maximal semisimple ideal of g and the Levi complements of g1

act effectively on the radical of g . If g contains invariant cones, then for g1 the
results in [12] provide a homomorphism q: g→ hn× sp(n, IR) with central kernel,
where hn is the (2n+ 1)-dimensional Heisenberg algebra, such that q maps the
nilradical n onto hn and g contains a reductive subalgebra l with g = n× l such
that l is mapped into sp(n, IR). In this paper we obtain an explicit description
all Lie algebras with invariant cones which rests on these ideas.

The key ingredient in our classification is an observation relating the
results in [14] to the classification problem. To state it, let g = n× l be a
semidirect decomposition, where n is the nilradical and l is reductive. Then
V := [l, n] is an l -module which carries several invariant symplectic structures.
The main point is that there exists a symplectic structure Ω on V such that the
cone WV := {X ∈ g: (∀v ∈ V )Ω(X.v, v) ≥ 0} has interior points.

In general we say that a symplectic vector space (V,Ω) on which a
reductive Lie algebra g acts via a homomorphism g → sp(V,Ω) is of convex
type if

(1) the cone WV has interior points, and

(2) the center acts by semisimple mappings with purely imaginary
eigenvalues.

The first three sections of this paper consist of a classification of all
symplectic modules of convex type. After some reductions one can use the closely
related results of contraction representations from [14] which provide an explicit
classification in the case where g is simple hermitean and V is complex simple.
In Section IV we also explain how these representations are related to strongly
equivariant embeddings of bounded hermitean domains into the Siegel space
which in turn can be characterized by so called (H1)-homomorphisms on the Lie
algebra level (cf. [21], [20]).

In Section V we use these results to obtain a classification of all Lie
algebras which contain invariant cones by constructing them from symplectic
modules of convex type of reductive quasihermitean Lie algebras. The insights
obtained by the point of view of Section III provide also new information on the
structure of these Lie algebras which play a crucial role in the theory of highest
weight representations of the associated groups and semigroups (cf. [15], [16])
and also in the complex geometry of certain coadjoint orbits which carry Kähler
structures (cf. [13]).

The subsection on the relations between Lie algebras with invariant cones
and parabolic subalgebras of hermitean Lie algebras is based on an observation
of S. Sahi. We thank him for many illuminating discussions on the subject.

We also express our deep gratitude to the referee who made a lot of
very valuable suggestions to improve the exposition of the paper and to clarify
the arguments. The whole first section of the present version of this paper is a
reaction on his comments. It contains some rather general result on semisimple
symplectic representations of reductive Lie algebras without the convex type
condition.
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I. Symplectic representation theory

In this section we consider modules of Lie algebras which carry an invari-
ant symplectic form. We are mainly interested in the special class of symplectic
modules of convex type which will be studied in Section II. Our strategy is first
to obtain some general results on the structure of symplectic modules that can be
specialized to obtain sharper results for modules of convex type. In the following
g always denotes a finite dimensional real Lie algebra.

Definition I.1. (a) A symplectic g-module is a symplectic vector space (V,Ω)
on which g acts such that the symplectic form Ω is invariant, i.e.,

Ω(X.v, w) + Ω(v,X.w) = 0

holds for all v, w ∈ V and X ∈ g . An isomorphism of symplectic g-modules
(V,Ω) and (V ′,Ω′) is a g -module isomorphism ϕ:V → V ′ with

Ω′
(
ϕ(v), ϕ(w)

)
= Ω(v, w)

for all v, w ∈ V .

(b) If (Vj ,Ωj), j = 1, . . . , n are symplectic g -modules, then the direct sum
V :=

⊕n
j=1 Vj is a symplectic g -module with respect to

Ω
( n∑

j=1

vj ,

n∑

k=1

wk

)
:=

n∑

j=1

Ω(vj , wj).

(c) A submodule W ⊆ V is called isotropic if it is an isotropic subspace of (V,Ω)
and non-degenerate if the restriction ΩW of Ω to W is non-degenerate.

(d) We say that a symplectic g -module (V,Ω) is indecomposable if it cannot be
written as an orthogonal direct sum of two submodules different from {0} and
V .

Remark I.2. In the following we only consider semisimple modules. We recall
that if a Lie algebra g has a faithful representation ρ: g→ gl(V ) such that V is
a semisimple g -module, then g is reductive (cf. [1, Ch. I, §6, No.4]). Therefore
it is no loss of generality to assume that the Lie algebra under consideration is
reductive.

Our first objective is to show that a semisimple symplectic g -module
always decomposes as an orthogonal direct sum of indecomposable summands
which are uniquely determined up to isomorphy, and to obtain a description of
the indecomposable semisimple modules.

Lemma I.3. Let (V,Ω) be a symplectic g-module, W ⊆ V a simple submodule
and ΩW the restriction of Ω to W . Then either W is isotropic or non-
degenerate.

Proof. Let W0 := W⊥∩W = {w ∈W : Ω(w,W ) = {0}} . Then the invariance
of Ω implies that W0 is a submodule of W . Hence W0 = {0} or W0 = W
because W is simple. In the first case W is non-degenerate and in the second
case W is isotropic.
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Definition I.4. A simple g -module W is said to be of symplectic type if it
carries a g -invariant symplectic form.

The following propositions collects some of the basic properties of sym-
plectic g -modules.

Proposition I.5. (i) If W is a g-module, then

(W ⊕W ∗,Ω∗W ) with Ω∗W
(
(w,α), (w′, α′)

)
= α(w′)− α′(w)

is a symplectic g-module.

(ii) If (V,Ω) is a symplectic g-module, W ⊆ V is maximal isotropic and a
g-submodule, then there exists an isomorphism of symplectic g-modules

ϕ: (V,Ω)→ (W ⊕W ∗,Ω∗W )

with ϕ |W = idW if and only if W has a module complement.

(iii) If (W,Ω) is a symplectic g-module, then

(W ⊕W ∗,Ω∗W ) ∼= (W,Ω)⊕ (W,−Ω).

(iv) If W is a simple g-module, then either W is of symplectic type and
(W ⊕W ∗,Ω∗W ) decomposes into an orthogonal direct sum, or (W ⊕W ∗,Ω∗W ) is
indecomposable.

Proof. (i) That W ⊕W ∗ is in fact a symplectic g -module follows from

Ω∗W
(
X.(w,α), (w′, α′)

)
= (X.α)(w′)− α′(X.w)

= −α(X.w′) + (X.α′)(w)

= −Ω∗W
(
(w,α), X.(w′, α′)

)
.

(ii) If ϕ exists, then ϕ(W ∗) ⊆ V is a module complement for W .

Suppose, conversely, that U ⊆ V is a module complement of W . Since
W is maximal isotropic, we have W⊥ = W and therefore

0 = V ⊥ = W⊥ ∩ U⊥ = W ∩ U⊥.

On the other hand dimW = 1
2 dimV yields dimU = dimU⊥ , so that we also

have the direct module decomposition V = W ⊕ U⊥ . Let

U → V = W ⊕ U⊥, u 7→
(
γ(u), δ(u)

)

denote the corresponding embedding of U . We put

U ′ := {u− 1
2γ(u) =

(
1
2γ(u), δ(u)

)
:u ∈ U}.

Since γ is a homomorphism of g -modules, U ′ is a submodule of V . Moreover,
U ′ ∩W = {0} because δ(u) = 0 implies u ∈ W ∩ U = {0} . We conclude that
U ′ is a module complement for W .
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We claim that U ′ is isotropic. In fact, since W is isotropic, we have

Ω
(
u− 1

2γ(u), u′ − 1
2γ(u′)

)
= Ω(u, u′)− 1

2Ω
(
γ(u), u′

)
− 1

2Ω
(
u, γ(u′)

)

= Ω(u, u′)− 1
2
Ω(u, u′)− 1

2
Ω(u, u′) = 0.

Now we define ϕ1:U ′ → W ∗ by ϕ1(u)(w) = Ω(u,w) and observe that
since W is maximal isotropic, ϕ1 is an isomorphism of g -modules. Hence

ϕ:V = W ⊕ U ′ →W ⊕W ∗, (w, u) 7→
(
w,ϕ1(u)

)

is a homomorphism of g -modules extending id |W . It remains to show that ϕ is
an isomorphism of symplectic g -modules. This follows from

Ω∗W
(
(w,ϕ1(u)), (w′, ϕ1(u′))

)
= ϕ1(u)(w′)− ϕ1(u′)(w)

= Ω(u,w′)− Ω(u′, w) = Ω(w + u,w′ + u′).

(iii) Put (V,ΩV ) := (W,Ω) ⊕ (W,−Ω). Then W̃ := {(w,w):w ∈ W} and
U := {(w,−w):w ∈ W} are maximal isotropic submodules of V . Therefore (ii)
implies that

(V,ΩV ) ∼= (W̃ ⊕ W̃ ∗,Ω∗
W̃

) ∼= (W ⊕W ∗,Ω∗W ).

(iv) Suppose that (V,Ω) := (W ⊕W ∗,Ω∗W ) is decomposable. We show that W
permits a g -invariant symplectic structure. Let V = U⊕U⊥ denote a non-trivial
orthogonal decomposition, where U is a non-degenerate submodule of V . Since
V is a sum of two simple g -modules, it follows that U is simple. Since U is
non-degenerate, we have U ∩ W = U ∩ W ∗ = {0} . Therefore the projection
p:U →W is an isomorphism of g -modules and consequently W is of symplectic
type.

Conversely, if W is of symplectic type, then (iii) shows that (W ⊕
W ∗,Ω∗W ) decomposes as asserted. This completes the proof.

Lemma I.6. Let V be a g-module and V ∗ its dual module. Then the following
are equivalent:

(i) V carries a symplectic form Ω such that (V,Ω) is a symplectic g-module.

(ii) There exists an isomorphism of g-modules ϕ:V → V ∗ such that ϕ∗ =
−ϕ .

Proof. To ϕ ∈ Hom(V, V ∗) we associate the bilinear form Ωϕ(v, w) = ϕ(v)(w)
on V ×V . The so obtained map Hom(V, V ∗)→ Bil(V, IR) is g -equivariant with
respect to the actions given by (X.ϕ)(v) = X.ϕ(v) − ϕ(X.v) on Hom(V, V ∗)
and (X.Ω)(v, w) = −Ω(X.v, w)− Ω(v,X.w) on bilinear forms. Moreover, since
ϕ∗(v)(w) = ϕ(w)(v), the condition ϕ∗ = −ϕ is equivalent to the skew-symmetry
of Ωϕ and ϕ is an isomorphism if and only if Ωϕ is non-degenerate. We conclude
that a skew-symmetric isomorphism of g -modules V → V ∗ exists if and only if
V carries a skew-symmetric g -invariant bilinear form.
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Lemma I.7. Let (V,Ω) be a semisimple symplectic g-module and W ⊆ V
an isotropic simple submodule. Then there exists a simple isotropic submodule
U ⊆ V such that U +W is non-degenerate and U +W ∼= W ⊕W ∗ as sympletic
g-modules with respect to the restriction of Ω to U +W .

Proof. Since W⊥ 6= V , the semisimplicity of V provides us with a module
complement U satisfying V = W⊥ ⊕ U . Then the pairing

W × U → IR, (w, u) 7→ Ω(w, u)

is non-degenerate and g -invariant so that, as a g -module, U ∼= W ∗ . Since

(U +W )⊥ ∩ (W + U) = U⊥ ∩W⊥ ∩ (W + U) = U⊥ ∩W = {0},

the submodule U +W is non-degenerate. Moreover W ⊆W⊥ implies W ∩U =
{0} , hence dim(W + U) = 2 dimW , so that W ⊆ U +W is maximal isotropic.
Now Lemma I.5(ii) implies that U + W ∼= W ⊕W ∗ as symplectic g -modules.
We conclude in particular that U can be chosen isotropic.

Proposition I.8. Let (V,Ω) be a semisimple indecomposable symplectic g-
module which is not simple. Then there exists a simple g-module W such that
(V,Ω) ∼= (W ⊕W ∗,Ω∗W ) .

Proof. Let W ⊆ V be a non-zero submodule of minimal dimension. Then
W is a simple g -module. If W is non-degenerate, then V = W ⊕W⊥ is an
orthogonal decomposition. Therefore V = W which in turn contradicts the
assumption that V is not simple. Hence W is isotropic and Lemma I.7 applies.
So we find a simple isotropic submodule U such that W + U is non-degenerate
and isomorphic to W⊕W ∗ . Since V is indecomposable, we see that V = W+U ,
and this proves the assertion.

Remark I.9. We note that if W and U are isomorphic simple g -modules
not of symplectic type, then the modules W ⊕W ∗ and U ⊕ U∗ are isomorphic
as symplectic g -modules. If W ∼= U∗ via ϕ:W → U∗ , then we also obtain a
symplectic isomorphism

ψ:W ⊕W ∗ → U ⊕ U∗, (w,α) 7→
(
(ϕ∗)−1(α),−ϕ(w)

)

because

〈−ϕ(w), (ϕ∗)−1(α′)〉−〈−ϕ(w′), (ϕ∗)−1(α)〉 = −〈w,α′〉+〈w′, α〉 = α(w′)−α′(w).

If, conversely, W ⊕W ∗ and U ⊕ U∗ are isomorphic as g -modules, then
either W ∼= U or W ∼= U∗ . It follows in particular that the indecomposable
symplectic g -modules W ⊕W ∗ and U ⊕U∗ are isomorphic as g -modules if and
only if (W ⊕W ∗,Ω∗W ) ∼= (U ⊕ U∗,Ω∗U ) as symplectic g -modules.

We will see in the following subsection (cf. Proposition I.16) that if
(W,ΩW ) and (U,ΩU ) are simple symplectic g -modules, then the isomorphy
of W and U as g -modules does not necessarily imply that the symplectic g -
modules (W,ΩW ) and (U,ΩU) are isomorphic.
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Lemma I.10. Let (V,Ω) be a semisimple symplectic g-module and W,W ′ two
indecomposable non-degenerate submodules of V that are non-isomorphic as g-
modules. Then W and W ′ are mutually orthogonal.

Proof. Let us first assume that W ′ is a simple module. If W is not orthogonal
to W ′ , then Ω induces a g -invariant pairing W ′ × W → IR which yields an
embedding W ′ →W ∗ ∼= W .

If W is simple, then we obtain a contradiction to our assumption. If W
is not simple, then W ∼= U⊕U∗ (Proposition I.8), where U is a simple g -module
which is not of symplectic type (Lemma I.5(iii)). The embedding of W ′ into W
now shows that either W ′ ∼= U or W ′ ∼= U∗ , contradicting the fact that W is
of symplectic type.

Finally we assume that W ′ = X ⊕ X∗ , where X is not symplectic
(Proposition I.8). If W is not orthogonal to W ′ , then we may w.l.o.g. assume
that X is not orthogonal to U∗ (otherwise we exchange X and X∗ ). Then
the pairing between the simple modules X and U ∗ yields an isomorphism
X ∼= (U∗)∗ ∼= U . Therefore W ′ = X ⊕ X∗ ∼= U ⊕ U∗ ∼= W as symplectic
g -modules (Remark I.9). This completes the proof.

The first part of the following structure theorem has been suggested by
the referee. We note that a complex version of the second part has also appeared
in [11].

Theorem I.11. (Structure theorem for semisimple symplectic modules) Let
(V,Ω) be a semisimple symplectic g-module. Then the following assertions hold:

(i) V is an orthogonal direct sum of indecomposable symplectic g-modules⊕m
j=1 Vj and the indecomposable summands are unique up to permuta-

tions and isomorphy of g-modules.

(ii) A semisimple indecomposable symplectic g-module is either simple or
isomorphic to a module of the type (W ⊕W ∗,Ω∗W ) .

Proof. (i) If V is indecomposable, there is nothing to show. We proof
the assertion by induction over the dimension of V . Suppose that V is not
indecomposable. Then V contains a non-degenerate submodule W . Then V ∼=
W ⊕W⊥ and we obtain the existence of the decomposition into indecomposable
modules by applying induction on W and W⊥ .

Now let V =
⊕n0

j=1 V
nj
j =

⊕m0

k=1W
mk
k be two decompositions into

indecomposable summands, where the modules V1, . . . , Vn0
are pairwise non-

isomorphic as g -modules and the same holds for the modules W1, . . . ,Wm0
.

If Wk is not isomorphic to V1 as a g -module, then Wk⊥V1 (Lemma I.10).
Therefore there exists a uniquely determined index k0 such that Wk0

∼= V1

and we have a non-degenerate pairing between W
mk0

k0
and V n1

1 . Thus mk0
= n1

holds for dimensional reasons and we conclude from W
mk0

k0
⊆
(∑n0

j=2 V
nj
j

)⊥
that

W
mk0

k0
= V n1

1 . Now the assertion follows by induction applied to the orthogonal
complement of this submodule.

(ii) This follows from Lemma I.5 and Proposition I.8.

Remark I.12. Let g be a real Lie algebra and write ĝ for the set of g -
module isomorphy classes of indecomposable finite dimensional symplectic g -
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modules. Then the g -module isomorphy classes of finite dimensional symplectic
g -modules are uniquely determined by a multiplicity function m: ĝ → IN0 with
finite support.

In general a simple symplectic g -module carries a lot of non-equivalent
symplectic forms so that the question whether two general semisimple symplectic
g -modules are isomorphic as g -modules seems to be rather involved. Actually,
in view of Remark I.9, it boils down to the case where V = W n and W is simple
symplectic. In the next subsection we will see how to classify the non-equivalent
symplectic structures on a simple symplectic g -module. It will turn out that
the general classification problem is much simpler for the class of symplectic
modules of convex type because the convexity condition yields a coupling between
the signs of the symplectic structures on the different submodules. In this case
we will see that a module of the type W n permits exactly two non-equivalent
symplectic structures leading to modules of convex type (cf. Corollary II.9).

Symplectic structures on simple modules

Let V be a simple real g -module and ID := Endg(V ) the algebra of
g -endomorphisms of V . Then ID is a skew-field over the real numbers so that
ID = IR, C or IH (the quaternions). We want to determine how many invariant
symplectic structures exist on V whenever V is symplectic, i.e., there exists at
least one. In the following we write 1, I, J , and K for the basis elements of the
quaternions.

Lemma I.13. Let σ: d 7→ d] be an involutive antiautomorphism of ID fixing
IR . Then σ is IR -linear and the following cases occur:

(IR) ID = IR and σ = idIR .

(CI ) ID =C and σ(z) = z .

(CII ) ID =C and σ = idC .

(IHI ) ID = IH and σ(z) = z .

(IHII ) ID = IH and σ(z) = aza−1 with a = a−1 = −a .

Proof. Since σ leaves IR ⊆ ID pointwise fixed, we find for a ∈ IR and d ∈ ID
that

σ(ad) = σ(d)σ(a) = σ(d)a = aσ(d),

i.e., σ is IR-linear.

We distinguish several cases.

ID = IR: Then σ = idIR holds trivially.

ID =C: Then complex conjugation σ(z) = z is an involutive antiautomorphism
and also σ = idC . On the other hand C is abelian so that σ is a field automor-
phism, hence there are only these two possibilities.

ID = IH: (cf. [19, pp.180,181]) It is clear that conjugation σ(z) = z is an
involutive antiautomorphism of IH. Assume that σ is different from conjugation.
Since IH is not commutative, σ 6= idIH . Moreover −σ: IH→ IH is an isomorphism
of the real Lie algebra IH with the bracket [x, y] := xy − yx . Therefore it
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preserves the commutator algebra IH′ := span{I, J,K} and consequently IH′ is
invariant under σ . We conclude that σ commutes with conjugation, hence that
α(d) := σ(d) defines an involutive automorphism of IH leaving IR pointwise
fixed. Put IH1 := {d ∈ IH:α(d) = d} . Then IH1 is a subalgebra of IH containing
IR. The requirement that σ(d) 6= d for at least one d ∈ IH yields IH1 6= IH.
Moreover α2 = idIH shows that we have a direct vector space decomposition

IH = IH1 ⊕ {d ∈ IH′:α(d) = −d} = IH1 ⊕ {d ∈ IH′:σ(d) = d}.
We conclude further from σ 6= idIH that IH1 6= IR. Therefore IH1 is at

least two dimensional. Thus there exists a ∈ IH1 ∩ IH′ with a2 = −1. Then
IH1 ⊇ span{1, a} ∼= C and in this sense IH1 is a complex algebra. This shows
that IH1 6= IH implies that IH1 = span{1, a} for dimensional reasons. Finally we
conclude that z 7→ aza−1 is involutive, its fixed point set is IH1 , and aza−1 = −z
for z in the orthogonal complement of IH1 . Hence α(z) = aza−1 beause α has
the same eigenspaces for 1 and −1, and therefore σ(z) = aza−1 for all z ∈ IH.

Conversely, it is trivial that z 7→ aza−1 always defines an involutive
antiautomorphism of IH.

According to the preceding lemma there are five different types of invo-
lutive antiautomorphism of skew-fields over IR.

Definition I.14. Let (V,Ω) be a symplectic g -module and ID = Endg(V ).
For A ∈ EndIR(V ) define A] ∈ EndIR(V ) by

Ω(A.v, w) = Ω(v, A].w)

for all v, w ∈ V . Then an easy calculation shows that ID] = ID so that d 7→ d]

is an involutive antiautomorphism of the real algebra ID fixing IR pointwise. If
V is simple, then ID = IR,C or IH and we say that V if of type IR, CI , CII , IHI

or IHII if the involution on ID has the corresponding type (cf. Lemma I.13).

In the following we write ID∗ := ID ∩ Gl(V ) for the set of units in the
algebra ID = Endg(V ). Recall that d ∈ ID ∩ Gl(V ) is in fact a unit in ID since
the inverse of an intertwining operator intertwines also.

Lemma I.15. Let (V,Ω) be a symplectic g-module and ID = Endg(V ) . Then
the space of invariant symplectic structures on V is parametrized by {d ∈
ID∗: d] = d} via d 7→ Ωd and

Ωd(v, w) := Ω(d.v, w).

Two symplectic g-modules (V,Ωa) and (V,Ωb) are isomorphic as sym-
plectic g-modules if and only if there exists d ∈ ID with b = d]ad .

Proof. Let Ω′ be a g -invariant symplectic structure on V . Then there exists
d ∈ EndIR(V ) such that Ω′(v, w) = Ω(d.v, w) for all v, w ∈ IR. Then d ∈ ID since
Ω′ is invariant, d] = d follows from the requirement that Ω′ is skew-symmetric,
and d ∈ Gl(V ) from the non-degeneracy of Ω′ . Conversely, it is clear that each
form Ωd , d = d] ∈ ID ∩Gl(V ) is a g -invariant symplectic form on V .

If Ω and Ω′ are two different invariant symplectic forms on V , then
the corresponding symplectic g -modules are equivalent if and only if there exists
d ∈ ID such that Ω′(v, w) = Ω(d.v, d.w) for all v, w ∈ V . Applying this to the
forms Ωa and Ωb , the assertion follows.
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Proposition I.16. Let (V,Ω) be a simple symplectic g-module. Then, ac-
cording to the type of V , the following assertions hold:

(IR) The space of invariant symplectic forms is parametrized by IR∗ and there
are two equivalence classes of invariant forms.

(CI ) The space of invariant symplectic forms is parametrized by IR∗ and there
are two equivalence classes of invariant forms.

(CII ) The space of invariant symplectic forms is parametrized by C∗ and all
such forms are equivalent.

(IHI ) The space of invariant symplectic forms is parametrized by IR∗ and there
are two equivalence classes of invariant forms.

(IHII ) The space of invariant symplectic forms is parametrized by a⊥ \ {0} and
all such forms are equivalent.

Proof. We use Lemma I.15 to check the different cases. If d] = d is
conjugation, then the space of invariant forms is parametrized by IR∗ and a, b ∈
IR∗ lead to equivalent forms Ωa and Ωb if and only if there exists d ∈ ID such
that b = d]ad = |d|2a . Therefore we have exactly two equivalence classes of
forms. They are represented by 1 and −1.

In the case CII we have d] = d for all d ∈C so that the space of invariant
forms is parametrized by C∗ . The numbers a and b lead to equivalent forms
if and only if there exists d ∈C with b = d]ad = d2a . Thus we have only one
equivalence class.

In the case IHII , we have a] = −a , and all elements in a⊥ are fixed by
d 7→ d] . Therefore the space of invariant symplectic forms is parametrized by
a⊥ \ {0} .

Let 0 6= x ∈ IH0 := {d ∈ ID: d] = d} . We claim that Ωx is equivalent
to Ω = Ω1 . Let A ⊆ IH0 be a two dimensional subalgebra containing IR
and x . Then A ∼= C so that we find d ∈ A such that d2 = x−1 . Now
d.x = dxd] = xd2 = 1 .

Example I.17. (a) If V = IR2n with the standard symplectic form Ω and
g = sp(n, IR), then the commutant is ID = IR. Therefore the g -invariant
symplectic forms are the multiples of Ω and the two different equivalence classes
of such forms are represented by Ω and −Ω.

(b) If V = Cn , Ω(z, w) = Im
∑
j zjwj , and g = u(n), then (V,Ω) is a simple

symplectic g -module and since i1 ∈ g , it is also simple as a real g -module. The
commutant of g is ID =C and since (i1)] = −i1 , this module is of type CI .

(c) If V = C2n and ΩC is the standard complex symplectic form, we put
Ω := Re ΩC and g := sp(n,C). Then V is a real simple g -module (this follows
from (a)) and the commutant of g is ID = C, where the involution on C is the
identity. Therefore the space of g -invariant symplectic forms is C∗ and all such
forms are equivalent.

(d) If V = IHn , Ω(z, w) = Re
∑
j zjJwj , and g = so∗(2n), then Ω is a symplectic

g -invariant form on the real vector space V . We will see later (cf. Remark III.14)
that V is a simple g -module over IR and that the commutant of g is IH.

For d ∈ IH′ , z, w ∈ IH we have

Re(dzJw) = Re(zJwd) = Re(zJdw)
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showing that d] = d for all d ∈ ID. Therefore V is a symplectic g -module of
type IHI .

(e) If V = IHn , ΩIH(z, w) = Im
∑
j zjwj , and g = sp(n), then ΩIH is a

skew-symmetric IR-bilinear g -invariant form on V . Since the group Sp(n) =
exp

(
sp(n)

)
acts transitively on the unit-sphere in V , the g -module V is simple

as a real module and the commutant of g is IH. Applying non-zero linear
functions on IH′ = span{I, J,K} to ΩIH , we obtain a three dimensional space of
invariant symplectic forms, hence V is a symplectic g -module of type IHII .

Remark I.18. Suppose that (V,Ω) is an isotypic symplectic g -module, i.e.,
(V,Ω) ∼= (W,ΩW )m , where W is simple, and that W is of type IR,CI or IHI .
Then ID = Endg(V ) ∼= IM(m, IK), where IK = Endg(W ) is IR,C or IH. Since
the involution d 7→ d] coincides with the natural conjugation on IK, it follows
easily that the involution d 7→ d] on ID ∼= IM(n, IK) coincides with the natural
involution d 7→ d∗ induced by the positive definite hermitean form on IKn given
by 〈v, w〉 :=

∑n
j=1 vjwj . So we can identify the set of g -invariant symplectic

forms on V with Herm(m, IK) = {d ∈ IM(m, IK): d∗ = d} , the space of m×m -
hermitean matrices over IK. The action of D∗ ∼= Gl(m, IK) on this space whose
orbits are the equivalence classes of g -invariant symplectic structures is given by
d.a = dad∗ . We recall that Herm(m, IK) is a Jordan algebra of rank m (cf. [2]).
In this sense the orbits of Gl(m, IK) turn out to be the orbits of the structure
group G(Ω), where Ω = int Herm+(n, IK) is the open cone of positive definite
hermitean matrices which in this case coincides with the orbit of 1 under this
action. Now the theory of Jordan algebras implies in particular that there are at
most m+ 1 different ID∗ -orbits in ID∗ ∩ Herm(n, IK) (cf. [2, Ch. IV]).

II. Symplectic modules of convex type

In this section we specialize the results of the preceding section to sym-
plectic modules of convex type. Here g always denotes a real reductive Lie
algebra and G a simply connected Lie group with L(G) = g .

If C is a closed convex cone in a vector space V , we write H(C) :=
C ∩ (−C) for the edge of the cone C and C? := {α ∈ V ∗:α(C) ⊆ IR+} for the
dual cone. The latter notation is also used for arbitrary subsets C ⊆ V .

Definition II.1. (a) If (V,Ω) is a symplectic g -module, then we assign to
each X ∈ g the Hamiltonian function defined by

ϕ(X)(v) := 1
2Ω(X.v, v).

Note that ϕ(X) = 0 is equivalent to X.V = {0} . The mapping

Φ:V → g∗, v 7→ (X 7→ ϕ(X)(v))

is called the moment map. One checks easily that it is equivariant with respect
to the actions of G on V and the coadjoint action of G on g∗ which is defined
by Ad∗(g).ω := ω ◦Ad(g)−1 .



150 Neeb

(b) A symplectic g -module (V,Ω) is said to be of convex type if the following
two conditions are satisfied:

(i) The closed convex cone CV ⊆ g∗ generated by the image Φ(V ) of the
moment map is pointed, i.e., contains no vector subspace. Note that,
according to the duality of convex cones, this condition is equivalent to
the condition that the cone WV = C?V ⊆ g mentioned in the introduction
is generating.

(ii) The center z(g) acts semisimply on V with purely imaginary eigenvalues.
This means that under the homomorphism ρ: g → sp(V ), the image of
z(g) is a compactly embedded subalgebra.

Lemma II.2. Let (V,Ω) be a symplectic g-module of convex type. Then the
following assertions hold:

(i) Every non-degenerate submodule of V is of convex type.

(ii) V is a semisimple g-module.

Proof. (i) This is trivial.

(ii) We have to show that V is a sum of simple submodules. To show this, we first
decompose V as a direct sum V = ⊕kj=1Vj of isotypic z(g)-modules. Then each
Vj is invariant under g and two cases occur. If z(g) acts trivially on Vj , then
Vj is a sum of simple g -modules which are exactly the simple [g, g] -submodules
(Weyl’s theorem). If z(g) acts non-trivially, then there exists a complex structure
I on Vj and a linear functional αj on z(g) with X.v = αj(X)Iv for all v ∈ Vj .
Then I.v = X.v for every X ∈ z(g) with αj(X) = 1 and therefore I commutes
with g . This shows that the simple submodules of Vj are the complex simple
[g, g] -submodules which generate Vj by Weyl’s theorem.

In view of Lemma II.2, all the results of Section I on semisimple symplec-
tic g -modules become available for symplectic g -modules of convex type. First
we show that the indecomposable g -modules of type W ⊕W ∗ cannot occur in
modules of convex type.

In the following we call a simple g -module W non-trivial if g.W 6= {0} .

Lemma II.3. Let W be a non-trivial g-module. Then the symplectic g-module
(W ⊕W ∗,Ω∗W ) cannot be contained in any symplectic g-module of convex type.

Proof. Since non-degenerate submodules of modules of convex type are of
convex type, it suffices to show that (W ⊕W ∗,Ω∗W ) is not of convex type. For
(w,α) ∈W ⊕W ∗ and X ∈ g we have

Φ(w,α)(X) = 1
2Ω
(
X.(w,α), (w,α)

)
= 1

2Ω
(
(X.w,X.α), (w,α)

)

= 1
2

((X.α)(w)− α(X.w)) = 1
2

(−α(X.w)− α(X.w)) = −α(X.w).

Replacing w by −w , it follows in particular that Φ(W ⊕W ∗) = −Φ(W ⊕W ∗).
If W ⊕W ∗ is of convex type we therefore conclude that Φ(W ⊕W ∗) = {0} ,
hence that g.W = {0} , contradicting the non-triviality of W .
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Lemma II.4. If V is a symplectic g-module of convex type, then every non-
trivial simple submodule W is non-degenerate.

Proof. Let W ⊆ V be a non-trivial simple submodule. We assume that W
is isotropic and use Lemma I.7 to find a simple isotropic submodule U ⊆ V such
that U+W ∼= W ⊕W ∗ as symplectic g -modules. This contradicts Lemma II.3.

Proposition II.5. Let V be a symplectic g-module of convex type,

Vfix := {v ∈ V : g.v = {0}}, and Veff := span{X.v:X ∈ g, v ∈ V }.

Then V = Vfix ⊕ Veff is an orthogonal direct sum of symplectic g-modules, Veff

is a symplectic g-module of convex type, and every submodule of Veff is non-
degenerate.

Proof. The fact that V = Vfix ⊕ Veff is a direct sum of g -modules follows
from the semisimplicity of the g -module V (Lemma II.2).

Let W ⊆ Veff be a submodule. We claim that W is non-degenerate.
Suppose that W is degenerate. Then W ∩ W⊥ is a non-zero submodule of
W . Let U ⊆ W ∩W⊥ be a minimal non-zero submodule. Then U is a non-
trivial simple g -module so that Lemma II.4 implies that U is non-degenerate,
contradicting U ⊆W ∩W⊥ ⊆ U⊥ . This proves that W is non-degenerate.

We conclude in particular that Veff is non-degenerate. Hence V ⊥eff is a
non-degenerate submodule of V complementary to Veff . Thus V ⊥eff ⊆ Vfix and
by comparing dimensions we see that Vfix = V ⊥eff . This completes the proof.

Corollary II.6. Every symplectic g-module V of convex type decomposes into
an orthogonal direct sum of Vfix and simple symplectic g-modules of convex type.

Proof. This follows from Theorem I.11, Lemma II.4, and Proposition II.5.

Lemma II.7. Let (V,Ω) be a simple symplectic g-module of convex type. Then
V is of type IR , CI or IHI .

Proof. The condition that V is of type IR, CI or IHI is equivalent to the
statement that there exists no complex structure I ∈ Endg(V ) satisfying I] = I
(cf. Proposition I.16). Suppose that I ∈ Endg(V ) with I] = I . Then

Φ(Iv)(X) = 1
2Ω(X.Iv, Iv) = 1

2Ω(IX.v, Iv) = 1
2Ω(X.v, I2.v) = −Φ(v)(X)

so that Φ(Iv) = −Φ(v). Therefore a non-trivial simple symplectic g -module of
type CII or IHII cannot be of convex type.

Theorem II.8. Let (V,Ω) be a symplectic g-module of convex type and
{V1, . . . , Vm} a maximal set of pairwise non-equivalent non-trivial simple sub-
modules. Let Ωj := Ω |Vj×Vj , Ω0 := Ω |Vfix×Vfix

and mj denote the multiplicity
of Vj in V . Then the symplectic g-module (V,Ω) is, as a symplectic g-module,
equivalent the orthogonal direct sum

(Vfix,Ω0)⊕
m⊕

j=1

(Vj,Ωj)
mj .
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Proof. According to Corollary II.6, the symplectic g -module V is the orthog-
onal direct sum of simple symplectic g -modules of convex type. Let (W,ΩW )
and (U,ΩU) be non-trivial simple summands occuring in such a decomposition
of (V,Ω). Suppose that W ∼= U as g -modules. If (U,ΩU) is not equivalent to
(W,ΩW ) as a symplectic g -module, then (U,ΩU) ∼= (W,−ΩW ) (Lemma II.7,
Proposition I.16). Hence (W,ΩW )⊕ (W,−ΩW ) is isomorphic to a submodule of
(V,Ω) and this is impossible if V is of convex type. Therefore any module de-
composition V = Vfix ⊕

⊕m
j=1 V

mj
j which is in addition orthogonal with respect

to Ω yields an isomorphism

(V,Ω) ∼= (Vfix,Ω0)⊕
m⊕

j=1

(Vj ,Ωj)
mj

of symplectic g -modules.

Corollary II.9. Two symplectic g-modules (V,Ω) and (V ′,Ω′) of convex
type are isomorphic as symplectic g-modules if and only if V ∼= V ′ as g-modules
and CV = CV ′ .

Proof. If (V,Ω) and (V ′,Ω′) are isomorphic as symplectic g -modules, then
they are trivially isomorphic as g -modules and the cones CV and CV ′ coincide.

Suppose conversely that V ∼= V ′ as g -modules and that CV = CV ′ .
Then V and V ′ contain the same types of irreducible submodules with the same
multiplicities. First Vfix and V ′fix have the same dimension, so that they are
isomorphic as symplectic vector spaces, hence as symplectic g -modules.

Let Vj be an irreducible submodule of V and V ′j ⊆ V ′ an isomorphic
submodule. We write Ωj resp. Ω′j for the induced symplectic stucture on Vj
resp. V ′j . Then either (V ′j ,Ω

′
j)
∼= (Vj ,Ωj) or (V ′j ,Ω

′
j)
∼= (Vj ,−Ωj). Since

ΦV ′
j
(V ′j ) ∪ ΦVj (Vj) ⊆ CV ′ = CV and CV is a pointed cone, we see that the

first possibility holds. Now we apply Theorem II.8 to complete the proof.

The preceding result shows that for modules of convex type it is rather
easy to pass from module isomorphy classes to isomorphy classes of symplectic
modules. The additional information one needs is the cone CV which determines
the choices of the class of the symplectic structure on each irreducible submodule.
The following remark makes this a bit more precise.

Remark II.10. Let (V,Ω) be a symplectic g -module of convex type. We are
interested in a description of the set of all g -invariant symplectic structures Ω′

on V such that (V,Ω′) is also of convex type.

Suppose first that V ∼= V m1
1 is isotypic as a g -module. According to

Lemma II.7, V1 permits exactly two classes of g -invariant symplectic structures
represented by (V1,Ω1) and (V1,−Ω1), where Ω1 is the restriction of Ω to V1 .
Therefore Theorem II.8 implies that V permits also two classes of invariant
symplectic structures Ω′ such that (V,Ω′) is of convex type. Note that there are
much more classes of symplectic structures if we do not impose this condition
(cf. Remark I.18).
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We conclude with Theorem II.8 that for any g -invariant symplectic
structure Ω′ such that (V,Ω′) is of convex type, we have

(V,Ω′) ∼= (Vfix,Ω0)⊕
m⊕

j=1

(Vj , εjΩj)
mj ,

where εj ∈ {1,−1} . The corresponding cone is given by

C ′V =
m∑

j=1

εjCVj .

The convex type condition for (V,Ω′) means that C ′V is pointed. This yields an
additional coupling of the signs ε1, . . . , εm .

This coupling condition is rather implicit. Anticipating Theorem III.5
and its consequences, we know that at most one simple non-compact ideal gj
acts on the simple module Vj . If Vj and Vk are modules for which gk = gj ,
then their symplectic structures are coupled in the sense that εj = εk . The
following example illustrates what happens if no such coupling occurs.

Let V = IR2 be the canonical sl(2, IR)-module and consider V ⊕ V as
module of g := sl(2, IR)2 . Then (V,Ω) ⊕ (V,Ω) and (V,Ω) ⊕ (V,−Ω) are two
different structure of symplectic g -modules of convex type on V ⊕ V . Here all
choices (1, 1), (1,−1), (−1, 1), and (−1,−1) for ε1, ε2 are possible and we obtain
four classes of pairwise non-equivalent symplectic g -module structures of convex
type on V ⊕ V .

We believe that the aforementioned coupling condition mentioned in
Remark II.10 is not sufficient and we leave it as an open problem to make the
coupling condition on the signs more explicit. We will see in Section V how this
problem is related to the classification of Lie algebras with invariant cones.

Complexifications of modules of convex type

Lemma II.11. Let (V,Ω) be a symplectic g-module, VC its complexification,
v 7→ v complex conjugation on VC , and ΩC the complex bilinear extension of Ω
to VC . Then the following assertions hold:

(i) The prescription B(v, w) := iΩC(v, w) defines a pseudohermitean form
on VC .

(ii) Ω̃ := ImB is an invariant symplectic form on the real g-module VC with

Ω̃(v1 + iv2, w1 + iw2) = Ω(v1, w1) + Ω(v2, w2),

i.e., (VC, Ω̃) ∼= (V,Ω)⊕ (V,Ω) is an orthogonal direct sum of symplectic
g-modules.
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Proof. (i) The sesquilinearity is clear. That it is pseudohermitean follows
from

B(w, v) := iΩC(w, v) = iΩC(w, v) = iΩC(v, w) = B(v, w).

(ii) For v = v1 + iv2 and w = w1 + iw2 we have

Ω̃(v, w) = ImB(v1 + iv2, w1 + iw2) = Im iΩC(v1 + iv2, w1 − iw2)

= Re ΩC(v1 + iv2, w1 − iw2) = Ω(v1, w1) + Ω(v2, w2).

This proves (ii).

Proposition II.12. Let (V,Ω) be a symplectic g-module and (VC, Ω̃) its
complexification considered as a real g-module. Then (V,Ω) is of convex type if

and only if (VC, Ω̃) is of convex type and in this case CV = CVC .

Proof. From Lemma II.11(ii) we infer that ΦVC
(v1 + iv2) = ΦV (v1)+ΦV (v2).

Therefore the sets ΦV (V ) and ΦVC(VC) generate the same cone in g∗ .

Example II.13. Let V = IR2 be the standard sl(2, IR)-module of dimension
2. Then the invariant symplectic form is given by Ω(v, w) = det(v, w). Since
G = Sl(2, IR) acts transitively on IR2 \ {0} , the image of the moment mapping
is the closure of one coadjoint orbit. This shows that Φ(IR2) is the closure of
a nilpotent orbit in sl(2, IR)∗ . It follows in particular that IR2 is a symplectic
module of convex type.

Let VC =C2 be the complexification. Then ΦVC
(VC) = ΦV (V ) + ΦV (V )

is the closed convex invariant cone generated by ΦV (V ).

Proposition II.14. Recall the cone

WV = C?V = {X ∈ g: (∀α ∈ CV )α(X) ≥ 0}.

Then the following are equivalent:

(i) X ∈WV .

(ii) The Hamiltonian function defined by ϕ(X)(v) = 1
2Ω(X.v, v) is non-ne-

gative on V .

(iii) B(iX.v, v) ≤ 0 holds for all v ∈ VC .

Proof. The equivalence of (i) and (ii) follows immediately from the definition
of CV .

Let v = v1 + iv2 ∈ VC and X ∈ g . Then iX is a B -hermitean operator
on VC . Therefore B(iX.v, v) is real and consequently

−B(iX.v, v) = ImB(X.v, v) = Ω̃(X.v, v) = 2ΦVC(v)(X).

which immediately implies the equivalence of (i) and (iii).

Proposition II.14 links the symplectic modules of convex type to those
complex modules which carry invariant pseudohermitean forms and for which
the cone WV is generating. Such modules have been studied in detail in [14].
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Remark II.15. If W is a complex vector space endowed with a pseudoher-
mitean form B and

S = {s ∈ Gl(W ): (∀w ∈W )B(s.w, s.w) ≤ B(w,w)}
is the semigroup of B -contractions, then the group of units of S is the group
U(B) of B -unitary mapping and the tangent cone

L(S) := {X ∈ gl(W ): eIR+X ⊆ S}
can be written as L(S) = u(B) + iCW , where CW = {X ∈ gl(W ): (∀w ∈
W )B(iX.w,w) ≤ 0} (cf. [14]).

In the light of these observations, the cone WV consists exactly of
those elements X in the Lie algebra g for which iX generates a one-parameter
semigroup of B -contractions on VC .

Example II.16. We consider V = IR2n endowed with the usual symplectic
structure given by

Ω(v, w) = 〈v, J.w〉,

where J =

(
0 1
−1 0

)
and g = sp(n, IR). Then VC =C2n and

B(v, w) = iΩC(v, w) = i〈v, J.w〉,
where 〈·, ·〉 denotes the natural scalar product on C2n . For X ∈ g we see that
X ∈WV means that

Ω(X.v, v) = 〈X.v, J.v〉 = −〈JX.v, v〉 ≥ 0

for all v ∈ V which in turn means that the symmetric operator JX is negative
semidefinite on IR2n . Recall that X ∈ sp(n, IR) means that JX is a symmetric
matrix.

The space t of all those elements in sp(n, IR) for which JX is a diagonal
matrix is a compactly embedded Cartan subalgebra of sp(n, IR).

Weight spaces in symplectic modules of convex type

In this subsection g denotes a reductive real Lie algebra which has a
compactly embedded Cartan algebra t .

Definition II.17. Let V be a g -module and VC its complexification. We fix
a compactly embedded Cartan algebra t ⊆ g . For α ∈ t∗C we write

V αC = {v ∈ VC: (∀X ∈ tC)X.v = α(X)v}
for the weight space of weight α . We write PV = {α ∈ t∗C:V αC 6= 0} for the set
of all weights of V .

If, in addition, V is a semisimple g -module, then z(g) acts by diagonal-
izable operators on VC and hence VC is the direct sum of the weight spaces. If,
moreover, V is of convex type, then z(g), and therefore t acts on V with purely
imaginary eigenvalues, hence α(t) ⊆ iIR holds for every weight α ∈ PV .
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Definition II.18. For this definition we drop the assumption that g is
reductive. We merely assume that t ⊆ g is a compactly embedded Cartan
subalgebra.

We recall the root space decomposition gC = tC⊕
⊕

α∈∆ gαC , of gC with
respect to tC , where

gαC = {Y ∈ gC: (∀X ∈ tC)[X,Y ] = α(X)Y }

and ∆ = {α ∈ t∗C \ {0}: gαC 6= {0}} . Let k ⊇ t denote the unique maximal
compactly embedded subalgebra containing t ([6, A.2.40]). We say that a root
α ∈ ∆ is compact if gαC ⊆ kC , otherwise we say that α is non-compact. We write
∆k resp. ∆p for the sets of compact resp. non-compact roots. If r ⊆ g is the
solvable radical, then we also set ∆r := {α ∈ ∆: gαC ∩ rC 6= {0}} .

We define the Weyl group Wk := NG(t)/ZG(t) = NG(t)/ exp t . A positive
system of roots is a subset ∆+ of ∆ for which there exists a regular element
X0 ∈ it such that ∆+ = {α ∈ ∆:α(X0) > 0}.

We say that a positive system ∆+ is k-adapted if ∆+
p is invariant under

the Weyl group. Note that this condition is equivalent to the existence of an
element H ∈ z(k) such that ∆+

p = {α ∈ ∆: iα(H) > 0} . We refer to [15,
Prop. II.7] for the result that a k -adapted positive system exists if and only if
zg

(
z(k)
)

= k . If this condition is satisfied, then g is called quasihermitean.

For a k -adapted positive system ∆+ we define the cones

Cmin = cone({i[Xα, Xα]:α ∈ ∆+
p , Xα ∈ gαC}) and Cmax = (i∆+

p )?,

where cone(E) denotes the smallest closed convex cone containing the set E .
We say that g has cone potential, if [Xα, Xα] 6= 0 holds for all non-zero elements
Xα ∈ gαC , α ∈ ∆p and that g has strong cone potential if, in addition, there
exists a k -adapted positive system such that the cone Cmin is pointed.

If (V,Ω) is an effective module of convex type for the reductive Lie
algebra g , then the cone CV ⊆ g∗ is pointed and generating. Therefore the
Lie algebra g is quasihermitean (cf. [6, Th. III.5.16]) and it follows in particular
that it contains a compactly embedded Cartan subalgebra. Thus the assumption
that g contains a compactly embedded Cartan subalgebra is simply for technical
convenience whenever we study only modules of convex type.

Lemma II.19. Let (V,Ω) be a symplectic g-module of convex type. Then the
following assertions hold:

(i) For α 6= β in PV the weight spaces V αC and V βC are orthogonal with
respect to B .

(ii) For α ∈ PV , v ∈ V αC we have that

ΦVC(v) = 1
2
B(v, v)(−iα) = 1

2
ΩC(v, v)α,

where we identify t∗ with the subspace [t, g]⊥ in g∗ .

(iii) For λ ∈C and v ∈ VC we have ΦVC(λv) = |λ|2ΦVC(v) .
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Proof. (i) This follows from the invariance of B under t .

(ii) Let β ∈ ∆ and Xβ ∈ gβC . Then Xβ .v ∈ V α+β
C and therefore B(Xβ.v, v) = 0

by (i). Similarly B(Xβ .v, v) = 0 holds for Xβ ∈ g−βC . Therefore

ΦV (v)(Xβ +Xβ) =
1

2
ImB

(
(Xβ +Xβ).v, v

)

=
1

2
ImB

(
Xβ.v, v

)
+

1

2
ImB

(
Xβ .v, v

)
= 0.

Let g[β] := (gβC ⊕ g−βC ) ∩ g . Then the above argument shows that

ΦV (v) ∈ g[β]⊥ . Since [t, g] =
⊕

α∈∆ g[α] , we conclude that ΦV (v) ∈ t∗ . To
calculate this functional explicitly, we only have to evaluate it on t . For X ∈ t
we obtain

ΦVC(v)(X) =
1

2
ImB(X.v, v) =

1

2
Im
(
α(X)B(v, v)

)

=
1

2
B(v, v) Imα(X) =

1

2
B(v, v)

(
− iα(X)

)
.

(iii) This is a simple consequence of the sesquilinearity of B .

Proposition II.20. If (V,Ω) is a symplectic g-module of convex type and
0 6= α ∈ PV , then two cases arise:

(i) B is positive definite on V α
C and −iα ∈ CV .

(ii) B is negative definite on V αC and iα ∈ CV .

Proof. First we note that Lemma II.19(i) together with VC =
⊕

α∈PV V
α

C
implies that the restriction of B to V αC is non-degenerate. Since CV is pointed,
Lemma II.19(ii) now shows that B is either positive or negative definite on V α

C
depending on whether −iα of iα is contained in CV .

Corollary II.21. If (V,Ω) is a symplectic g-module of convex type and
0 6= v ∈ V αC with ΦVC(v) = 0 , then α = 0 .

Proof. In view of Proposition II.20 and Lemma II.19(ii),

0 = ΦC(v) = 1
2B(v, v)(−iα)

implies that α = 0.

We draw some important conlusions in the real setting.

Proposition II.22. Let g be a reductive Lie algebra with compactly embedded
Cartan algebra t and (V,Ω) a symplectic g-module of convex type. Then the
following assertions hold:

(i) Vfix = Φ−1
V (0) .

(ii) If Vfix = {0} , then 0 6∈ PV .
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Proof. (i) The inclusion Vfix ⊆ Φ−1
V (0) holds trivially. Suppose conversely

that ΦV (v) = 0. We write v =
∑
α∈PV vα with vα ∈ V αC . Then Lemma

I.18(i),(ii) imply that for X ∈ intC?V ∩ t we have

0 = ΦV (v)(X) =
∑

α∈PV
ΦVC(vα)(X).

Since X ∈ intC?V and all functionals ΦVC(vα) lie in the pointed cone CV , we

conclude that all summands are 0, hence that vα ∈ Φ−1
VC

(0). Now Corollary II.21

shows that vα = 0 for α 6= 0 and that v ∈ V 0
C ∩ V .

This proves that Φ−1
V (0) = V 0

C ∩V . On the other hand, the equivariance

of ΦV shows that Φ−1
V (0) is invariant under G , hence under g . Since t acts

trivially on V 0
C ∩V , the same holds for the whole Lie algebra g because g is the

smallest ideal containing t . This means that V 0
C ∩ V = Vfix .

(ii) This follows from (i) and Lemma II.19(ii).

Proposition II.23. Let (V,Ω) be a symplectic g-module with Vfix = {0}
and where z(g) acts semisimply with purely imaginary eigenvalues. Then the
following are equivalent:

(i) V is of convex type.

(ii) The cone WV = C?V has interior points.

(iii) There exists X ∈ z(k) such that Ω(X.v, v) > 0 for all v ∈ V \ {0} .

(iv) There exists X ∈ z(k) such that α(X) 6= 0 holds for all α ∈ PV and B
is positive definite on V αC if and only if iα(X) < 0 .

Proof. The equivalence of (i) and (ii) follows from the duality theory of cones
which implies that CV is pointed if and only if its dual cone WV is generating.

(ii) ⇒ (iii): If (ii) holds, then the cone WV is a generating invariant cone in g .
Therefore there exists an element X ∈ z(k)∩ intWV (cf. [6, Prop. III.5.5]). Then
ΦV (v)(X) > 0 holds for all v ∈ V with ΦV (v) 6= 0. Finally Φ−1

V (0) = Vfix = {0}
follows from Proposition II.22(i) and this implies (iii).

(iii) ⇒ (iv): Using (iii), we choose X ∈ z(k) such that Ω(X.v, v) > 0 holds for
all v ∈ V \ {0} . Then also

ImB(X.v, v) = Ω̃(X.v, v) > 0

for all v ∈ VC \ {0} . For v ∈ V αC we find in particular that

ImB(X.v, v) = B(v, v)(−iα)(X) > 0.

Hence B is positive definite on V α
C for iα(X) < 0 and negative definite if

iα(X) > 0.

(iv) ⇒ (iii): Let v ∈ V and write it as v =
∑
α∈PV vα with vα ∈ V αC . Then

Ω(X.v, v) =
∑

α∈PV
B(vα, vα)(−iα)(X) > 0

for v 6= 0 follows from (iv).

(iii) ⇒ (i): Let S ⊆ V be a sphere for some norm on V . Then K := conv ΦV (S)
is a compact convex set and 〈X,α〉 > 0 holds for all α ∈ K . Therefore
CV = IR+K is a pointed closed convex cone in g∗ .



Neeb 159

Complex structures on simple modules

We have already seen that a symplectic g -module of convex type breaks
up into a symplectic direct sum of simple modules of convex type. Our next
objective is to show that the classification problem for these modules can be
translated into a classification problem for certain simple complex g -modules.
This problem is much easier to deal with since the complex simple g -modules
can easily be classified by their highest weights (cf. Section III).

Lemma II.24. Let (V,Ω) be a symplectic g-module and I ∈ Endg(V ) an
invariant complex structure with I ] = −I , i.e., I ∈ Sp(V,Ω) . Then

B(v, w) := Ω(I.v, w) + iΩ(v, w)

defines a g-invariant pseudohermitean form on the complex vector space (V, I)
such that Ω = ImB .

Proof. For v, w ∈ V we have

B(I.v, w) = Ω(I2.v, w) + iΩ(I.v, w) = −Ω(v, w) + iΩ(I.v, w) = iB(v, w)

and
B(w, v) = Ω(I.w, v) + iΩ(w, v) = Ω(w,−I.v)− iΩ(v, w)

= Ω(I.v, w)− iΩ(v, w) = B(v, w).

Thus B is a pseudohermitean form on V which is easily seen to be invariant
under g .

We recall that if (V,Ω) is a non-trivial simple g -module of convex type,
then every invariant complex structure I ∈ Endg(V ) is skew-symmetric (cf.
Lemma II.7), hence that the construction of the preceding lemma works for
Endg(V ) =C, IH.

Definition II.25. Let g be a finite dimensional real Lie algebra. A complex
symplectic g-module is a triple (V,Ω, I), where (V,Ω) is a symplectic g -module
and I ∈ Sp(V,Ω) ∩ Endg(V ) is a g -invariant complex structure. We say that
(V,Ω, I) is simple if it is simple as a complex g -module.

An isomorphism of two complex symplectic g -modules is required to be
an isomorphism of symplectic g -modules which is in addition complex linear or
antilinear.

Theorem II.26. Let (V,Ω) be a simple g-module of convex type and ID =

Endg(V ) . If ID = IR we put (Ṽ , Ω̃, I) := (VC, Im ΩC, i id) and for ID = IH,C

we put (Ṽ , Ω̃) = (V,Ω, I) , where I is any invariant complex structure on V .
Then this prescription associates to each isomorphy class [(V,Ω)] of simple

symplectic g-modules of convex type an isomorphy class [(Ṽ , Ω̃, I)] of simple
complex symplectic g-modules. It yields a bijection between the classes of simple
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symplectic g-modules of convex type and the classes of simple complex symplectic
g-modules of convex type.

Proof. First we show that the assignment is well defined on the level of
classes. For ID = IR this follows from Lemma II.10. For ID = C we have to
choose between the two complex structures I and −I . Since the identitiy map
(V, I) → (V,−I) is complex antilinear, the two complex symplectic g -modules
(V,Ω, I) and (V,Ω,−I) are isomorphic.

Now let ID = IH. Then V is of type IHI (Lemma II.7). If I and Ĩ ∈ ID
are two different complex structures, then there exists an element d ∈ ID with
|d| = 1 such that Ĩ = dId−1 . Since d] = d = d−1 , it follows that d ∈ Sp(V,Ω).
Hence the map

d: (V,Ω, I)→ (V,Ω, Ĩ)

is a complex linear isomorphism between complex symplectic g -modules. This
shows that our prescription yields a well defined map [(V,Ω)] 7→ [(Ṽ , Ω̃, I)] on
the level of isomorphy classes.

We claim that this map is injective. So assume that [(Ṽ , Ω̃V , IV )] =

[(W̃ , Ω̃W , IW )] . Let ID := Endg(V ) and ID′ := Endg(W ). If ID = IR, then Ṽ is

reducible as a real g -module and otherwise ID = Endg(Ṽ ). Therefore ID = ID′ .
We distinguish three cases:

ID = IR: In the following we write ΩC for the complex bilinear extension of a
symplectic form Ω on V to VC . Suppose that [(VC, Im ΩV,C)] = [(WC, Im ΩW,C)] .
Since VC ∼= V ⊕ V as real g -modules, we observe that V ∼= W . If [(V,ΩV )] 6=
[(W,ΩW )] , then [(W,ΩW )] = [(V,−ΩV )] . In that case we obtain a contradiction
to CV = CVC = CWC

= −CV .

ID =C, IH: If [(V,ΩV , IV )] = [(W,ΩW , IW )] , then V ∼= W as real g -modules. If
[(V,ΩV )] 6= [(W,ΩW )] , we have [(W,ΩW )] = [(V,−ΩV )] and we obtain the same
contradiction as above.

This proves that our assignment is injective. Next we show that it is also
surjective. Let (W,ΩW , I) be a simple complex symplectic g -module of convex
type.

If W is simple as a real module, then (W,ΩW ) is a simple g -module of
convex type and since it carries an invariant complex structure, Endg(W ) ∼= C
or IH. Therefore [(W,Ω, I)] is the image of the class [(W,Ω)].

Suppose that W is not simple as a real module. Let V ⊆ W be a
simple non-zero submodule. Then V + IV is a complex submodule of W so
that W = V + IV . Since W is simple and different from V , we also have
V ∩ IV = {0} . Therefore W ∼= VC as complex g -modules. The fact that W is
of convex type implies that V is a non-degenerate submodule (Lemma II.4). We
claim that IV = V ⊥ . Let B(v, w) := Ω(Iv, w). Then B is a real symmetric
bilinear form on V which is invariant under g (cf. Lemma II.24). Hence there
exists d ∈ Endg(V ) with d] = −d such that B(v, w) = ΩV (d.v, w). On the other
hand Endg(V ) = IR consists of symmetric elements, so that B = 0, consequently
V⊥IV and hence V ⊥ = IV . We conclude that

ΩW (v + Iw, v′ + Iw′) = ΩW (v, v′) + ΩW (Iw, Iw′)

= ΩV (v, v′) + ΩV (w,w′) = ΩVC(v + Iw, v′ + Iw′).
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Thus we also have surjectivity.

For the following lemma we note that a compact Lie algebra which has a
non-trivial symplectic module of convex type cannot be semisimple because the
dual of a semisimple compact Lie algebra contains no non-zero pointed invariant
cone ([6, Prop. III.2.2]).

Proposition II.27. Let g be a compact Lie algebra with non-trivial center
and V an irreducible symplectic g-module. Then the following are equivalent:

(1) V is of convex type.

(2) The center z(g) acts semisimply non-trivially with purely imaginary
eigenvalues.

In this case Endg(V ) =C or IH .

Proof. (1) ⇒ (2): This follows directly from the definitions.

(2) ⇒ (1): Let π: g → sp(V ) ⊆ gl(V ) be the Lie algebra homomorphism
defining the symplectic module structure on V . If (2) is satisfied, then the
group generated by eπ(g) has compact closure in Sp(V ). Now the fact that

U(n) := Sp(n, IR)∩Gl(n,C) is maximal compact in Sp(n, IR) ⊆ Gl(2n, IR) shows
that there exists a g -invariant complex structure I on V such that Ω(v, I.v) > 0
holds for all v ∈ V \{0} . Pick X ∈ z(g) which acts non-trivially on V . Then this
mapping is complex linear and by Schur’s lemma we may assume that X.v = I.v
holds for all v ∈ V . Now Proposition II.23 implies that (V,Ω) is a symplectic
module of convex type and that V admits an invariant complex structure so that
either Endg(V ) =C or IH.

We will see later that this result does not hold in general for a non-
compact Lie algebra. This will be a byproduct of the classification. A typical
example is the Sp(n, IR)-module IR2n which does not admit any invariant com-
plex structure.

In many applications it is possible to obtain information on modules of
reductive Lie algebras by looking at their sl(2, IR)-subalgebras. The following
result paves the way to such a reduction in the context of modules of convex
type.

Proposition II.28. Let V be a symplectic module of convex type of g ,
t ⊆ g a compactly embedded Cartan algebra and s ⊆ g a t-invariant subalgebra
isomorphic to sl(2, IR) . Then V is a symplectic s-module of convex type, and
every non-trivial irreducible s-submodule of V is non-degenerate, of convex type
and 2-dimensional.

Proof. We may w.l.o.g. assume that g acts effectively on V . Then the cone
WV is pointed and generating. Fix a compactly embedded Cartan algebra t ⊆ g .
Then there exists a positive k -adapted positive system of roots ∆+ such that

Cmin ⊆WV ∩ t ⊆ Cmax

(cf. Definition II.18, [12, Prop. III.15]).

We set ts := t ∩ s . Since s is invariant under t and all derivations of s
are inner, it follows that there exists an element U ∈ s such that [t, U ] = {0} .
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Hence ts = IRU 6= {0} is a compactly embedded Cartan subalgebra of s .
Moreover, since s is invariant under t and three dimensional, we then have sC as
tsC +gβC +g−βC for a root β ∈ ∆+

p and choose a non-zero element Xβ ∈ gβC . Then

X0 := i[Xβ , Xβ] ∈ Cmin ⊆ WV and this means in particular that X0 ∈ C?V .
Hence the restriction mapping g∗ → s∗ maps CV into a pointed invariant cone
and thus V is an s -module of convex type.

Therefore the results from above apply to the s -module V . We conclude
that every non-trivial irreducible submodule E is non-degenerate (Proposition
II.5) and therefore a symplectic s -module of convex type. Thus WE 6= {0} and
consequently dimE = 2 by Theorem V.8 in [14] and Remark II.15.

III. The classification of simple modules of convex type

In the preceding section we have analyzed the structure of symplectic g -
modules of convex type. Theorem II.8 and Corollary II.9 provide effective tools
to reduce the classification of general modules of convex type to the simple case.
On the other hand we have Theorem II.26 which translates the classification
problem of the real simple modules of convex type to the problem of classifying
simple complex symplectic modules of convex type modulo complex linear or
antilinear isomorphisms of symplectic g -modules. In this section we adopt this
point of view that will permit us by using results obtained in [14] to obtain a
complete classification of the simple modules of convex type.

Before we turn directly towards the classification we first have to use
tensor product decompositions to reduce the problem to the case where the Lie
algebra under consideration is simple hermitean.

Tensor products of complex modules as real modules

Lemma III.1. Let V resp. W be semisimple modules of the reductive IK -Lie
algebras a resp. b . Then Enda⊕b(V ⊗IK W ) ∼= Enda(V )⊗IK Endb(W ).

Proof. Since the map A⊗ B 7→ A⊗ B induces an a⊕ b -equivariant algebra
isomorphism

EndIK(V )⊗IK EndIK(W )→ EndIK(V ⊗IK W ),

we only have to show that for a semisimple a -module X and a semisimple b -
module Y we have

(X ⊗ Y )fix = Xfix ⊗ Yfix,

where X ⊗ Y is considered as (a ⊕ b)-module. Then we apply this to X =
EndIK(V ) and Y = EndIK(W ).

Since X and Y decompose as X = Xfix ⊕ Xeff and Y = Yfix ⊕ Yeff , it
follows that

X ⊗ Y ∼= (Xfix ⊗ Yfix)⊕ (Xeff ⊗ Yfix)⊕ (X ⊗ Yeff).
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On the other hand, we see that for x ∈ X , y ∈ Y and b ∈ b that

x⊗ (y − b.y) = x⊗ y − b.(x⊗ y) ∈ (X ⊗ Y )eff .

We conclude that

(X ⊗ Yeff) + (Xeff ⊗ Y ) ⊆ (X ⊗ Y )eff

so that the assertion follows from X ⊗ Y = (X ⊗ Y )fix ⊕ (X ⊗ Y )eff .

Let V be a complex simple g -module. We consider V as a real g -module.
Then there are three possibilities:

V is of real type: V is reducible over IR. Then V = (V 0)C for a real simple
g -module V 0 . In this case Endg(V ) ∼= IM(2, IR).

V is of complex type: V is simple over IR and Endg(V ) =C.

V is of quaternionic type: V is simple over IR and Endg(V ) = IH.

Lemma III.2. Let V resp. W be two complex simple modules for the real Lie
algebra a resp. b . We consider X := V ⊗C W as a real module for the Lie
algbera g := a⊕ b . Then X is simple as a complex g-module and the type of X
can be determined as follows:

(1) If V is of real type, then X has the same type as W .

(2) If V is of complex type and W is not of real type, then X is of complex
type.

(3) If V and W are of quaternionic type, then X is of real type.

Proof. We distinguish several cases:

If V is of real type with V = (V 0)C , then the map V 0 ⊗IR W → V ⊗C W is a
module isomorphism. Hence Lemma III.1 implies that

Endg(V ⊗C W ) ∼= Endg(V 0 ⊗IR W ) ∼= Enda(V 0)⊗IR Endb(W ) ∼= Endb(W ).

Since this is a division algebra, we see that V ⊗CW is simple as a real g -module
and that its type is the type of W .

Suppose that V and W are not of real type. Then the map V ⊗IRW → V ⊗CW
has a non-trivial kernel. Moreover

Endg(V ⊗IR W ) ∼= Enda(V )⊗IR Endb(W ).

If V and W are of complex type, then Endg(V ⊗IRW ) ∼=C⊗IRC ∼=C⊕C
possesses one idempotent different from 0 and 1. Therefore V ⊗IRW decomposes
into a direct sum of two simple modules so that V ⊗CW must be simple over IR
and of complex type.

If V is of complex and W of quaternionic type, then

Endg(V ⊗IR W ) ∼=C⊗IR IH ∼= IM(2,C)

as one easily verifies by viewing IH as a subalgebra of IM(2,C) (cf. [19, p.190]).
Therefore V ⊗IRW is a direct sum of two equivalent submodules with commutant
C. Thus V ⊗C W must be simple over IR and of complex type.
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We claim that if V and W are of quaternionic type, then

Endg(V ⊗IR W ) ∼= IH⊗IR IH ∼= IM(4, IR).

In fact, using the left and right regular representation of the IR-algebra IH, we
obtain an algebra homomorphism IH ⊗IR IH → IM(4, IR) which turns out be
surjective since the IH ⊗IR IH-module IH is simple with commutant isomorphic
to IR (Wedderburn’s Theorem). Hence, counting dimensions yields IH⊗IR IH ∼=
IM(4, IR) (cf. [19, p.190]).

We conclude that V ⊗IR W is a direct sum of four equivalent simple
submodules and counting dimensions shows that V ⊗CW is reducible over IR.

Towards the classification of modules of convex type

Lemma III.3. Let (V,ΩV , IV ) resp. (W,ΩW , IW ) be a complex symplectic g-
module. Then (V ⊗C W,Ω, I) is a complex symplectic g-module, where

Ω(v ⊗ w, v′ ⊗ w′) = ΩV (v, v′)ΩW (IW .w, w
′) + ΩW (w,w′)ΩV (IV .v, v

′).

Proof. According to Lemma II.24, the forms (v, v′) 7→ ΩV (IV .v, v
′) and

(w,w′) 7→ ΩW (IW .w, w
′) are symmetric so that

(v ⊗ w, v′ ⊗ w′) 7→ ΩV (v, v′)ΩW (IW .w, w
′) + ΩW (w,w′)ΩV (IV .v, v

′)

is a well defined skew symmetric map on V ⊗IR W . To see that this map factors
to the quotient V ⊗CW , we have to show that it vanishes if one of the arguments
has the form v ⊗ w + IV .v ⊗ IW .w . For the first argument this follows from

ΩV (v, v′)ΩW (IW .w, w
′) + ΩW (w,w′)ΩV (IV .v, v

′)

− ΩV (IV .v, v
′)ΩW (w,w′)− ΩW (IW .w, w

′)ΩV (v, v′) = 0.

This shows that Ω defines a skew-symmetric real bilinear form on V ⊗CW
which is invariant under the complex structure I . To see that this form is non-
degenerate, we note that it is the imaginary part of the pseudo-hermitean form
B on V ⊗CW that arises from the pseudo-hermitean forms BV resp. BW on V
resp. W (cf. Lemma II.24) by

(3.1) B
(
(v ⊗ w), (v′ ⊗ w′)

)
:= BV (v, v′)BW (w,w′).

Since BV and BW are non-degenerate, the same follows for B and hence for Ω
by choosing orthogonal bases in V resp. W . The g -invariance of Ω is verified
with (3.1) by an easy calculation.

Definition III.4. If (V,ΩV , IV ) resp. (W,ΩW , IW ) are complex symplectic
g -modules, then the complex symplectic g -module (V ⊗C W,Ω, I) defined in
Lemma III.3 is called the tensor product of the complex symplectic g -modules
(V,ΩV , IV ) and (W,ΩW , IW ). It is denoted by (V,ΩV , IV )⊗ (W,ΩW , IW ).

We recall the following result which is Theorem IV.13 in [14]. Here we
state it in the terms relevant for our present purposes.
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Theorem III.5. Let g be a reductive Lie algebra and V a simple complex
symplectic g-module such that WV 6= {0} and g acts effectively. Then g ∼=
g1 ⊕ g2 , where g2 is a compact semisimple Lie algebra, the commutator algebra
of g1 is either trivial or a hermitean simple ideal, and

(V,Ω, I) ∼= (V1,Ω1, I1)⊗ (V2,Ω2, I2)

is a tensor product of simple complex symplectic g-modules, where V1 resp. V2

is a g1 resp. g2 -module, WV1
6= {0} , and the canonical pseudo-hermitean form

B2 on V2 is positive definite.

If, conversely, the simple complex symplectic g1 -module (V1,Ω1, I1) and
the simple complex symplectic g2 -module (V2,Ω2, I2) have these properties, then
their tensor product V := V1⊗CV2 is a simple complex symplectic g-module and

WV ∩ g1 = WV1
6= {0}.

Proof. To see that this is the statement of Theorem IV.13 in [14], we only
have to note that, in view of Lemma II.24, the concept of a complex symplectic
g -module is the same as that of a complex g -module with an invariant non-
degenerate pseudo-hermitean form.

To link Theorem III.5 to modules of convex type, we need the following
lemma.

Lemma III.6. Let g be a non-zero quasihermitean reductive Lie algebra and
(V,Ω) an effective simple symplectic g-module such that z(g) acts semisimply
with purely imaginary spectrum. Then the following are equivalent

(1) WV 6= {0}
(2) WV is generating.

Proof. (1) ⇒ (2): Suppose that WV 6= {0} . Since V is an effective g -module
C⊥V = H(WV ) = {0} , i.e., WV is pointed. Put a := WV −WV . Then a is a
non-zero ideal of g containing the pointed generating invariant cone WV . Let us
consider V as a symplectic a -module and let pa: g∗ → a∗ denote the restriction
map. Then

Φa(V ) = pa

(
Φg(V )

)
⊆ pa(CV ) ∼= CV /H(CV )

lies in a pointed cone, whence (V,Ω) is a symplectic a -module of convex type.

Moreover the Lie algebra a contains a pointed generating invariant cone
so that it is quasihermitean (cf. [6, Th. III.5.16]). Let k ⊆ a be a maximal
compactly embedded subalgebra and Z ∈ z(k) ∩ intC?V . We claim that the
function ϕ(Z) on V is positive on V \{0} . Suppose that ϕ(Z)(v) = Φ(v)(Z) = 0.
Since Φ(v) ∈ CV , we conclude that Φ(v) ∈ H(CV ) = a⊥ . Therefore Φa(v) = 0.
Now Proposition II.22 applies since a is quasihermitean and we see that a.v =
{0} . For X ∈ g we then obtain a.(X.v) ⊆ [X, a].v + X.(a.v) = {0} , so that
g.v = {0} . Thus v = 0 by the simplicity of V . We conclude that ϕ(Z) is
positive on V \ {0} , so that Proposition II.23 entails that V is of convex type,
i.e., WV is generating.

(2) ⇒ (1): Since g 6= {0} , the assumption that WV is generating implies that
WV 6= {0} .
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Remark III.7. The preceding result applies equally well to the complexifica-
tion (VC, Ω̃) of a simple symplectic module (V,Ω) because the cones correspond-
ing to both modules are the same. Hence the assertion remains true for simple
complex symplectic g -modules.

Remark III.8. In view of Remark III.7, Theorem III.5 shows that the classifi-
cation of simple complex symplectic modules V of convex type of the reductive
Lie algebra g boils down to the classification of those simple complex symplectic
g1 -modules V1 of convex type of a reductive Lie algebra g1 whose commutator
algebra is simple hermitean and whose center is at most one-dimensional (Schur’s
Lemma). To find the corresponding real simple module of convex type one has
to apply Lemma III.2 to see whether V is of real type or not.

To do this, we need some information on the type of a complex irreducible
representation of a compact semisimple Lie algebra.

Definition III.9. A simple complex g -module V is called orthogonal resp.
symplectic if it admits a non-degenerate g -invariant complex bilinear symmetric
resp. skew-symmetric form.

Since the g -invariance of a complex bilinear form is equivalent to the gC -
invariance, we will be able to draw the information we need out of the following
result which is essentially due to Malcev ([11]):

Proposition III.10. Let g be a complex Lie algebra with Cartan algebra
h and root decomposition g = h ⊕ ⊕α∈∆ gα . Let Vλ denote the irreducible
g-module with highest weight λ , write w0 ∈ W for the unique element of the
Weyl group with w0(∆+) = −∆+ and put m :=

∑
α∈∆+ λ(α̌) . Then one of the

following three mutually exclusive cases occurs:

(1) w0(λ) 6= −λ and Vλ 6∼= V ∗λ .

(2) w0(λ) = −λ and m is even. Then Vλ is orthogonal.

(3) w0(λ) = −λ and m is odd. Then Vλ is symplectic.

Proof. This is contained in [1, Ch. VIII, §7, no. 5, Prop. 12]. We only note
that since λ(α̌) ∈ IN0 for all α ∈ ∆+ the number m is a non-negative integer.

To apply this result to determine the types of representations of compact
semisimple Lie algebras, one needs the following:

Proposition III.11. Let g be a compact semisimple Lie algebra and V a
simple complex g-module. Then the following assertions hold:

(i) V is of real type if and only if V is orthogonal.

(ii) V is of complex type if and only if V 6∼= V ∗ .

(iii) V is of quaternionic type if and only if V is symplectic.

Proof. Since representations of semisimple compact Lie algebras are in one-
to-one correspondence with representations of the associated simply connected
group which is compact, the assertions follow from [1, Ch. 9, App. 2, no. 2, Prop.
3].
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Combining Propositions II.10 and II.11 one can determine the type of
each representation of a compact semisimple Lie algebra, so that we have access
to the type of the V2 -factor in Theorem III.5. Later we will also derive a similar
result for the V1 -factor (Proposition III.16).

Remark III.12. Let us return to the situation of Theorem III.5. Here
dim z(g1) ≤ 1 is a consequence of Schur’s Lemma and the injectivity of the
representation on V . Then the module V1 is a simple module for the com-
mutator algebra because the center acts by scalar multiples of the identity. If
g1 = z(g1) ∼= IR, then every one-dimensional complex symplectic module is of
convex type and if g1 is not abelian, then the condition WV1

6= {0} implies that
WV1

∩ [g1, g1] 6= {0} (cf. Lemma III.6, [6, III]). On the other hand this condition
trivially implies WV1

6= {0} so that it only remains to consider the case where
g1 is simple hermitean.

For the case where g is a simple hermitean Lie algebra, the classification
has been carried out in [14] where it was based on the following result ([14, Th.
V.12]).

Theorem III.13. Let g be a simple hermitean Lie algebra, t ⊆ k a compactly
embedded Cartan algebra, Z ∈ iz(k) with Spec(adZ) = {0, 1,−1} , and V a
simple complex gC -module. Let λ denote the highest weight of V with respect to
a k-adapted positive system of roots. Then WV 6= {0} if and only if the following
two conditions are satisfied:

(1) λ(Z) ∈]0, 1[ .

(2) If W denotes the Weyl group of (gC, tC) , then (W.λ)(Z) consists only
of two elements.

To obtain further general information on the simple modules, we need the
following proposition. Note that in view of [14, Th. V.3], every simple complex
module of a reductive quasihermitean Lie algebra on which z(g) acts by purely
imaginary multiples of the identity admits an invariant pseudohermitean form.

Proposition III.14. Let V be a simple complex g-module, where g is a
quasihermitean non-compact reductive Lie algebra acting effectively on V , and
B an invariant non-degenerate pseudohermitean form on V . Then the following
are equivalent:

(1) (V, ImB) is of convex type.

(2) V contains exactly two K -types, i.e., V decomposes under k into two
simple k-modules.

Proof. We first use Theorem III.5 to write V as V1 ⊗C V2 and g = g1 ⊕ g2 ,
where g2 is compact semisimple and g1 is reductive with exactly one simple
hermitean ideal because g is non-compact. Similarly k = k1 ⊕ g2 and the simple
k -modules can be obtained as V j1 ⊗ V2 , where V j1 is a simple k1 -module in V1 .
Therefore the numbers of K -types in V and V1 coincide. In view of Remark
III.12, this reduces the problem to the case where g is simple hermitean since
the center acts by purely imaginary multiples of the identity. From now on we
assume that g is simple hermitean.
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(1) ⇒ (2): This follows from Proposition VII.1 in [14].

(2) ⇒ (1): We choose Z ∈ iz(k) such that Spec(adZ) = {1, 0,−1} . Let
V = V + ⊕ V − be the decomposition of V into simple complex k -modules and
write λ resp. µ for the highest weights of V + resp. V − with respect to a positive
system ∆+

k . We assume that ∆+
p = {α ∈ ∆:α(Z) > 0} , that λ ist the highest

weight of the gC -module V , and decompose the set PV as PV +∪PV − . Since the
k -modules V + and V − are simple, the center of k acts on each space by a scalar
multiple of the identity. Hence λ(Z) = α(Z) for all α ∈ PV + and µ(Z) = α(Z)
for all α ∈ PV − .

Let W denote the big Weyl group of g acting on t . Since g is simple,
t is a simple W -module and convPV = conv(W.λ) ⊆ it∗ . The center of mass
of W.λ is a W -fixed point, hence equal to 0 and the affine subspace generated
by W.λ is it∗ . Hence 0 lies in the relative interior of convPV in it∗ and we
see that this set contains a weight which is positive on Z and one which is
negative on Z . So we find in particular that λ(Z) > 0 > µ(Z). Moreover
µ(Z) = λ(Z) − 1 because α(Z) = 1 for all positive non-compact roots since

gβC.V
+ = {0} for β ∈ ∆+

p and gβC.V
+ ⊆ V − for β ∈ −∆+

p . Therefore
λ(Z) ∈]0, 1[ and 〈W.λ, Z〉 = {λ(Z), µ(Z)} contains only two elements. Now
Theorem III.13 applies.

We recall the explicit classification from [14]. We do this by writing down
the highest weights which correspond to those simple complex modules which
are of convex type. These are always fundamental weights which are denoted by
ω1, . . . , ωn , where n is the rank of gC (cf. [1, Ch. VI, VIII] for more details on
roots and weights).

Theorem III.15. For the simple hermitean Lie algebra g the following highest
weights correspond to modules of convex type:

(An) g = su(p, q) , gC = sl(p+ q,C) , n = p+ q − 1 : ω1 and ωn .

(An) g = su(n, 1) , gC = sl(n+ 1,C) : ω1, . . . , ωn .

(Bn) g = so(2n− 1, 2) , gC = so(2n+ 1,C) : ωn .

(Cn) g = sp(n, IR) , gC = sp(n,C) : ω1 .

(Dn) g = so(2n− 2, 2) , gC = so(2n,C) : ωn−1 and ωn .

(Dn) g = so∗(2n) , gC = so(2n,C) : ω1 .

(E6) g = e(6,−14) : no weight.

(E7) g = e(7,−25) : no weight.

One remarkable consequence of this classification is that the exceptional
hermitean simple algebras have no symplectic modules of convex type. Next
we study the types of these representations and the possible antilinear isomor-
phisms because antiisomorphic symplectic g -modules correspond to the same
real module (cf. Theorem II.26).

Proposition III.16. Let W be a non-zero simple complex symplectic g-
module of convex type. Then

(i) W is of real type if and only if W is symplectic, i.e., W carries an
invariant complex symplectic form.
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(ii) W is of quaternionic type if and only if W is orthogonal, i.e., carries
an invariant non-degenerate symmetric complex bilinear form.

Proof. (i) If W is of real type, then W = VC holds for a real symplectic
g -module V (Lemma II.4) and Proposition II.5 and Lemma II.11 provide an
invariant non-degenerate symplectic complex bilinear form (ΩV )C on W . Hence
W is symplectic.

If, conversely, W is symplectic and ΩC is an invariant complex symplectic
form, then we find an antilinear operator A on W such that

ΩC(v, w) = B(v, Aw)

holds for all v, w ∈ W , where B is the pseudo-hermitean form on W with
Ω = ImB . Then A commutes with g and the fact that Im ΩC is skew-symmetric
yields that A] = A with respect to the real symplectic form Ω.

Suppose that W is not of real type, i.e., W is simple over IR. Then W
is of type CI or IHI as a simple real g -module of convex type (cf. Lemma II.7).
Thus A] = A implies that A ∈ IR1 , contradicting the fact that A is antilinear.

(ii) A real bilinear symmetric form B′:V × V →C can be written as

B′(v, w) = Ω(a.v, w) + iΩ(b.v, w),

where a, b ∈ Homg(V ) satisfy a] = −a and b] = −b . Moreover, the complex
bilinearity of such a form is equivalen to the condition

Ω(aI.v, w) + iΩ(b.Iv, w) = iΩ(a.v, w)− Ω(b.v, w),

which means that b = −aI . Now b] = −b entails −aI = (aI)] = −Ia] = Ia .

This shows that V is orthogonal if and only if there exists a ∈ Endg(V )
with a] = −a and Ia = −aI . Since, according to Lemma II.7, V is of real type
or of type CI or IHI , we see that V is orthogonal if and only if it is of type IHI .

If V is of type IHI , then the form B′(v, w) = Ω(J.v, w) + iΩ(K.v, w)
satisfies all the requirements.

Lemma III.17. Let V be a simple complex g-module. Then V ∼= V if and
only if V is of real or quaternionic type. If V is of complex type and a complex
symplectic g-module, then V ∼= V ∗ .

Proof. (cf. [1, Ch. IX, App. 2, no. 1]). If V is of real type, then V = WC for a
simple real g -module W . Hence V ∼= W ⊕W as a real g -module and therefore
V ∼= W ⊕W ∼= V .

If V is of complex or quaternionic type, then V ∼= V if and only if
Endg(V ) contains two anticommuting complex structures which is the case if
and only if V is of quaternionic type.

Suppose that V is a simple complex symplectic g -module. Then we
use Lemma II.23 to obtain a g -invariant pseudohermitean form on V . Hence
V ∗ ∼= V .

The preceding results provide the information we need to use the tables
on simple complex modules to determine their type.
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Remark III.18. Here is some additional information on the representations
which occur in Theorem III.15.

(An) Vω1
= Cn+1 and Vωn =

∧
n(Cn+1) are representations which are also

simple over IR. For g = su(p, q), n = p + q − 1 with p ≥ q ≥ 2,
these representations are of complex type. Here Vω1

∼= V ∗ω1
∼= Vωn . For

g = su(p, 1) we have Vωk =
∧
k(Cp+1). This module is of complex type

for k 6= p+1
2

, and for k = p+1
2

it is of real type if k is odd and of

quaternionic type otherwise. Therefore Vω p+1
2

∼= V p+1
2

and for k 6= p+1
2

we obtain Vωk
∼= V ∗ωk

∼= Vωn+1−k ([1, Ch. VIII, §13, no. 1]).

(Bn) Vωn =
∧ ∗(Cn) ∼= Vωn is the spin representation. According to [1, Ch.

VIII, §13, no. 2], the module Vωn is orthogonal for n = 0, 3 mod 4 and
symplectic for n = 1, 2 mod 4. Hence it is of real type for n = 1, 2 mod 4
and for n = 0, 3 mod 4 it is quaternionic.

(Cn) Vω1
= C2n is of real type because IR2n carries no Sp(n, IR)-invariant

complex structure ([1, Ch. VIII, §13, no. 3]).

(Dn) Vωn−1
and Vωn are the simple constituents of the spin representation

on
∧ ∗(Cn) which are given by the odd and the even exterior powers of

Cn . Here the situation is more complicated than for Bn ([1, Ch. VIII,
§13, no. 4]). For n = 0, 3 mod 4 there exists an invariant symmetric
complex bilinear form on the spin representation and a symplectic form
for n = 1, 2 mod 4. If n is even, then the restriction of these forms
to the simple modules Vωn−1

and Vωn is non-degenerate and if n is
odd, then both are isotropic and in duality. In the latter case both are
neither orthogonal nor symplectic. It follows from Proposition III.16 that
these modules are of real type for n = 2 mod 4, of quaternionic type
for n = 0 (mod 4), and of complex type for n odd. For n even we
therefore have Vωn

∼= Vωn , Vωn−1
∼= Vωn−1

, and for n odd we obtain

Vωn−1
∼= V ∗ωn−1

∼= Vωn .

(Dn) Vω1
is the standard representation of so∗(2n) on C2n ∼= IHn . It is of

quaternionic type ([1, Ch. VIII, §13, no. 4]).

IV. (H1)-homomorphisms of quasihermitean Lie algebras

In this section we explain how modules of convex type are related to
equivariant embedding of bounded symmetric domains into the Siegel space, i.e.,
the hermitean symmetric space of the symplectic group Sp(n, IR). We will always
write g for a quasihermitean reductive Lie algebra and G for a simply connected
group with L(G) = g .

Definition IV.1. Let g be a reductive quasihermitean Lie algebra. An
element H0 ∈ g is called an H -element if zg(H0) = ker adH0 is a maximal
compactly embedded subalgebra of g and Spec(adH0) = {0, i,−i} . The pair
(g, H0) is called a reductive Lie algebra of hermitean type.

Let (g, H0) be a reductive Lie algebra of hermitean type and set k :=
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ker adH0 . Then p := [H0, g] is a uniquely determined module complement for
k in g and g = k ⊕ p is a Cartan decomposition. Note that z(g) ⊆ k . In the
complexification gC , the endomorphism adH0 is diagonalizable and we obtain

gC = p+ + kC + p−,

where p± is the ±i -eigenspace of adH0 .

Remark IV.2. Let g = z(g)⊕ g0 ⊕ g1 ⊕ . . .⊕ gk , where z(g) is the center, g0

is the maximal compact semisimple ideal, and g1, . . . , gk are the non-compact
simple ideals. Then an element Hz+H0+

∑k
j=1 Hj is an H -element if and only if

H0 = 0 and Hj is an H -element in gj . Since every simple hermitean Lie algebra
contains exactly 2 H -elements associated to a fixed Cartan decomposition,
the number of H -elements associated to a fixed Cartan decomposition in the
commutator algebra g′ = [g, g] is 2k .

Let (g, H0) be a reductive Lie algebra of hermitean type, gc the maximal
compact ideal, and gn its complementary ideal. There exists a maximal closed
convex invariant cone Wmax = Wmax(H0) ⊆ g with H(Wmax) = gc , H0 ∈
Wmax , and Wmax ∩ t = Cmax for every compactly embedded Cartan algebra t
containing H0 , where the positive system of roots is chosen in such a way that
∆+
p = {α ∈ ∆: iα(H0) > 0} (cf. [12, III]). Note that a reductive quasihermitean

Lie algebra containing k simple hermitean ideals contains exactly 2k maximal
cones corresponding to the conjugacy classes of H -elements in g′ and that the
cone Wmax(H0) determines the projection of H0 onto the commutator algebra.

There also exist minimal cones Wmin = Wmin(H0) which are contained in
the sum of the hermitean simple ideals of g and which are uniquely determined
by the condition that they contain the g′ -component of the H -element H0 .
Therefore we have exactly 2k such cones and Wmin ∩ t = Cmin ([12, III]).

Definition IV.3. Let (g, H0) and (g̃, H̃0) be two reductive Lie algebras of
hermitean type.

(a) A homomorphism κ: g→ g̃ is called an (H1)-homomorphism if

κ ◦ adH0 = ad H̃0 ◦ κ.
Note that this condition is equivalent to the condition that the complex

linear extension κ: gC→ g̃C satisfies κ(kC) ⊆ k̃C and κ(p±) ⊆ p̃± .

It is also equivalent to the condition that κ is a Cayley homomorphism,
i.e., it respects the Cartan involutions, with the additional property that κ |
p: p → p̃ is complex linear with respect to the complex structures J = adH0 |p
and J̃ = ad H̃0 |̃p .

(b) A homomorphism κ: g→ g̃ is called an (H2)-homomorphism if κ(H0) = H̃0 .
It is clear that this implies in particular that κ is an (H1)-homomorphism.

Note that composition of (H1)-homomorphisms yields (H1)-homomor-
phisms. We recall from [21] that (H1)-homomorphisms of Lie algebras of her-
mitean type (without compact factors) are in one-to-one correspondence with
strongly equivariant holomorphic maps of the corresponding bounded symmetric
domains. This correspondence is set up by assigning to the (H1)-homomorphism

κ: g→ g̃ the corresponding induced map G/K → G̃/K̃ .
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Lemma IV.4. Let (g, H0) and (g̃, H̃0) be two reductive Lie algebras of her-
mitean type and κ: g → g̃ a Lie algebra homomorphism. Write pz , p

g̃n
resp.

p
g̃′ for the projection onto the center, g̃n resp. the commutator algebra g̃′ of g̃ .

Then the following are equivalent:

(1) κ is an (H1)-homomorphism.

(2) p
g̃′ ◦ κ is an (H1)-homomorphism with respect to the H -element

p
g̃′(H̃0) ∈ g̃′.

(3) p
g̃n
◦κ is an (H1)-homomorphism with respect to the H -element p

g̃n
(H̃0)

of g̃n .

For (H2)-homomorphisms the conclusions (1)⇒ (2)⇒ (3) hold.

Proof. [8, Lemma II.8]

Proposition IV.5. Let g and g̃ be two reductive quasihermitean Lie algebras
and κ: g→ g̃ a Lie algebra homomorphism. Consider the following conditions:

(1) There exists a maximal invariant cone W̃max ⊆ g̃ such that κ−1(W̃max)
is generating in g and κ

(
z(g)

)
is compactly embedded.

(2) There exist H -elements H0 ∈ g and H̃0 ∈ g̃ such that κ is an (H1)-

homomorphism and W̃max = Wmax(H̃0) .

Then the implication (1) ⇒ (2) holds and (2) ⇒ (1) holds if g is semisimple
without compact factors or if κ is an (H2)-homomorphism.

Proof. [8, Proposition II.9]

The preceding proposition can be used as a bridge between (H1)-homo-
morphisms and symplectic modules of convex type.

Theorem IV.6. Let g be a reductive quasihermitean Lie algebra and (V,Ω) be
a symplectic g-module of convex type. Then we can choose H -elements in such
a way that κ: g → sp(V,Ω) is an (H1)-homomorphism. The converse is true if
g is semisimple without compact factors or if κ is an (H2)-homomorphism.

Proof. Let (V,Ω) be a symplectic vector space and Sp(V,Ω) the correspond-
ing symplectic group. Let further I ∈ Sp(V ) denote a complex structure on V

such that IΩ: (v, w) 7→ Ω(v, I.w) is positive definite. Then H̃0 := 1
2I is an H -

element in the hermitean Lie algebra sp(V,Ω). The associated invariant cones
are

W̃min(H̃0) = W̃max(H̃0) = {X ∈ sp(V,Ω):ϕ(X) ≥ 0},
where ϕ(X) = 1

2Ω(X.v, v) is the Hamiltonian function associated to X (cf.
Section II). Now let g be a reductive quasihermitean Lie algebra and κ: g →
sp(V,Ω) a homomorphism. Then WV = κ−1(W̃max), so that V is a symplectic

g -module of convex type if and only if κ−1(W̃max) is generating.

Now the assertion is immediate from Proposition IV.5.

Note that Theorem IV.6 explains why the classification in Theorem III.15
and the classification in [20] of the (H1)-homomorphisms of simple hermitean
Lie algebras into sp(V,Ω) yield the same representations.
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Remark IV.7. The converse of the conclusion in Theorem IV.6 is false in
general. One simply can take a compactly embedded one-dimensional subalgebra
g of sp(V,Ω) such that g ∩Wmax = {0} . Then the inclusion of g is trivially an
(H1)-homomorphism but V is not a symplectic g -module of convex type.

V. The classification of Lie algebras with invariant cones

First we build a Lie algebra with invariant cones from basic building
blocks. We need:

• a reductive quasihermitean Lie algebra l ,

• a real vector space z1 ,

• a symplectic l -module of convex type (V,Ω) with Vfix = {0} such that
z(l) acts effectively on V , and

• an l -invariant skew-symmetric form q:V × V → z1 .

We define the vector space

g := g(l, V, z1, q) := V × IR× z1 × l

and endow it with the Lie bracket

(5.1)
[
(v, t, z,X), (v′, t′, z′, X ′)

]
=
(
X.v′ −X ′.v,Ω(v, v′), q(v, v′), [X,X ′]

)
.

Theorem V.1. The space (g, [·, ·]) is a Lie algebra containing invariant cones.
It is reductive if and only if V = {0} , and every non-reductive Lie algebra
containing invariant cones arises in that way.

Proof. Let tl ⊆ l be a compactly embedded Cartan algebra. According to
Proposition II.22, the only element of V fixed by tl is 0. Therefore Proposition
II.21 in [12] shows that g is a Lie algebra and that

z(g) = {0} × IR× z1 × {0}
n = V × IR× z1 × {0} is the nilradical

r = V × IR× z1 × z(l) is the radical, and

t = {0} × IR× z1 × tl

is a compactly embedded Cartan algebra.

We choose a regular element X ∈ t such that α(X) 6= 0 holds for all
α ∈ PV and B is positive definite on V αC if and only if iα(X) < 0 (Proposition
II.23). Let V + denote the sum of all those weight spaces for which iα(X) < 0.
Then the mapping v 7→ v+ v, V + → V is a bijection and we can use it to define
a complex structure I on V by I.(v + v) := i(v − v). Let v ∈ V α

C ⊆ V + . Then

Ω
(
I.(v + v), v + v

)
= Ω

(
i(v − v), v + v

)
= 2iΩC(v, v) = 2B(v, v) > 0

for v 6= 0. In view of Proposition III.13 in [12], this proves that g has strong
cone potential, so that Theorem III.39 in [12] shows that g contains invariant
cones.
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If, conversely, g is a non-reductive Lie algebra containing invariant cones,
let t ⊆ g be a compactly embedded Cartan algebra, n the nilradical of g , s a
t -invariant Levi algebra and t1 ⊆ t a complement for the center of g (cf. [12,
Prop. II.11]). We set l := t1 + s and V := [t, n] . Note that V is invariant
under l ([12, Prop. II.11]). So far we have only used that g contains a compactly
embedded Cartan algebra.

Since g contains invariant cones, it has strong cone potential and there-
fore there exists a k -adapted positive system ∆+ and a linear functional ω ∈
z(g)∗ such that

(5.2) ω(i[Xα, Xα]) > 0

whenever 0 6= Xα ∈ nC∩ gαC (cf. Prop. III.15 and Th. III.39 in [12]). It follows in
particular that g and l are quasihermitean (cf. Definition II.18). Now we define
z1 := kerω ∩ z , identify z with IR× z1 via ω , and define Ω and q by

[v, w] =
(
Ω(v, w), q(v, w)

)
,

where Ω(v, w) = ω([v, w]) . Note that this works since [n, n] ⊆ z(g) by [12, Prop.
II.10]. Now Ω is an l -invariant symplectic form on V and, in view of (5.2),
Proposition II.23 shows that V is of convex type. Finally

g = V × IR× z1 × l

and all brackets are as in (5.1). This proves the theorem.

Remark V.2. A reductive Lie algebra g containing invariant cones is simply a
quasihermitean reductive Lie algebra which is not compact semisimple. Therefore
Theorem V.1 provides an explicit description of all Lie algebras with invariant
cones.

Corollary V.3. Let g be a Lie algebra with invariant cones and g = r× s a
Levi decomposition. Then all exceptional ideals of s are ideals of g and therefore
split as ideal direct summands.

Proof. It follows from the classification of modules of convex type that an
exceptional ideal a of s acts trivially on [s, r] ⊆ [t, n] . Therefore they act trivially
on r and this implies the assertion.

Remark V.4. Note that the representation of a Lie algebra with invariant
cones as in Theorem V.1 depends on

• the choice of l , and

• the choice of a suitable decomposition, i.e., a non-zero linear functional
on the center.

To see that the choice of l is inessential, we recall that all compactly
embedded Cartan subalgebras of g are conjugate and that each compactly em-
bedded Cartan algebra t uniquely determines a t -invariant Levi complement s .
Let l, l̃ ⊆ t+s be two different choices of an l -subalgebra. Let ψ: s+ t→ (s+ t)/z



Neeb 175

denote the canonical quotient homomorphism. Then ψ |l and ψ |̃
l

are isomor-
phisms and we obtain an isomorphism

ψ̃ := (ψ |̃
l
)−1 ◦ ψ |l: l→ l̃.

The corresponding modules are given by V = [l, n] = [t, n] = [̃l, n] = Ṽ

and one easily checks that if ρ resp. ρ̃ are the representations of l resp. l̃ on V ,
then ρ̃ ◦ ψ̃ = ρ . Therefore the choice of l is inessential and it determines the
l -module V .

The following observations shed some light on the choice of the functional
β ∈ z∗ . Here g denotes a Lie algebra containing invariant cones and t a fixed
compactly embedded Cartan subalgebra.

Lemma V.5. If Ω is an l-invariant symplectic structure on V such that (V,Ω)
is a symplectic l-module of convex type, then there exists a k-adapted positive
system ∆+ such that B is negative definite on V αC if and only if α ∈ ∆+

r

(Definition II.18). Here the set ∆+
r is uniquely determined by the isomorphy

class of (V,Ω) as a symplectic l-module.

Proof. In view of Remark II.10, it is clear that the requirements on the set
∆+
r determine the isomorphy class of (V,Ω) as a symplectic l -module uniquely.

Now assume that (V,Ω) is of convex type. Using Proposition II.23, we
find X ∈ z(k) such that the pseudohermitean form B is negative definite on
V α if and only if iα(X) > 0. Next we choose X ′ ∈ z(k) in such a way that
α(X) 6= 0 holds for all α ∈ ∆p and that the signs of iα(X) and iα(X ′) coincide
for α ∈ ∆r . Then ∆+

p := {α ∈ ∆p: iα(X ′) > 0} is the system of positive non-
compact roots for a k -adapted positive system ∆+ satisfying our requirements.

Proposition V.6. Let g be a Lie algebra containing invariant cones and
t ⊆ g a compactly embedded Cartan subalgebra. For a k-adapted positive system
∆+ we put

Cmin,z := cone{i[Xα, Xα]:α ∈ ∆+
r , Xα ∈ gαC ∩ nC}

and for β ∈ z∗ we write Ωβ(v, w) := β([v, w]) for the associated l-invariant
skew-symmetric form on V := [t, n] . Then the following assertions hold:

(i) (V,Ωβ) is an l-module of convex type if and only if β ∈ intC?min,z for a
k-adapted positive system.

(ii) Two symplectic l-modules of convex type (V,Ωβ) and (V,Ωγ) are iso-
morphic if and only if the associated systems ∆+

r coincide.

(iii) If (V,Ω) is a symplectic l-module of convex type and ∆+ a k-adapted
positive system such that B is negative definite on V α

C if and only if
α ∈ ∆+

r , then there exists a β ∈ z∗ such that (V,Ω) ∼= (V,Ωβ) if and
only if Cmin,z is a pointed cone.

Proof. (i) For Xα ∈ V αC = gαC ∩ nC we have

iΩβ,C(Xα, Xα) = iβ([Xα, Xα]) = −β(i[Xα, Xα]).
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We choose the k -adapted positive system ∆+ as in Lemma V.5. Then
the pseudohermitean form Bβ is negative definite on V α if and only if α ∈ ∆+

r .
For α ∈ ∆+

r we then have β(i[Xα, Xα]) > 0 for Xα 6= 0. Hence β ∈ intC?min,z .

This proves the first half of (i). The other part has already been shown
in the proof of Theorem V.1.

(ii) If the symplectic g -modules (V,Ωβ) and (V,Ωγ) are isomorphic, then the
forms Bβ and Bγ are positive definite on the same weight spaces V α . As we
have seen in (i), this property entails that β, γ ∈ C?min,z for the same system

∆+
r .

To see the converse, we note that the positive system ∆+
r fixes the signs

of B on the weight spaces V αC , hence, in view of Remark II.10, it also determines
the isomorphy class of the symplectic g -module (V,Ωβ). It follows in particular
that (V,Ωβ) ∼= (V,Ωβ′).

(iii) It is clear that (V,Ω) ∼= (V,Ωβ) if and only if β ∈ intC?min,z . Such a
functional β exists if and only if the cone Cmin,z is pointed.

Remark V.7. In general there can be more symplectic structures on V turning
it into a symplectic module of convex type as one can obtain by forms of the
type Ωβ , β ∈ intC?min,z . A typical example can be obtained as follows. Let

(V,Ω) = (IR2,Ω0)2 as module of sl(2, IR)2 , where Ω0 is any symplectic form on
IR2 . We form the associated Lie algebra g = V × IR× l as in Theorem V.1 with
z1 = {0} . Then, as we have seen in Remark II.10, the l -module V permits 4
different classes of symplectic structures turning it into an l -module of convex
type. Accordingly there exist 4 different systems ∆+

r for g , but for only two of
them the cone Cmin,z is pointed.

Remark V.8. If we consider only those non-reductive Lie algebras with invari-
ant cones where dim z = 1 and l is given, then their isomorphy classes correspond
to isomorphy classes of symplectic l -modules of convex type. Therefore the open
problem mentioned in Remark II.10 is directly related to the classification of
this type of Lie algebras. In view of Lemma V.5 we know at least that we can
parametrize the isomorphy classes by a certain set of positive systems ∆+

r .

Relations to Siegel domains

Definition V.9. Let (V,A, I) be a symplectic vector space endowed with
a complex structure I such that IA(v, w) := A(v, Iw) is a positive definite
symmetric bilinear form on V .

Let further U be a real vector space, C ⊆ U an open convex cone which
contains no non-trivial affine subspaces, e ∈ intC? , and Â:V × V → U a skew-
symmetric bilinear map such that the forms Au(v, w) := 〈u, Â(v, w)〉 satisfy the
condition Ae = A and IAu is positive definite for u ∈ intC? . Note that this
condition is equivalent to Â(v, Iv) ∈ C \ {0} for v ∈ V \ {0} .

With the data (V, Â, U, C) given, we define the Siegel domain

S := S(V, Â, U, C) := {(u, v) ∈ UC× V : Imu− Â(v, Iv) ∈ C}.
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Note that this is a convex domain in the complex vector space UC× V (cf. [21,

p.128]). Accordingly we say that (V, Â, U, C) is a Siegel data. We write

Sp(V, Â) := {g ∈ EndIR(V ): (∀v, w ∈ V )Â(g.v, g.w) = Â(v, w)}.

Then Sp(V, Â) is a reductive quasihermitean real algebraic group and the corre-

sponding symmetric domain is the generalized Siegel space S(V, Â, C) consisting
of all complex structures J on V such that JAu is positive definite for all
u ∈ intC? .

We recall that S(V, Â, C) does not depend on the cone C (cf. [21]). One
only needs the assumption that there exists a cone C satisfying the requirements.
Written as a condition on the U -valued map Â , this means that

(C1) Â(v, Iv) 6= 0 for v ∈ V \ {0} ,

(C2) D
Â

:= cone{Â(v, Iv): v ∈ V } ⊆ U is pointed, and

(C3) Ae = A for an element e ∈ int(D
Â

)? .

It is clear that the requirements from above imply (C1)-(C3). Suppose,
conversely, that (C1)-(C3) are satisfied. Then IAu is positive definite for all
u ∈ int(D

Â
)? , hence in particular for some pointed generating cone C? ⊆ (D

Â
)? .

Then C := int(C?)? satisfies the requirements.

Theorem V.10. The tuple (V, Â, U) is a Siegel data if and only if the
associated generalized Heisenberg algebra

n = V × U with [(v, u), (v′, u′)] =
(
0, Â(v, v′)

)

occurs as the nilradical of a Lie algebra containing invariant cones.

Proof. Suppose that (V, Â, U) is a Siegel data and that C ⊆ U is an
appropriate open pointed convex cone. We define

g := n× sp(V, Â),

where sp(V, Â) acts canonically on V and trivially on U . Then it is easy to see
that g is a Lie algebra whose nilradical is n . We claim that g contains invariant
cones. In view of Theorem V.1, it suffices to show that the symplectic sp(V, Â)-
module (V,Ae) for an element e ∈ C is of convex type. Since the inclusion

sp(V, Â)→ sp(V,A) is an (H2)-homomorphism, this follows from Theorem IV.6.

Suppose, conversely, that g = n× l is a Lie algebra containing invariant
cones (cf. Theorem V.1). We choose a compactly embedded Cartan algebra t ⊆ g
and a k -adapted positive system of roots such that the cone Cmin is pointed (cf.
[12, III]). Let V + :=

∑
α∈∆+

r
gαC . Then the IR-linear isomorphism V → V + can

be used to obtain a complex structure I on V . For X,Y ∈ V + we then have

Â
(
X +X, I(X +X)

)
= [X +X, iX − iX] = 2[iX,X] ∈ Cmin,z,

where Cmin,z := Cmin∩z . Since g has cone potential, Â(v, Iv) 6= 0 for 0 6= v ∈ V ,
i.e., (C1) is satisfied. Since D

Â
= Cmin,z is pointed, the condition (C2) is also

satisfied. Fixing e ∈ intC? , we therefore obtain a symplectic structure Ae on V
such that IAe is positive definite and therefore (C3) holds. This completes the
proof.
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In view of Theorem V.10, the groups (V ⊕ U)× sp(V, Â) are the proto-
types of non-reductive Lie algebras with invariant cones since for a given gener-
alized Heisenberg algebra n = V ⊕ U all algebras n× l which contain invariant
cones arise by certain (H1)-homomorphisms κ: l → sp(V, Â) satisfying the con-
dition that κ−1(Wmax) is generating (cf. Theorem V.1).

Parabolic subgroups and Lie algebras with invariant cones

We have already seen that the nilpotent radicals which occur in Lie
algebras with invariant cone are precisely those generalized Heisenberg algebras
which arise as Siegel data. The connection between non-reductive Lie algebras
with invariant cones and symmetric domains is much deeper as we will explain
in this subsection.

Let (g, H0) be a simple Lie algebra of hermitean type and

κ: sl(2, IR)→ g

an (H1)-homomorphism.

We put

Hκ := κ

(
1 0
0 −1

)
and Xκ := κ

(
0 1
0 0

)
.

We write bκ = (U + V )× zg(Hκ), where

U = g(adHκ; 2) and V = g(adHκ; 1).

Then bκ is a maximal parabolic subalgebra of g (cf. [21]) and n := U + V is a
generalized Heisenberg algebra since U is central in n and [V, V ] ⊆ U .

The following facts can be found in [21, p.113]. We have

zg(Hκ) = g(1)
κ ⊕ g(2)

κ ,

where g
(1)
κ = l2 ⊕ gκ and g

(2)
κ = IRHκ ⊕ g

(2)
κ

′
, where l2 is a compact ideal

in zg(Hκ) which is maximal with respect to the property of being compactly

embedded in g , gκ is simple hermitean, and the commutator algebra of g
(2)
κ is

either {0} or simple and non-compact.

Let A denote the symplectic structure on V given by the element Xκ ∈
U by

A(v, v′) = − 1
4 〈Xκ, [v, v

′]〉.
Then we obtain an (H2)-homomorphism ρV : g

(1)
κ → sp(V,A) with respect to

1
2
I ∈ sp(V,A), and [g

(1)
κ , U ] = {0} .

We identify U with U∗ via the scalar product given by

〈X,Y 〉 := −B(X, θY ),

where θ is a Cartan involution of g and B is the Cartan-Killing form. Then the

orbit of Xκ under the group G
(2)
κ := 〈exp g

(2)
κ 〉 in U is an irreducible self-dual

homogeneous cone, denoted C , and we have a skew-symmetric mapping

Â:V × V → U, (X,Y ) 7→ − 1
4 [X,Y ]

satisfying IAu = I(u ◦ Â) >> 0 for every u ∈ C .
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Proposition V.11. The Lie algebra pκ := n× g
(1)
κ contains invariant cones,

n is its nilradical, and g
(1)
κ contains one hermitean factor.

Proof. If V = {0} , then pκ is reductive quasihermitean and there is nothing
to prove. Assume that V 6= {0} .

We know already that g
(1)
κ is reductive and quasihermitean with one

hermitean factor, and since [g
(1)
κ , U ] = {0} , we have ρV (g

(1)
κ ) ⊆ sp(V, Â).

From the positive definiteness of the form IAu for all u ∈ C , it follows

that (V, Â, U, C) is a Siegel data. Moreover g
(1)
κ acts effectively with Vfix = {0}

(cf. [Sa80, p.112]). In view of Theorem V.1, it remains to show that V is a

symplectic g
(1)
κ -module of convex type which follows from the observation that

ρV is an (H2)-homomorphism (Theorem V.10).

The preceding result shows how Lie algebras containing invariant cones
arise as subalgebras of maximal parabolic subalgebras of hermitean simple Lie

algebras. The size of g
(1)
κ in zh(Hκ) depends on the rank of the homomorphism

κ (cf. [21]). If the rank is minimal, then g
(2)
κ = IRHκ ([21, p.113]), so that

zg(Hκ) = IRHκ ⊕ g
(1)
κ and therefore bκ = pκ× IRHκ . Moreover, the inspection

of the restricted root system of g shows that in this case U = IRXκ , hence n

is a Heisenberg algebra. Moreover, the representation ρV of g
(1)
κ is irreducible

over IR ([21, p.112]). Therefore the g
(1)
κ -module V is contained in the list of

representations in Theorem III.15.

It is instructive to have a closer look at this situation. The situation is
relatively simple for the class of those hermitean algebras arising via skewher-
mitean forms.

Example V.12. Let IK = IR,C, IH and V a IK-left vector space endowed with
a non-degenerate skewhermitean form 〈·, ·〉 , i.e.,

〈v, w〉 = −〈w, v〉, λ〈v, w〉 = 〈λv, w〉 and 〈v, λw〉 = 〈v, w〉λ.
The basic bulding block for such vector spaces is IK2 endowed with the form
〈(x, y), (x′, y′)〉 := xy′ − yx′ . We write su(V ) for the Lie algebra of the group
SU(V ) := U(V ) ∩ Sl(V ), where U(V ) denotes the group of all IK-linear isome-
tries.

Up to equivalence, we have the following cases:

(1) IK = IR, V = IR2n , su(V ) = sp(n, IR).

(2) IK =C, V =Cp+q , su(V ) = su(p, q).

(3) IK = IH, V = IHn , su(V ) = so∗(2n).

Note that this covers all simple hermitean Lie algebras up to so(n, 2)
and the two exceptional ones.

Let v0 ∈ V be a non-zero isotropic vector. We choose v1 ∈ V with
〈v1, v0〉 = 1. Set V ′ := v⊥0 ∩ v⊥1 . Then V ∼= IKv0 ⊕ IKv1 ⊕ V ′ ∼= IK2 ⊕ V ′ . For
IK2 , the real rank of su(IK2) is 1 and the corresponding (H1)-homomorphism
κ: sl(2, IR)→ su(IK2) is the natural inclusion. We have in particular

Hκ =

(
1 0
0 −1

)
.
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Using the embedding su(IK2)→ su(V ) obtained by splitting the IK2 -factor, we
see that

zsu(V )(Hκ) = IRHκ ⊕ su(V ′), pκ ∼= (V ′ + IRXκ)× su(V ′)

and
bκ = {X ∈ su(V ):X.v0 ∈ IKv0}.

Example V.13. For the exceptional hermitean algebra g = e(6,−14) one finds

for κ of rank 1 that g
(1)
κ
∼= su(5, 1) and that V is a real module of dimension

20, hence a real form of
∧

3(C6).

Example V.14. For the exceptional hermitean algebra g = e(7,−25) one finds

for κ of rank 1 that g
(1)
κ
∼= so(2, 10) and that V is a real module of dimension

32, hence a factor of the corresponding spin representation.

Example V.15. For g = so(2, n) we obtain g
(1)
κ
∼= sl(2, IR)⊕so(n−2) and that

V is a real module of dimension 2(n−2). More precisely, it is the tensor product
IR2 ⊗ IRn−2 , where the factors are endowed with the natural representations.

VI. More on the structure of Lie algebras with invariant cones

The following theorem was the original motivation for us to consider the
structure of a Lie algebra with invariant cones from the point of view presented
in Section II.

Theorem VI.1. Let g be a Lie algebra with invariant cones, t ⊆ g a com-
pactly embedded Cartan algebra, and g = r× s a t-invariant Levi decomposition.
Let α, β ∈ ∆ with gαC ⊆ rC , gβC ⊆ sC , and Xβ ∈ gβC with

β([Xβ, Xβ]) = 2.

Then
α([Xβ, Xβ]) ∈ {−1, 0, 1}.

Proof. Let l be the intersection of g with the smallest conjugation invariant
subalgebra containing gβC . Then l ∼= sl(2, IR) ([12, Prop. II.8]). Therefore
Proposition II.28 applies to the module m = [t, r] of convex type (Theorem V.1)
and it follows that every non-trivial simple l -submodule is of dimension at most
2. Now α is a tC -weight of mC and therefore the restriction of these weights
to lC ∩ tC are the corresponding weights for l . But m contains only two types
of simple l -submodules: one-dimensional trivial modules and two-dimensional
modules. Therefore α([Xβ, Xβ ]) ∈ {−1, 0, 1} .

Theorem VI.1 has some important consequences for the structure of Lie
algebras with invariant cones.



Neeb 181

Corollary VI.2. Let g be a Lie algebra with invariant cones, ∆+ a k-
adapted positive system of roots, g = r× s a t-invariant Levi decomposition,
and α, β ∈ ∆+

p such that gαC ⊆ rC and gβC ⊆ sC . Then the following assertions
hold:

(i) [gαC , g
β
C] = {0} .

(ii) [g−αC , g−βC ] = {0} .

(iii) [gαC , g
−β
C ] = {0} or α− β ∈ −∆+

p .

(iv) The subalgebra p+
C :=

∑
α∈∆+

p
gαC is abelian.

Proof. (i) Let Xβ ∈ gβC with β([Xβ, Xβ ]) = 2. Then

(6.1) α([Xβ, Xβ ]) ∈ {0, 1}
since α is a positive non-compact root and ∆+ is k -adapted which implies that
Cmin ⊆ Cmax (cf. [12, Th. III.20]).

Suppose that {0} 6= [gαC , g
β
C] ⊆ gα+β

C . Then α + β ∈ ∆+
p and (α +

β)([Xβ, Xβ ]) ≥ 2. This contradicts Theorem VI.1.

(ii) This follows from (i) by interchanging ∆+ and −∆+ .

(iii) If

{0} 6= [gαC , g
−β
C ] ⊆ gα−βC ⊆ rC,

then α − β ∈ ∆p and (α − β)([Xβ, Xβ ]) ≤ −1, so that α − β ∈ −∆+
p follows

from (6.1).

(iv) It follows from (i) that root spaces in rC and those in sC commute. On
the other hand those in rC commute by [12, Prop. II.10] and those in sC by [7,
Lemma 7.7].

Corollary VI.3. We keep the assumptions of Corollary VI.2 and set ∆r :=
{α ∈ ∆: gαC ⊆ rC} (cf. Definition II.18) and m+

C :=
⊕

α∈∆+
r

gαC . Then the
mapping

m+
C → m := [t, r], X 7→ X +X

is a bijection which induces a complex structure on m given by

I.(X +X) = i(X −X).

Let s = (k ∩ s) + p be a Cartan decomposition of s . Then the complex structure
on m is invariant under k and the restrictions of the operators adX , X ∈ p are
antilinear, i.e.,

adX |m ◦ I = −I ◦ adX |m
for all X ∈ p .

Proof. The invariance under k follows from that fact that the subalgebra
m+

C =
∑
α∈∆+

r
gαC is invariant under k and this is the i -eigenspace for I on mC .

The (−i)-eigenspace is m−C := m+
C which is also k -invariant.

For X ∈ gαC ⊆ sC , α ∈ ∆+
p , it follows from Corollary VI.2(iii) that adX

maps m+
C into m−C and vice versa. This means that adX anticommutes with I

on mC . The same holds for X ∈ g−αC . Then ad(X+X) also anticommutes with
I on m and this proves the assertion.
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Corollary VI.4. We set ∆p,s := {α ∈ ∆: gαC ⊆ sC} and p±s :=
∑
α∈∆+

p,s
gαC .

Then
gC = p−s ⊕m−C ⊕ kC⊕ m+

C ⊕ p+
s

is a 5-grading of gC .

Proof. In view of Corollary VI.2, this is an elementary verification. The
crucial point is that [p+

s ,m
−
C ] ⊆ m+

C and [p−s ,m
+
C ] ⊆ m−C .

Remark VI.5. Let us say that a Lie algebra g is admissible if g⊕ IR contains
invariant cones. If g has this property but does not itself contain invariant
cones, then it must be compact semisimple ([12, Th. III.39]). Hence Theorem
VI.1 and all its consequences also remains true for this slightly extended class of
Lie algebras since it is trivially true for compact semisimple Lie algebras.

Example VI.6. An instructive example which illustrates the above results
is the Lie algebra g = hn× sp(n, IR), where hn is the (2n + 1)-dimensional
Heisenberg algebra. Here the compact roots ∆k are the roots of the compact
Lie algebra u(n), hence

∆+
k = {εk − εj : 1 ≤ k < j ≤ n− 1}

and the non-compact positive roots of sp(n, IR) are given by

∆+
p,s = {εk + εj : 1 ≤ k, j ≤ n}.

In g we also have positive roots corresponding to the root spaces contained in
(hn)C which are given by

∆+
r = {εi : 1 ≤ j ≤ n}.
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