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Introduction

The class of locally compact groups admits a strong structure theory.
This is due to the fact that—via approximation (projective limits)—important
parts of the theory of Lie groups and Lie algebras carry over. This phenomenon
becomes particularly striking if one assumes, in addition, that the groups under
consideration are connected and of finite dimension. The aim of the present notes
is to collect results and to show that Lie theory yields complete information about
the rough structure (i.e., the lattice of closed connected subgroups) of locally
compact finite-dimensional groups. Moreover, we shall describe the possibilities
for locally compact connected non-Lie groups of finite dimension.

We shall only consider Hausdorff groups (and shall, therefore, form quo-
tients only with respect to closed subgroups—except in Example 1.7).

The present notes grew out of an appendix to the author’s Habilitations-
schrift [43]. The author gratefully acknowledges the influence and stimulation by
Karl Heinrich Hofmann, Helmut Salzmann, Rainer Löwen, and Karl-Hermann
Neeb.

1. Dimension

First of all, we need a notion of (topological) dimension. Mainly, we
shall use the so-called small inductive dimension, denoted by dim. In textbooks
about dimension theory, small inductive dimension is denoted by ‘ind’, while
‘dim’ denotes covering dimension. Since we shall almost exclusively deal with
small inductive dimension, the more suggestive notation is preferred here.

Definition 1.1. Let X be a topological space. We say that dimX = −1
if, and only if, X is empty. If X is non-empty, and n is a natural number,
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then we say that dimX ≤ n if, and only if, for every point x ∈ X and every
neighborhood U of x in X there exists a neighborhood V of x such that V ⊆ U
and the boundary ∂V satisfies dim ∂V ≤ n− 1. Finally, let dimX denote the
minimum of all n such that dimX ≤ n ; if no such n exists, we say that X has
infinite dimension.

Obviously, dimX is a topological invariant. A non-empty space X
satisfies dimX = 0 if, and only if, there exists a neighborhood base consisting of
closed open sets. Consequently, a T1 space of dimension 0 is totally disconnected.

See [25] for a study of the properties of dim for separable metric spaces.
Although it is quite intuitive, our dimension function does not work well for arbi-
trary spaces. Other dimension functions, notably covering dimension [38, 3.1.1],
have turned out to be better suited for general spaces, while they coincide with
dim for separable metric spaces. See [38] for a comprehensive treatment. Note,
however, that small inductive dimension coincides with large inductive dimension
and covering dimension, if applied to locally compact groups [2], [36], compare
[42, 93.5]. The duality theory for compact abelian groups uses covering dimen-
sion rather than inductive dimension, cf. [32, pp. 106–111], [15, 3.11]. For this
special case, we shall prove the equality in 5.7 below.

We collect some important properties of small inductive dimension.

Theorem 1.2. For every natural number n , we have that dimRn = n .

Proof. [25, Th. IV 1], or [38, 3.2.7] in combination with [38, 4.5.10].

Lemma 1.3. Let X be a non-empty Hausdorff space.

(a) For every subspace Y of X , we have that dimY ≤ dimX .

(b) dimX ≤ n if, and only if, every point x ∈ X has some neighborhood Ux
such that dimUx ≤ n .

(c) dimX ≥ n if, and only if, there exists a point x ∈ X with arbitrarily
small neighborhoods of dimension at least n .

(d) If X is locally homogeneous, then dimX = dimU for every neighborhood
U in X .

(e) If X is locally compact, then dimX = 0 if, and only if, X is totally
disconnected.

(f) If X is the product of a family of (non-empty) finite discrete spaces, then
dimX = 0 .

(g) If dimX = 0 , then dim(Rn ×X) = n for every natural number n .

Proof. An argument by induction on dimX yields (a), compare [38, 4.1.4].
Assertions (b) and (c) are immediate consequences of the definition, and they
imply assertion (d). By (b), it suffices to prove assertion (e) for compact spaces.
A compact (Hausdorff) space has at every point a neighborhood base of closed
open sets if, and only if, it is totally disconnected [38, 3.1.3]. Assertion (f) follows
immediately from (e) since the product of a family of (non-empty) finite discrete
spaces is compact and totally disconnected.

Finally, assume that dimX = 0. We proceed by induction on n . If
n = 0, then dim(R0 × X) = dimX = 0. So assume that n > 0, and that
dimRn−1 × X = n − 1. Let U be a neighborhood of (r, x) in Rn × X . Since
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dimX = 0, there exists a closed open set V in X and a ball B around r in Rn
such that (r, x) ∈ B × V ⊆ U . Since the boundary ∂(B × V ) is contained in
∂B × V , we infer from our induction hypothesis that dimU ≤ n . The subspace
Rn×{x} of Rn×X has dimension n . This completes the proof of assertion (g).

Remark 1.4. Assertion 1.3(d) applies, in particular, to topological manifolds,
and to topological groups. Note that, if a space X is not locally homogeneous,
it may happen that there exists a point x ∈ X with the property that dimU <
dimX for every sufficiently small neighborhood U of x . E.g., consider the
topological sum of R and a single point.

Let G be a locally compact group. Finiteness of dimG allows to obtain
analogues of counting arguments, as used in the theory of finite groups. In
particular, we have the following:

Theorem 1.5. Let G be a locally compact group, and assume that H is a
closed subgroup of G . Then dimG = dimG/H + dimH .

Proof. This follows from [33, Sect. 5, Cor 2], since by 1.2 and 1.3 inductive
dimension has the properties a)–e) that are required in [33, p. 64f].

Remark 1.6. The same conclusion holds if we replace small inductive dimen-
sion by large inductive dimension, or by covering dimension, see [37].

Example 1.7. The closedness assumption on H is indispensable in 1.5. E.g.,
consider the additive group R . Since Q is dense in R , the factor group R/Q
has the indiscrete topology. Hence dimR/Q = 0 = dimQ , but dimR = 1.

We denote the connected component of G by G1l . Using 1.3(e), we
obtain:

Theorem 1.8.

(a) If G is a locally compact group, then dimG = dimG1l .

(b) If H is a closed subgroup of a locally compact group G , and dimH =
dimG <∞ , then G1l ≤ H .

Proof. Assertion (a) follows from 1.5 and the fact that G/G1l is totally dis-
connected [15, 7.3]. If dimH = dimG < ∞ then dimG/H = 0 by 1.5, and
assertion (b) follows from the fact that the connected component can only act
trivially on the totally disconnected space G/H .

Theorem 1.9. Let G be a locally compact group. Assume that N is
a closed normal subgroup, and C is a closed σ -compact subgroup such that
dim(C ∩N) = 0 and CN = G . Then dimG = dimC + dimN .

Proof. Since G/N = CN/N ∼= C/(C∩N) [15, 5.33], the assertion follows from
Theorem 1.5.

Definition 1.10.

(a) If, in the situation of 1.9, we have in addition that C and N are
connected, we say that G is an almost semi-direct product of C and N .
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(b) If, moreover, the subgroup C is normal as well, we say that G is an
almost direct product of C and N .

Note that a locally compact connected group is generated by any compact
neighborhood [15, 5.7], and is therefore σ -compact.

The terminology suggests that every almost (semi-)direct product is a
proper (semi-)direct product, ‘up to a totally disconnected normal subgroup’.
This may be made precise in two different ways. Either the almost (semi-)direct
product is obtained from a proper (semi-)direct product by forming the quotient
modulo a totally disconnected subgroup, or one obtains a proper (semi-)direct
product after passing to such a quotient. From the first of these viewpoints,
our terminology is fully justified. In fact, every almost (semi-)direct product
G = CN is isomorphic to the quotient of the proper (semi-)direct product
C n N modulo K , where the action of C on N is given by conjugation in
G , and K = {(g, g−1); g ∈ C ∩ N} is isomorphic to the totally disconnected
group C ∩N .

From the second point of view, our terminology is adequate for almost
direct products, but almost semi-direct products are more delicate.

Theorem 1.11. If G is an almost direct product of (closed connected)
subgroups N1 and N2 , then N1∩N2 is contained in the center of G . The factor
group G/(N1 ∩ N2) is the direct product of N1/(N1 ∩ N2) and N2/(N1 ∩ N2) .
Moreover, dimG = dim (G/(N1 ∩N2)) , and dimNi = dim (Ni/(N1 ∩N2)) .

Proof. The assertions follow from the fact that the connected group G acts
trivially on the totally disconnected normal subgroup N1 ∩N2 , and 1.5.

Example 1.12. For almost semi-direct products G = CN , the intersection
C ∩ N need not be a normal subgroup of G . E.g., let N = SO3R , let C = T ,
the circle group, and let γ:C → N be an embedding. Let a be an element of
order 4 in C . Now (c, x)(d, y) := (cd, (d−1)γxdγy) defines a semi-direct product
G = C nN . It is easy to see that Z =

〈
(a, (a−1)γ)

〉
is contained in the center

of G . We infer that Ḡ := G/Z is an almost semi-direct product of C̄ := ZC/Z
and N̄ := ZN/Z , and that Z(a, 1) = Z(1, aγ) belongs to C̄ ∩ N̄ , but Z(1, a)
is not central in Ḡ . Since Ḡ is connected and C̄ ∩ N̄ is totally disconnected,
normality of C̄ ∩ N̄ would imply that C̄ ∩ N̄ is central.

Lemma 1.13. Assume that the Hausdorff space X is the countable union of
relatively compact neighborhoods Un such that dimUn = d for every n , and let
Y be a separable metric space. If ϕ:X → Y is a continuous injection, then
dimX = dimXϕ ≤ dimY .

Proof. We adapt the proof from [13]. Small inductive dimension is defined
locally, whence dimX = dimUn for every n . Since Un is compact, we obtain
that Un and Un

ϕ
are homeomorphic, and dimUn = dimUn

ϕ
. Now dimXϕ =

dimUn
ϕ

by the sum theorem [34, p. 14]. Finally, monotony of dim yields that
dimXϕ ≤ dimY .

We obtain the following applications.
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Corollary 1.14. Let G be a locally compact connected group. If G acts on a
separable metric space Y , then dim(G/Gy) = dim yG ≤ dimY , where y ∈ Y is
any point, Gy is its stabilizer, and yG its orbit under the given action. Important
special cases are the following.

(a) If H is a locally compact group, and α:G → H is a continuous homo-
morphism, then dim(G/ kerα) = dimGα ≤ dimH .

(b) If G acts linearly on V ∼= Rn , then dim(G/Gv) = dim vG ≤ dimV = n ,
where v ∈ V is any vector, Gv is its stabilizer, and vG its orbit under
the given action.

Proof. Every locally compact connected group G and every quotient space
G/S , where S is a closed subgroup of G , satisfies the assumptions on X in 1.13:
in fact, the group G is algebraically generated by every neighborhood of 1l .
Therefore, assertion (b) follows from the fact that the stabilizer Gv is closed
in G . Assertion (a) follows from the fact that the image Gα is contained in the
connected component H1l , which is separable metric by 3.1.

In general, a bijective continuous homomorphism of topological groups
need not be a topological isomorphism; e.g., consider the identity with respect to
the discrete and some non-discrete group topology. Locally compact connected
groups, however, behave well.

Theorem 1.15. Let G be a locally compact group, and assume that G is
σ -compact. Then the following hold:

(a) If X is a locally compact space, and α: (X,G) → X is a continuous
transitive action, then the mapping g 7→ α(x, g) is open for every x ∈ X .

(b) If µ:G → H is a surjective continuous homomorphism onto a locally
compact group H , then µ is in fact a topological isomorphism.

Proof. Assertion (a) is due to [10], cf. also [23]. Assertion (b) follows by an
application of (a) to the regular action of G on H = Gµ . Compare also [15, 3.29].

Recall that a locally compact group G is σ -compact if it is compactly
generated; in particular if G/G1l is compact, or if G/G1l is countable.

2. The Approximation Theorem

If G is a locally compact group such that G/G1l is compact, then there
exist arbitrarily small compact normal subgroups such that the factor group is a
Lie group. To be precise:

Theorem 2.1. (Approximation Theorem) Let G be a locally compact group
such that G/G1l is compact.

(a) For every neighborhood U of 1l in G there exists a compact normal
subgroup N of G such that N ⊆ U and G/N admits local analytic
coordinates that render the group operations analytic.
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(b) If, moreover, dimG <∞ , then there exists a neighborhood V of 1l such
that every subgroup H ⊆ V satisfies dimH = 0 . That is, there is a
totally disconnected compact normal subgroup N such that G/N is a
Lie group with dimG = dimG/N .

Proof. [31, Chap. IV], [11, Th. 9], see also [29, II.10, Th.18].

Remark 2.2. For locally compact groups in general, one knows that there
always exists an open subgroup G such that G/G1l is compact, cf. [11, 3.5].

We obtain a useful criterion.

Theorem 2.3. A locally compact group G is a Lie group if, and only if,
every compact subgroup of G is a Lie group. If G is a locally compact group
such that G/G1l is compact, then we can say even more: in this case, the group
G is a Lie group if, and only if, every compact normal subgroup is a Lie group.

Proof. Closed subgroups of Lie groups are Lie groups; see, e.g., [17, VIII.1].
Conversely, assume that every compact subgroup of G is a Lie group. According
to 2.2, there exists an open subgroup H of G such that H/H1l is compact. Let
N be a compact normal subgroup of H such that H/N is a Lie group. Then
N is a Lie group by our assumption, and has, therefore, no small subgroups.
Consequently, there exists a neighborhood U in H such that every subgroup
M ⊆ N ∩ U is trivial. Let M be a compact normal subgroup of H such that
M ⊆ U and H/M is a Lie group. Then H/(M ∩ N) is a Lie group as well
[11, 1.5], but M ∩ N = {1l} . Thus H is a Lie group, and G is a Lie group as
well, since H is open in G . If G/G1l is compact, our proof works for H = G ,
yielding the second part of our assertion.

For the case where G/G1l is compact, the criterion 2.3 can also be
deduced from the fact that the class of Lie groups is closed with respect to
extensions [26, Th. 7].

Corollary 2.4. Let G be a locally compact group, and assume that G is
connected and of finite dimension. Then G is a Lie group if, and only if, the
center of G is a Lie group.

Proof. According to 2.1(b), the question whether or not G is a Lie group is
decided in some totally disconnected normal subgroup N . Since G is connected,
this subgroup is contained in the center of G .

Compact subgroups play an important rôle in the theory of locally com-
pact groups. They are understood quite well (see also the chapter on compact
groups), especially in the connected case.

Theorem 2.5. Let G be a locally compact group such that G/G1l is compact.

(a) Every compact subgroup of G is contained in some maximal compact
subgroup of G .

(b) The maximal compact subgroups of G form a single conjugacy class.

(c) There exists some natural number n such that the underlying topological
space of G is homeomorphic to Rn×C , where C is one of the maximal
compact subgroups of G .
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(d) In particular, every maximal compact subgroup of a locally compact con-
nected group is connected.

Proof. [26, §4, Th. 13], cf. also [17, Th. 3.1], and [21].

Considering, for example, a discrete infinite torsion group, one easily
sees that some connectedness assumption is essential for the mere existence of
maximal compact subgroups. Note that 2.5, in combination with the solution of
D. Hilbert’s Fifth Problem, provides another proof for 2.3.

There is, in general, no natural choice of N such that G/N is a Lie
group. However, we have:

Theorem 2.6. Let G be a locally compact connected group of finite dimen-
sion. If both N1 and N2 are closed normal subgroups such that dimNi = 0 and
G/Ni is a Lie group, then G/N1 is locally isomorphic to G/N2 .

Proof. The factor group G/(N1 ∩ N2) is also a Lie group, cf. [11, 1.5]. Now
Ni/(N1∩N2) is a Lie group of dimension 0, and therefore discrete. This implies
that G/(N1 ∩N2) is a covering group for both G/N1 and G/N2 .

It is often more convenient to work with compact normal subgroups than
with arbitrary closed normal subgroups. The general case may be reduced to the
study of quotients with respect to compact kernels.

Theorem 2.7. Let G be a locally compact connected group of finite dimen-
sion. If N is a closed normal subgroup such that dimN = 0 and G/N is a Lie
group, then there exists a compact normal subgroup M of G such that M ≤ N
and G/M is a Lie group. The natural mapping π:G/M → G/N is a covering.

Proof. Choose a compact neighborhood U of 1l in G . According to 2.1(b),
there exists a compact normal subgroup N ′ such that N ′ ⊆ U and G/N ′ is a
Lie group. Now M := N ∩N ′ has the required properties; in fact, G/M is a Lie
group by [11, 1.5], and the kernel of the natural mapping π:G/M → G/N is a
totally disconnected Lie group, hence discrete.

A main reason why, in general, quotients with respect to compact sub-
groups behave better than quotients with respect to arbitrary closed subgroups
is the following.

Lemma 2.8. Let G be a topological group, and let H be a compact subgroup
of G . Then the natural mapping π:G → G/H is a perfect mapping, i.e., for

every compact subset C ⊆ G/H the preimage Cπ
−1

is also compact.

Proof. Since H is compact, the natural mapping π is closed [15, 5.18]. Now
π is a closed mapping with compact fibers, and therefore perfect [8, XI.5].

3. Countable bases, metrizability

In several instances, in particular when describing locally compact groups
as projective limits of Lie groups, we shall benefit from the following observation.
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Theorem 3.1. Let G be a locally compact connected group of finite dimen-
sion. Then the topology of G has a countable neighborhood base. In particular,
the topology is separable and metrizable.

Proof. In view of the Theorem of Malcev and Iwasawa 2.5(c), it suffices
to consider the case where G is compact. According to 5.2, the group G is
the semi-direct product of its commutator group G′ and some abelian compact
connected group A , both of finite dimension. Since G′ is a Lie group by 5.1,
there remains to show that A has a countable base. The weight of A (i.e.,
the minimal cardinality of a neighborhood base for A) equals the cardinality of
the character group Â , see [15, 24.15]. Since A is connected, we have that Â
is torsion-free [15, 24.25]. Thus Â is isomorphic to a subgroup of Qr , where
r is the torsion-free rank of Â . From [15, 24.28] we infer that r = dimA is
finite. (Note that covering dimension, as used in [15], coincides with with small
inductive dimension for A by 5.7.) Thus Â is countable, and A possesses a
countable neighborhood base. The assertion that G is metrizable follows from
the existence of a countable neighborhood base, see [15, 8.3].

For the conclusion of 3.1, neither the assumption that G is connected
nor the assumption of finite dimension can be dispensed with.

Examples 3.2. If D is an uncountable discrete abelian group, then the dual
group D̂ is a compact group of weight |D| and infinite dimension. For a concrete
example, take D = ZN . Then D̂ = TN is connected (of infinite dimension). The
group D itself is an example of a disconnected group of uncountable weight (and
dimension 0).

Corollary 3.3. Every locally compact connected group of finite dimension is
the projective limit of a sequence of finite coverings of a Lie group.

Proof. Assume that G satisfies the assumptions. According to 2.1(b), there
exists a totally disconnected compact normal subgroup N of G such that G/N
is a Lie group. Since G has a countable base, we find a descending sequence Un
of relatively compact neighborhoods of 1l with trivial intersection. Now 2.1(a)
asserts the existence of a descending sequence Nn of compact normal subgroups
such that Nn ⊆ Un and G/(Nn) is a Lie group for every n . Since Nn is totally
disconnected, we obtain for every k ≤ n that Nn/(Nk) is finite, viz. G/(Nn) is
a finite covering of G/(Nk).

4. The rough structure

In this section, we introduce the lattice of closed connected subgroups of
a locally compact group, with additional binary operations. We show that this
structure is preserved under the forming of quotients modulo compact totally
disconnected normal subgroups.

For subsets A,B of a topological group G , let [A,B] be the closed
subgroup that is generated by the set {a−1b−1ab; a ∈ A, b ∈ B} . With this
notation, we make the following observation.
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Lemma 4.1. Let G be a topological group, and let N be a totally disconnected
closed normal subgroup of G . If A,B are connected subgroups of G , then
[A,B] = {1l} if, and only if, [AN/N,BN/N ] = {1l} .

Proof. This follows directly from the fact that [A,B] is the closure of a con-
tinuous image of the connected space A× B , and therefore connected.

Let G be a locally compact group. We are interested in the lattice of
closed connected subgroups; i.e., for closed connected subgroups A,B of G , we
consider the smallest closed (necessarily connected) subgroup A∨B that contains
both A and B , and the biggest connected (necessarily closed) subgroup A ∧ B
that is contained in both A and B . Note that A∧B = (A∩B)1l . Moreover, we
are interested in the connected components of the normalizer and the centralizer
of B , taken in A (denoted by N1l

AB and C1l
AB , respectively). Finally, recall

that the commutator subgroup [A,B] is necessarily connected, while closedness
is enforced by the very definition.

Definition 4.2.

(a) For any locally compact group, let Struc(G) be the algebra of all closed
connected subgroups of G , endowed with the binary operations ∨ , ∧ ,
N1l , C1l , [ , ] , as introduced above. We call Struc(G) the rough structure
of G .

(b) Let Comp(G) be the set of compact connected subgroups of G , and let
Cpfree(G) be the set of compact-free closed connected subgroups of G .

Remarks 4.3.

(a) Note that Comp(G) and Cpfree(G) are subsets but, in general, not
subalgebras of Struc(G).

(b) Of course, Struc(G) = Struc(G1l).

We are going to investigate the effect of continuous group homomor-
phisms on the rough structure. Our results will justify the vague feeling that the
quotient of a locally compact group by a compact totally disconnected normal
subgroup has ‘roughly the same structure’.

Proposition 4.4. Let G and H be locally compact groups, and let α:G→ H
be a continuous homomorphism. For every closed connected subgroup A of G ,
let Aᾱ be the closure of Aα in H .

(a) The mapping ᾱ maps Struc(G) to Struc(H) , and it maps Comp(G)
to Comp(H) .

(b) For A ≤ B ≤ G , we have that Aᾱ ≤ Bᾱ .

(c) For every choice of A,B ∈ Struc(G) , we have that Aᾱ∨Bᾱ ≤ (A∨B)ᾱ

and Aᾱ ∧ Bᾱ ≥ (A ∧ B)ᾱ .

(d) For every choice of A,B ∈ Struc(G) , we have that
(
N1l
AB
)ᾱ ≤ N1l

AᾱB
ᾱ ,

and that
(
C1l
AB
)ᾱ ≤ C1l

AᾱB
ᾱ .

Proof. Assertions (a) and (b) are obvious from the definition of ᾱ and the
fact that every continuous mapping preserves compactness. From A,B ≤ C
it follows that Aᾱ, Bᾱ ≤ Cᾱ . This implies that Aᾱ ∨ Bᾱ ≤ (A ∨ B)ᾱ . The
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second part of (c) follows analogously. Assertion (d) follows from the well-known
inequalities (NAB)

α ≤ NAαB
α and (CAB)

α ≤ CAαB
α , combined with the fact

that continuous images of connected spaces are connected.

Even if α is a quotient morphism with totally disconnected kernel, the
mapping ᾱ may be far from being injective. E.g., consider a quotient mapping
from R2 onto T2 . In fact, the rough structure Struc(R2) has uncountably many
elements, while Struc(T2) is countable. However, we have:

Theorem 4.5. Let G be a locally compact group, let N be a compact totally
disconnected normal subgroup, and let π be the natural epimorphism from G
onto G/N . Then the following hold:

(a) For every A ∈ Struc(G) , we have that Aπ = Aπ̄ , and that dimA =
dimAπ .

(b) The mapping π induces an isomorphism Struc(G) ∼= Struc(G/N) .

(c) The mapping π induces bijections of Comp(G) onto Comp(G/N) , and
of Cpfree(G) onto Cpfree(G/N) .

Proof. According to 4.3, we may assume that G is connected. Hence G is
σ -compact, and so is every closed subgroup A of G . In particular, AB/A ∼=
B/(A∩B) for every closed subgroup B of NGA , see [15, 5.33]. Mutatis mutandis,
the same assertion holds for the epimorphic images.

(i) Being an epimorphism with compact kernel, the mapping π is closed
[15, 5.18]. Moreover, we infer that the restriction of π to A is a closed surjection
onto Aπ , hence a quotient mapping. Therefore, dimA = dimAπ by 1.5, and
assertion (a) is proved.

(ii) For every H ∈ Struc(G/N), let Hπ← be the connected component

of the π -preimage Hπ−1

. Since π is continuous, we infer that π← is a mapping
from Struc(G/N) to Struc(G). For every H in Struc(G/N), the group

H/(Hπ←π) ∼= Hπ−1

/(Hπ←N) is totally disconnected. Hence Hπ←π ≥ H1l , and
Hπ←π = H since H is connected. For every A in Struc(G), we have that A

is a normal closed subgroup of AN = Aππ
−1

; recall that N centralizes A .
The quotient AN/A ∼= N/(N ∩ A) is totally disconnected. We infer that
A = (AN)1l = Aππ

←
.

(iii) The mapping π← is monotone. In fact, let H ≤ K in Struc(G/N).

Then Hπ← is a connected subgroup of Hπ−1 ≤ Kπ−1

, hence Hπ← ≤ Kπ← . In
view of 4.4(b), this shows that π respects the binary operations ∨ and ∧ .

(iv) From 4.1, we infer that π respects the operations [ , ] and C1l .
Arguments similar to those in step (ii) show that π respects the operation N1l

as well; recall that every epimorphism of (discrete) groups maps normalizers to
normalizers.

(v) The natural epimorphism π is a proper continuous mapping, see 2.8.
Thus π is a bijection of Comp(G) onto Comp(G/N). For A ∈ Cpfree(G),
we obtain that A ∩ N = {1l} , hence A ∼= Aπ ∈ Cpfree(G/N). Conversely,
assume that A ∈ Struc(G) \ Cpfree(G). According to 2.5(d), there exists
a connected non-trivial compact subgroup C of A . Now Cπ is a non-trivial
compact subgroup of Aπ . This completes the proof of assertion (c).
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5. Compact groups

By the following result, the structure theory of compact connected groups
is, essentially, reduced to the theory of compact almost simple Lie groups and
the theory of compact abelian groups:

Theorem 5.1.

(a) Let G be a compact connected group. Then there exist a compact con-
nected abelian group C , a family (Si)i∈I of almost simple compact Lie
groups Si , and a surjective homomorphism η : C ×∏i∈I Si → G with
dim ker η = 0 . The image Cη is the connected component of the center
of G , and the commutator group G′ equals (

∏
i∈I Si)

η .

(b) Conversely, every group of the form C ×∏i∈I Si , as in (a), is compact;
hence also (C ×∏i∈I Si)

η .

Proof. [28, Th. 1, Th. 2], cf. [5, App. I, no. 3, Prop. 2], [26, Remark after
Lemma 2.4], [46, §25].

Note that, in general, the connected component Cη of the center of G
is not a complement, but merely a supplement of the commutator group in G .
Since the topology of the commutator group (

∏
i∈I Si)

η is well understood, a
complement would be fine in order to show the more delicate topological features
of G . The following result asserts the existence of a complement (which, in
general, is not contained in the center of G).

Theorem 5.2. Every compact connected group is a semi-direct product of its
commutator group and an abelian compact connected group.

Proof. [20, 2.4]. A generalization to locally compact groups, involving rather
technical assumptions, is given in [19, Th. 6].

For a compact connected group G , let η:C × ∏i∈I Si → G be an
epimorphism as in 5.1. The possible factors Si are known from Lie Theory;
see, e.g., [35, Ch. 5]. In order to understand the structure of C , one employs the
Pontryagin-van Kampen duality for (locally) compact abelian groups. See
[40], [41] for a treatment that stresses the functorial aspects of duality. The dual
Ĉ is a discrete torsion-free abelian group of rank c , and c equals the covering
dimension of C if one of the two is finite [32, Th. 34, p. 108], [15, 24.28]. Hence
there are embeddings Z(c) → Ĉ and Ĉ → Q ⊗ Ĉ ∼= Q(c) . Dualizing again, we
obtain a convenient description of the class of compact connected abelian groups:

Theorem 5.3. Let C be a compact connected abelian group.

(a) If C has finite covering dimension c , then there are epimorphisms

σ: Q̂c → C and τ :C → Tc , both with totally disconnected kernel.

(b) If C has infinite covering dimension, then there exists a cardinal number

c such that there are epimorphisms σ: Q̂c → C and τ :C → Tc , both with
totally disconnected kernel.

Sometimes, one needs a more detailed description, as supplied by
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Remark 5.4. Dualizing the description of Q as inductive limit of the system
( 1
nZ)n∈N (endowed with natural inclusions 1

nZ → 1
ndZ), we obtain that the

character group Q̂ is the projective limit of the system (Tn)n∈N , where Tn = T
for each n , with epimorphisms t 7→ td:Tnd → Tn . Every one-dimensional
compact connected group is an epimorphic image of Q̂ .

Within the boundaries that are set up by the fact that locally compact
connected abelian groups are divisible [15, 24.25], we are free to prescribe the
torsion subgroup of a one-dimensional compact connected group. In fact, let P
be the set of all prime numbers, and let P ⊆ P be an arbitrary subset. In the
multiplicative monoid of natural numbers, let NP be the submonoid generated
by P (i.e., NP consists of all natural numbers whose prime decomposition uses
only factors from P ). With this notation, we have:

Theorem 5.5. For every subset P ⊆ P , there exists a compact connected
group C with dimC = 1 and the following properties: If c ∈ C has finite
order n , then n ∈ NP . Conversely, for every n ∈ NP there exists some c ∈ C
of order n .

Proof. The limit SP of the subsystem (Tn)n∈NP of the projective system
considered in 5.4 has the required property.

See [15, 10.12–10.15] for alternate descriptions of the ‘solenoids’ SP .

Examples 5.6. Of course, SP = Q̂ , and SØ = T . The group S{p} is the dual

of the group
⋃∞
n=0

1
pnZ , its torsion group has elements of orders that are not

divisible by p .

We conclude this chapter with an observation that relates 5.3 to the
inductive dimension function, as used in the rest of this paper.

Theorem 5.7. Small inductive dimension and covering dimension coincide
for compact connected abelian groups.

Proof. Let A be a compact connected abelian group, and let d denote its
covering dimension. The dual group Â is discrete [15, 23.17] and torsion-free
(since A is connected, [15, 24.25]). Assume first that d is finite. According
to [32, Th. 34, p. 108], we have the equality d = rank Â . For a maximal
free subgroup F of Â we infer that F ∼= Zd , and Â/F is a torsion group.
Consequently, the annihilator F⊥ is totally disconnected, and has inductive
dimension 0 by 1.8(a). Now Td ∼= F̂ ∼= A/(F⊥), and we conclude from 1.5
and 1.8 that dimA = dimTd = d . If d is infinite, then rankA is infinite, and
we infer that dimA is infinite as well.

6. The abelian case

In this section, we study connected locally compact abelian groups.
Special attention will be given to decompositions of such groups, and their
automorphisms.
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For the structure theory of locally compact abelian groups, Pontrjagin-
van Kampen duality is the strongest tool by far. See, e.g. [15, Chap. VI], [3],
[32], [39, VI]. For the functorial aspects of duality theory, see [40], [41]. We give
some results that are of interest for our special point of view. In particular, we
concentrate on the connected case.

Theorem 6.1. (Decomposition Theorem) Let A be a locally compact con-
nected abelian group. Then there exist closed subgroups R and C of A such that
A is the (interior) direct product R × C , and R ∼= Ra for some natural num-
ber a , while C is compact and connected. The group C is the maximal compact
subgroup of A , hence it is a characteristic subgroup.

Proof. [15, 9.14], [32, Th. 26].

The Decomposition Theorem is a special case of the Theorem of Malcev
and Iwasawa 2.5. Using the decomposition A = R×C , we shall gain information
about the automorphisms of A . The following lemma, which is also of interest
for its own sake, will be needed.

Lemma 6.2. Let a, b be natural numbers. Every continuous group homomor-
phism from Ra to Rb is an R-linear mapping.

Proof. For every x ∈ Rn and every integer z 6= 0, there exists exactly one
element y ∈ Rn (namely, 1

zx) such that zy = x . Therefore every additive
mapping µ:Ra → Rb is in fact Q -linear. Continuity of µ implies that µ is even
R -linear, since Qx is dense in Rx for every x ∈ Ra .

Note that, if a, b 6= 0, then there exist many discontinuous Q -linear
mappings from Ra to Rb .

Given a decomposition A = R × C as in 6.1, the subgroup R is not
characteristic in A = R× C , except if R = A . In fact, we have the following.

Theorem 6.3. Let C be a compact group, R ∼= Ra , and A = R× C .

(a) If α:R→ C is a continuous homomorphism, then Γα := {(x, xα);x ∈ R}
is a closed subgroup of A , and Γα ∼= R . Moreover, the mapping
µα :=

(
(r, c) 7→ (r, rαc)

)
is an automorphism of A .

(b) If B is a closed subgroup of A such that B ∼= Rb , then there exists some
continuous homomorphism α:R→ C such that B ≤ Γα . In particular,
b ≤ a .

(c) If µ:R → A is a continuous homomorphism such that Rµ is not closed
in A , then Rµ ⊂ C .

Proof. Assertion (a) is straightforward, using the fact that the graph of a
continuous function is closed, if the codomain is Hausdorff. Let B ∼= Rb be a
closed subgroup of A . We consider the projections πR:A → R: (r, c) 7→ r and
πC :A → C: (r, c) 7→ c . Since B is compact-free, the restriction of πR to B is
injective. Hence there exists a retraction ρ:R → B , and for α := ρπC we infer
that B ≤ Γα . This proves (b). Let µ:R → A be a continuous homomorphism,
and assume that Rµ 6⊆ C . Then RµπR is a non-trivial subgroup of R ∼= Ra . We
infer that µπR is an R -linear mapping, and that there exists a section σ:R→ R .
Now Rµ ≤ ΓσµπC is closed in A . This proves assertion (c).
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Examples 6.4.

(a) Dense one-parameter subgroups (or dense analytical subgroups) are fa-
miliar from Lie theory; most prominent, perhaps, is the ‘dense wind’
R→ T2 . In the realm of Lie groups, the closure of a non-closed analyti-
cal subgroup has larger dimension than the subgroup itself.

(b) The dual of the monomorphism Q → R , where Q carries the discrete

topology, yields a monomorphism R → Q̂ with dense image. Note that
dim Q̂ = 1 = dimR . Equidimensional immersions are typical for non-Lie
groups; see [22], and 9.6 below.

Next, we study automorphism groups of abelian locally compact con-
nected groups. We endow Aut(A) with the coarsest Hausdorff topology that
makes Aut(A) a topological (not necessarily locally compact) transformation
group on A (see [1], [15, §26]). With respect to this topology, Aut(A) and
Aut(Â) are isomorphic as topological groups [15, 26.9]. This has the following
immediate consequences [15, 26.8, 26.10]:

Theorem 6.5.

(a) The group of automorphisms of a compact abelian group is totally dis-
connected.

(b) Let G be a connected group, and assume that N is a compact abelian
normal subgroup of G . Then N lies in the center of G .

6.6. Let R and C be arbitrary topological groups, but assume that C is
abelian∗ . It will be convenient to use additive notation. Let α be an endo-
morphism of the direct sum R ⊕ C , and assume that α leaves C invariant.
Since (r + c)α = rα + cα , we can write α as the (pointwise) sum of the restric-
tions α|R and α|C . Since Cα ≤ C , the restriction α|C may be considered as an
endomorphism of C . The restriction α|R may be decomposed as the sum of the

co-restrictions α|RR and α|CR , i.e., we write rα = rα|
R
R + rα|

C
R , where rα|

R
R ∈ R

and rα|
C
R ∈ C . It is very convenient to use the matrix description

(r, c)α =
(
rα|

R
R , rα|

C
R + cα|C

)
= (r, c)

(α|RR α|CR
0 α|C

)
.

In fact, an easy computation shows that the usual matrix product describes the
composition of endomorphisms of R⊕ C , namely

(r, c)αβ = (r, c)

(α|RRβ|RR α|RRβ|CR + α|CRβ|C
0 α|Cβ|C

)
.

The group of all automorphisms of R⊕C that leave C invariant is obtained as

{( ρ g
0 γ

)
; ρ ∈ Aut(R), γ ∈ Aut(C), g ∈ Hom(R,C)

}
.

∗ If C is not abelian, the following remarks remain valid if we consider
Hom(R,Z) instead of Hom(R,C), where Z is the center of C .
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Obviously, we have that

{( idR g
0 idC

)
; g ∈ Hom(R,C)

}

is a normal subgroup, and that

{( ρ 0
0 idC

)
; ρ ∈ Aut(R)

}
and

{( idR 0
0 γ

)
; γ ∈ Aut(C)

}

are subgroups that centralize each other. That is, the group of those automor-
phisms of R⊕C that leave C invariant can be written as a semi-direct product
Aut(R)n Hom(R,C)o Aut(C). Note that parentheses are not necessary.

Theorem 6.7. Let A be a locally compact connected abelian group, and write
A = RC , where R ∼= Ra and C is compact and connected.

(a) The group of automorphisms of A is isomorphic to the semi-direct prod-
uct Aut(C) n Hom(Ra, C) o GLaR , the connected component Aut(A)1l

is isomorphic to Hom(Ĉ,Ra)oGLaR .

(b) If dimC = c <∞ , then Aut(A)1l is a linear Lie group; in fact, there is
a monomorphism ι: Aut(A)→ GLcQnHom(Qc,Ra)oGLaR , where Q
and GLcQ carry the discrete topologies.

Proof. The group Aut(A) leaves invariant the (unique) maximal compact
subgroup C of A . Together with the remarks in 6.6, this gives the first part
of the assertion. From Hom(R,C) ∼= Hom(Ĉ,Ra) ≤ Hom(Q ⊗ Ĉ,Ra) we infer
that there exists a monomorphism from Aut(A) to the group L := Aut(C) n
Hom(Qc,Ra)oGLaR . Now assume that dimC <∞ . According to [15, 24.28],
dim(Q⊗ Ĉ) = rank Ĉ = dimC . Hence L is a (linear) Lie group. Since L has no
small subgroups, the same holds for Aut(A). Hence Aut(A)1l is a (connected)
Lie group [31, Ch. III, 4.4], and the restriction of ι to Aut(A)1l is analytic, see
[17, VII, Th. 4.2] or [45, Sect. 2.11].

Corollary 6.8. Let G be a locally compact connected group, and assume
that A is a closed connected normal abelian subgroup of G . If dimA <∞ , then
G/CGA is an analytic subgroup of RcaoGLaR , where C is a compact group of
dimension c , and A ∼= Ra × C .

An important application is the following.

Theorem 6.9. Let G be a compact group, and assume that a is a natural
number, and that C is a compact connected abelian group. For every continuous
homomorphism µ:G→ Aut(Ra × C) , the following hold:

(a) Both Ra and C are invariant under Gµ .

(b) There exists a positive definite symmetric bilinear form on Ra that is
invariant under Gµ . Consequently, µ induces a completely reducible
R-linear action of G on Ra .

(c) If Gµ is connected, then Gµ acts trivially on C .

Proof. Assertion (a) follows from 6.7 and the fact that Hom(Ĉ,R) is compact-
free. The group Gµ induces a compact subgroup of GLaR . According to
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[15, 22.23], or [35, Chap. 3 §4], there exists a Gµ -invariant positive definite
symmetric bilinear form q on Ra . If V is a Gµ -invariant subspace of Ra ,
then the orthogonal complement with respect to q is Gµ -invariant as well. This
completes the proof of assertion (b). The last assertion follows from 6.5(a).

An interesting feature of locally compact connected abelian groups is the
fact that the lattice of closed connected subgroups is complemented:

Theorem 6.10. Let A be a locally compact connected abelian group, and
assume that B is a closed connected subgroup of A . Then there exists a closed
connected subgroup K of A such that A = BK and dim(B∩K) = 0 (i.e., B∩K
is totally disconnected).

Proof. It suffices to show the existence of a closed subgroup S such that
BS = A and dim(B ∩ S) = 0; in fact, connectedness of A implies that BS1l =
A (consider the action of A on the totally disconnected homogeneous space
A/(BS1l)).

(i) Assume first that A is compact. Then the dual group Â is discrete
[15, 23.17] and torsion-free (since A is connected, [15, 24.25]). Consequently, Â
embeds in Q := Q ⊗ Â , taken with the discrete topology. Since Â spans the
Q -vector space Q , there exists a basis E ⊂ Â for Q . Moreover, we can choose
E in such a way that E ∩ B⊥ is a basis for the subspace U spanned by B⊥ .
Now E \ B⊥ spans a complement V of U in Q . Writing L := V ∩ Â , we infer
that B⊥ ∩ L = {1l} . Since E ⊂ B⊥ ∪ L , the factor group Q/(B⊥L) is a torsion
group, and so is Â/(B⊥L). We conclude that BL⊥ = A , and dim(B∩L⊥) = 0.

(ii) In the general case, we write A = R×C and B = S×D with compact
groups C,D , where R ∼= Ra and S ∼= Rb . According to 6.3(b), there exists a
continuous homomorphism α:R→ C such that S is contained in the graph Γα ,
and A = Γα × C by 6.3(a). Therefore, we may assume that S = Rb ≤ R = Ra .
For any subgroup Z ∼= Za of Ra such that B ∩ Z ∼= Zb , the group A/Z is
compact, and BZ/Z is a compact, hence closed, subgroup. Now (i) applies, and
we infer that there exists a closed subgroup S of A such that A = BS and
dim(B ∩ S) = 0.

Remarks 6.11.

(a) The example of a two-dimensional indecomposable group in [39, Bsp. 68]
shows that, in general, a complement for a closed connected subgroup
need not exist.

(b) Complements do exist in abelian connected Lie groups; this can be
derived from the fact that, in this case, the dual group is isomorphic
to Ra × Zc .

(c) If A is a locally compact abelian group, and B is a closed connected
subgroup of A such that B is a Lie group (i.e., B is isomorphic to
Ra × Tc for suitable cardinal numbers a < ∞ and c), then there exists
a complement for B in A , see [3, 6.16].

(d) The assertion of 6.10 can also be derived from (b) and 4.5.
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7. Notions of simplicity

We are now going to introduce the concepts ‘almost simple’, ‘semi-
simple’, ‘minimal closed connected abelian normal subgroup’, ‘solvable radical’
in the context of locally compact connected groups of finite dimension. See
[17, XII.3.1] for a comparison of the concepts of solvability and nilpotency in
topological groups and in discrete groups.

A locally compact connected non-abelian group G is called semi-simple
if it has no non-trivial closed connected abelian normal subgroup; the group G
is called almost simple if it has no proper non-trivial closed connected normal
subgroup.

Let (Gi)i∈I be a family of normal subgroups of a topological group G .
Generalizing 1.10(b), we call the group G an almost direct product of the groups
Gi , if G is generated by

⋃
i∈I Gi and the intersection of Gj with the subgroup

generated by
⋃
i∈I\{j}Gi is totally disconnected. Examples are given by compact

connected groups 5.1, and also by semi-simple groups:

Theorem 7.1. A locally compact connected group of finite dimension is semi-
simple if, and only if, it is the almost direct product of a finite family (Si)1≤i≤n
of almost simple (closed connected) subgroups Si .

Proof. This follows from the corresponding theorem on Lie groups [5, III §9
no. 8 Prop. 26] via the Approximation Theorem 2.1(a) and 4.5.

Theorem 7.2. Let G be a locally compact connected group.

(a) If G is almost simple, then every proper closed normal subgroup is con-
tained in the center Z of G , and Z is totally disconnected. In particular,
G/Z is a simple Lie group with dimG/Z = dimG <∞ .

(b) If G is semi-simple and of finite dimension, then every closed connected
normal subgroup is of the form Si1 · · ·Sik , where the Sij are some of the
almost simple factors from 7.1.

Proof. Let N be a proper closed normal subgroup of G . The connected
component N1l is a proper closed connected normal subgroup of G . If G is
almost simple, we infer that N1l = {1l} . Via conjugation, the connected group
G acts trivially on the totally disconnected group N . Therefore N is contained
in Z . Applying this reasoning to the case where N = Z , we obtain that
Z is totally disconnected. The rest of assertion (a) follows from 1.5 and 2.1.
Assertion (b) follows from 4.5 and the corresponding theorem on Lie groups
[5, I, §6, no. 2, Cor. 1; III, §6, no. 6, Prop. 14].

Our next observation makes precise the intuition that an almost simple
group either has large compact subgroups, or large solvable subgroups.

Theorem 7.3. Let G be a locally compact connected almost simple group.
Then there exist a compact subgroup C and closed connected subgroups T and
D of G such that the following hold.

(a) The group C is compact and semi-simple, T is a subgroup of dimension
at most 1 that centralizes C , and D is solvable.

(b) G = TCD , and dimG ≤ dimC + dimD + 1 .
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(c) The group D is a simply connected, compact-free linear Lie group.

(d) The center Z of G is contained in TC , and TC/Z is a maximal compact
subgroup of G/Z , while CZ/Z is the commutator group of TC/Z .

Proof. The centralizer of the commutator group of a maximal compact sub-
group of a simple Lie group has dimension at most 1. The assertions follow im-
mediately from the Iwasawa decomposition for simple real Lie groups [14, VI, 5.3]
by an application of 4.5 and 2.1.

Theorem 7.4. Let G be a locally compact group, and assume that A
is a closed connected abelian normal subgroup such that dimA < ∞ . Then
there exists a minimal closed connected abelian normal subgroup M ≤ A , and
0 < dimM ≤ dimA . Moreover:

(a) Either the group M is compact, or it is isomorphic with Rm , where
m = dimM .

(b) If M is compact, then M lies in the center of the connected compo-
nent G1l .

Proof. The set A of closed connected abelian normal subgroups of G that
are contained in A is partially ordered by inclusion. Since dimX = dimY for
X,Y ∈ A implies that X = Y by 1.8(b), there are only chains of finite length
in A . The maximal compact subgroup C of a minimal element of A is a closed
connected characteristic subgroup of M , hence either M = C or C = {1l} by
minimality. In the latter case, M ∼= Rm by 6.1. Assertion (b) is immediate
from 6.5(b).

From 7.4, we infer that the class of locally compact connected groups
of finite dimension splits into the class of semi-simple groups, and the class of
groups with a minimal closed connected abelian normal subgroup M . The action
of G on M via conjugation is well understood:

Theorem 7.5. Let G be a locally compact group, and assume that there
exists a minimal closed connected abelian normal subgroup M ∼= Rm .

(a) The group G acts (via conjugation) R-linearly and irreducibly on M .

(b) The factor group L = G/CGM is a linear Lie group, in fact, a closed
subgroup of GLmR . The commutator group S of L is also closed in
GLmR , and we have that L ∼= SZ , where S is either trivial or semi-
simple, and Z is the connected component of the center of L . Moreover,
Z is isomorphic to a closed connected subgroup of the multiplicative
group C∗ .

(c) For every one-parameter subgroup R of M , we have that dimG/CGR ≤
dimM .

Proof. The action via conjugation yields a continuous homomorphism from G
to GLmR , cf. 6.2. Every invariant subspace V of M ∼= Rm is a closed connected
normal subgroup of G . Minimality of M implies that V = M , or V is trivial.
This proves assertion (a).

The factor group G/CGM is a Lie group [17, VIII.1.1], which acts
effectively on M ∼= Rm . This action is a continuous homomorphism of Lie
groups. From [5, II.6.2, Cor. 1(ii)] we infer that the image L of G/CGM in
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GLmR is an analytic subgroup. Moreover, we know that L is irreducible on Rm .
According to [7], the group L is closed in GLmR . Hence we may identify L and
G/CGM , cf. 1.15. The commutator group S of L is closed, see [17, XVIII.4.5].

From [45, 3.16.2] we infer that the radical of the group L is con-
tained in the center Z of L , whence L = SZ . According to Schur’s Lemma
[27, p. 118, p. 257], the centralizer of L in EndR(M) is a skew field. Since this
skew field is also a finite-dimensional algebra over R , we infer that it is isomor-
phic to R , C , or H , cf. [9]. (See also [6, 6.7].) Thus Z generates a commutative
subfield of H , hence Z ≤ C∗ . This completes the proof of assertion (b).

Assertion (c) follows readily from 1.14(b), since by linearity CGR = CGr
for every non-trivial element r of R .

Theorem 7.6. In every locally compact connected group G of finite dimen-
sion, there exists a maximal closed connected solvable normal subgroup (called
the solvable radical

√
G of G). Of course, G =

√
G iff G is solvable, and

√
G

is non-trivial if G is not semi-simple. The factor group G/
√
G is semi-simple

(or trivial).

Proof. Obviously, the radical is generated by the union of all closed connected
normal solvable subgroups, cf. [26, Th. 15].

If G is a connected linear Lie group, or a simply connected Lie group, it
is known [17, XVIII.4], [45, 3.18.13] that there exists a closed subgroup S of G
such that G = S

√
G and dim(S ∩

√
G) = 0. Such a (necessarily semi-simple)

subgroup is called a Levi-complement in G . Even for Lie groups, however, such
an S does not exist in general (see [45, Ch. 3, Ex. 47] for an example). Apart
from the fact that, in the Lie case, one has at least an analytic (possibly non-
closed) Levi complement [45, 3.18.13], one also has some information about the
general case:

Theorem 7.7.

(a) Let L be a Lie group, and let S be a semi-simple analytic subgroup of
L . Then the closure of S in L is an almost direct product of S and an
abelian closed connected subgroup of L .

(b) Let G be a locally compact connected group of finite dimension, and let√
G be the solvable radical of G . Then there exists a closed subgroup H

of G such that G = H
√
G and (H ∩

√
G)1l ≤ CGH .

Proof. Without loss, we may assume that S is dense in L . The adjoint action
of S on the Lie algebra l of L is completely reducible, hence there exists a
complement c of the Lie algebra s of S such that [s, c] ≤ c ∩ [l, l] . According
to [17, XVI.2.1], we have that [l, l] = [s, s] = s . This implies that [s, c] = 0, and
assertion (a) follows.

If G is a Lie group, then assertion (b) can be obtained from (a). In fact,
the closure of the Levi complement S of G is of the form SC , where C is a
closed connected subgroup of CGS , and the connected component of SC ∩

√
G

is contained in the radical C of SC . Applying 4.5, we obtain assertion (b) in
general.
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Remark 7.8. If G is an algebraic group, then the decomposition in 7.7(b) is
the so-called algebraic Levi decomposition into an almost semi-direct product of
a reductive group and the unipotent radical, see [35, Ch. 6].

8. On the existence of non-Lie groups of finite dimension

In this section, we construct some examples of non-Lie groups, and solve
the problem whether or not a given simple Lie group is the quotient of some
almost simple non-Lie group.

Lemma 8.1. Assume that (I, >) is a directed set, and let (πij :Gi → Gj)i>j
be a projective system of locally compact groups. If πij has compact kernel for
all i, j such that i > j , then the projective limit is a locally compact group.

Proof. Let G be the projective limit. For every i ∈ I , the natural mapping
πi:G→ Gi has compact kernel, since this kernel is the projective limit of compact
groups. Hence πi is a proper mapping by 2.8, and the preimage of a compact
neighborhood in Gi is a compact neighborhood in G .

Lemma 8.2. Assume that (I, >) is a directed set, and let (πij :Gi → Gj)i>j
be a projective system of locally compact groups such that kerπij is finite for all
i > j . Let G denote the projective limit. If I has a smallest element, then every
projection πi:G→ Gi has compact totally disconnected kernel.

Proof. Assume that a is the smallest element of I . For every i ∈ I , let Ki

denote the kernel of πia . The kernel of πa is the projective limit K of the

system
(
πij |KjKi :Ki → Kj

)
i>j . Since kerπi ≤ kerπa , the assertion follows from

the fact that K is a closed subgroup of the compact totally disconnected group∏
i∈I Ki .

Theorem 8.3. Let G be a locally compact connected group of finite dimen-
sion.

(a) If G is not a Lie group, and N is a compact totally disconnected normal
subgroup such that G/N is a Lie group, then there exists an infinite
sequence πn:Ln+1 → Ln of cn -fold coverings of connected Lie groups
such that L0 = G/N and 1 < cn < ∞ for every n , and G is the
projective limit of the system (Ln)n∈N .

(b) Conversely, let L be a connected Lie group, and let πn:Ln+1 → Ln be
an infinite sequence of cn -fold coverings of connected Lie groups such
that L0 = L and 1 < cn < ∞ for every n . Then there exists a locally
compact connected non-Lie group G with a compact totally disconnected
normal subgroup N such that G/N ∼= L .

Proof. Assertion (a) is an immediate consequence of 3.3, recall that a covering
of a Lie group is a Lie group again.

In the situation of (b), consider the projective system πn:Ln+1 → Ln .
By 8.1, the limit is a locally compact group G . The projective limit N of the
kernels of the natural mappings G → Gi is a compact infinite group, and N is
totally disconnected by 8.2. Hence G is not a Lie group.
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Remarks 8.4.

(a) Our technical assumption in 8.2 that I has a smallest element seems
to be adequate for the application in 8.3(b). The example [22, bottom
of page 260] of an infinite-dimensional projective limit of a system of
one-dimensional groups shows that 8.2 does not hold without some as-
sumption of the sort.

(b) Theorem 8.3(b) could also be derived from [22, 2.2, 3.3]. Roughly speak-
ing, the method of K.H. Hofmann, T.S. Wu and J.S. Yang [22] con-
sists of a dimension-preserving compactification of the center of a given
group.

8.5. The fundamental group of a semi-simple compact Lie group is finite;
see, e.g., [45, Th. 4.11.6]. This implies that, for a connected Lie group L ,
the existence of a sequence of coverings as in Theorem 8.3 is equivalent to
the existence of a central torus in a maximal compact subgroup of L . The
simple Lie groups with this property are sometimes called hermitian groups, they
give rise to non-compact irreducible hermitian symmetric spaces [14, VIII.6.1].
In the terminology of [44], the corresponding simple Lie algebras are the real

forms AC,pl (1 ≤ p ≤ l+1
2

), BR,2l (l ≥ 2), CRl (l ≥ 3), DR,2l (l ≥ 4), DH2p
(p ≥ 3), DH2p+1 (p ≥ 2), E6(−14) , E7(−25) . In [35], these algebras are denoted as
sup,l+1−p (including sup,p ), so2,l−1 , sp2l(R), so2,l−2 , u∗2p(H), u∗2p+1(H), EIII ,
and EV II , respectively.

Consequently, we know the locally compact almost simple non-Lie groups.

Theorem 8.6. Let G be a locally compact connected almost simple group.
Then G is not a Lie group if, and only if, the center Z of G is totally discon-
nected but not discrete. In this case, the factor group G/Z is a hermitian group
(cf. 8.5), and G is the projective limit of a sequence of finite coverings of G/Z .

Of course, a similar result holds for semi-simple non-Lie groups: at least
one of the almost simple factors in 7.1 is not a Lie group.

9. Arcwise connected subgroups of locally compact groups

In the theory of Lie groups, arcwise connectedness plays an important
rôle. In fact, according to a theorem of H. Yamabe [12], the arcwise connected
subgroups of a Lie group are in one-to-one correspondence with the subalgebras
of the corresponding Lie algebra. Our aim in this section is to extend this to
the case of locally compact groups of finite dimension. To this end, we shall
refine the topology of the arc component, and show that we obtain a Lie group
topology.

Definition 9.1. Let G be a topological group, and let U be a neighborhood
base at 1l . For W ∈ U , let UW = {U ∈ U ; U ⊆ W} , of course UW is again a
neighborhood base at 1l. For every U ∈ U , we denote by U arc the arc component
of 1l in U . For W ∈ U , let Uarc

W = {Uarc; U ∈ UW } .
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Easy verification shows that the system {V g; V ∈ Uarc
W , g ∈ G} forms

a base for a group topology on G . For every W ∈ U , we obtain the same
group topology on G , this topology shall be denoted by TU loc arc . The following
proposition clearly implies that the topology TU loc arc is locally arcwise connected.

Proposition 9.2.

(a) The topology TU loc arc is finer than the original topology on G .

(b) A function α: [0, 1]→ G is continuous with respect to the original topol-
ogy if, and only if, it is continuous with respect to TU loc arc .

Proof. For U ∈ U and g ∈ U , we find V ∈ U such that V g ⊆ U . Now
V arcg ⊆ U , and we infer that U ∈ TU loc arc . The ‘if’-part of assertion (b)
follows immediately from (a). So assume that α is continuous with respect
to the original topology, let r ∈ [0, 1] and U ∈ U . By continuity, there is a
connected neighborhood I of r such that Iα ⊆ Urα . Now continuity of α with
respect to TU loc arc follows from the fact that Iα ⊆ Uarcrα .

Corollary 9.3.

(a) With respect to TU loc arc , the arc component is again arcwise connected.
Thus the arc component Garc of G coincides with the arc component of
G with respect to TU loc arc .

(b) Algebraically, Garc is generated by Uarc for every U ∈ U .

While Garc is understood to be endowed with the induced original topol-
ogy, we shall write Gloc arc for the topological group Garc with the topology
induced from TU loc arc . According to 9.2(a), the inclusion Garc → G yields a
continuous injection ι:Gloc arc → G .

Theorem 9.4. Assume that G is a locally compact group of finite dimension,
and let U be a neighborhood base at 1l. Then the following hold:

(a) If W ∈ U is the direct product of a compact totally disconnected nor-
mal subgroup C of G and some local Lie group Λ ⊆ G , then Garc is
algebraically generated by the connected component Λ1l . In particular,
G1l ≤ GarcC .

(b) The factor group G/C is a Lie group, in fact, the natural mapping
π:G → G/C restricts to a topological isomorphism of Λ onto a neigh-
borhood of 1l in G/C .

(c) Gloc arc is a connected Lie group, and ιπ:Gloc arc → (G/C)1l is a cover-
ing.

(d) The arc component Garc is dense in G1l .

(e) The sets Hom(R, G) and Hom(R, Garc) coincide. The mapping

α 7→ αι: Hom(R, Gloc arc)→ Hom(R, G)

is a bijection.

Proof. For every U ∈ U , the connected component G1l is contained in the
subgroup 〈U〉 that is algebraically generated by U . In particular, G1l ≤ 〈W 〉 =
C〈Λ〉 ; recall that C is a normal subgroup of G . The connected component Λ1l is
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arcwise connected, therefore Λ1l = W arc . This implies that Λ1l is open in Gloc arc ,
whence Gloc arc = 〈Λ1l〉 . This proves assertion (a). From the fact that W is the
direct product of C and Λ, we conclude that π|Λ is injective. The quotient
mapping π is open, hence Λπ = W π is open in G/C . Therefore, the group
G/C is locally isomorphic to Λ, and (b) is proved. Since V := (Λ1l)π is open in
G/C , we obtain that (G/C)1l is generated by V . Hence ιπ:Gloc arc → (G/C)1l

is surjective, and assertion (c) holds. An application of 4.5(b) to the closure of
Garc and the restriction of π to G1l yields assertion (d). Finally, assertion (e) is
an immediate consequence of 9.2(b).

Remarks 9.5.

(a) From K. Iwasawa’s local product theorem [11, Th. B] we know that
in every locally compact group there exists a neighborhood W with the
properties that are required in 9.4(a).

(b) In view of 9.4(e), we define the Lie algebra of G as Hom(R, G), cf. [29,
II.11.9, p. 140]. We then have the exponential mapping

exp: Hom(R, G)→ G:α 7→ 1α .

For every subalgebra s of Hom(R, G), it seems reasonable to define the
corresponding arcwise connected subgroup that is generated by exp s .
This is in contrast with R. Lashof’s definition [30, 4.20], while our defi-
nition of the Lie algebra essentially amounts to the same as R. Lashof’s.

(c) A source for further information on G might be the epimorphism

η:Gloc arc × C → G = GarcC: (x, c) 7→ xιc.

Note that η is a local isomorphism, and therefore a quotient mapping.

(d) As an immediate consequence of the local product theorem, we have that
a locally compact group of finite dimension is a Lie group if, and only if,
it is locally connected. However, it is not clear a priori that Gloc arc is
locally compact.

We collect some consequences of 9.4.

Theorem 9.6. Let G be a locally compact connected group of finite dimen-
sion.

(a) Let M be a compact normal subgroup such that dimM = 0 and G/M
is a Lie group. For the natural mapping πM :G → G/M , we have that
ιπM :Gloc arc → G/M is a covering. In particular, dimG = dimG/M =
dimGloc arc .

(b) The group G is a Lie group if, and only if, the composite ιπM is a finite
covering.

(c) If H is a connected Lie group, and α:H → G is a continuous homo-
morphism, then α factors through ι .

(d) The group G is a Lie group if, and only if, the morphism ι is surjective.

Proof. The kernel K = Garc ∩ M of ιπ is closed in Gloc arc and totally
disconnected. Since Gloc arc is a Lie group, we infer that K is discrete. Since
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Gloc arc and G/M are connected Lie groups of the same dimension, we conclude
that ιπ is surjective, hence assertion (a) holds. If G is a Lie group, then
G = Garc = Gloc arc . Being totally disconnected, the subgroup M is discrete
and compact, hence finite. Thus πM is a finite covering. Now assume that ιπM
has finite kernel K = Garc ∩M . Let U be a neighborhood of 1l in G such that
U ∩K = {1l} . According to 2.1(b), there exists an normal totally disconnected
compact subgroup N such that N ⊆ U and G/N is a Lie group. For every
such N , we obtain that ιπN is an isomorphism. If N is non-trivial, we may
pass to a neighborhood V of 1l in U such that N is not contained in V . Then
we find a normal compact subgroup N ′ ⊆ N ∩ V , and obtain a proper covering
G/N ′ → G/N , in contradiction to the fact that ιπN ′ is an isomorphism. This
implies that N = {1l} , and G is a Lie group. Thus assertion (b) is proved.
In the situation of (c), it suffices to show that α is continuous with respect to
TU loc arc ; in fact Hα is arcwise connected, hence contained in Garc . For every
U ∈ U , we find a neighborhood V of 1l in H such that V α ⊆ U . Since H is
locally arcwise connected, we may assume that V is arcwise connected. This
implies that V α ⊆ Uarc , whence α is continuous with respect to TU loc arc . In
order to prove (d), assume first that ι is surjective. Then ι is a homeomorphism
by the open mapping theorem [15, 5.29], hence G is a Lie group. The proof
of (d) is completed by the observation that every connected Lie group is arcwise
connected.

We remark that 9.6(d) is a result of M. Goto, see [12].

10. Algebraic groups

In this last section, we briefly indicate how certain results from the
theory of complex algebraic groups yield results on the rough structure of locally
compact groups of finite dimension.

Let G be a locally compact group. If dimG <∞ , and A,B ∈ Struc(G)
such that A < B , then dimA < dimB by 1.8(b). Consequently, every chain
in Struc(G) has a maximal and a minimal element. This corresponds to the
fact that analytic (arcwise connected) subgroups of a Lie group are in one-to-
one correspondence to the subalgebras of the Lie algebra, where the dimension
function is obviously injective on every chain. Upper bounds for the dimension
of subgroups of a given locally compact group G yield lower bounds for the
dimension of separable metric spaces that admit a non-trivial action of G ,
cf. 1.14. In order to gain information about the maximal elements in Struc(G),
we shall try to employ information from the theory of algebraic groups. The
maximal algebraic subgroups of a complex algebraic group are understood quite
well. E.g., one has the following result, cf. [24, 30.4].

Theorem 10.1. Let G be a reductive complex algebraic group. Then every
maximal algebraic subgroup of G either is parabolic or has reductive Zariski-
component.

Parabolic subgroups are those that contain a Borel subgroup. Every
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parabolic subgroup is a conjugate of a so called standard parabolic subgroup,
and these are easy to describe. In fact, they are in one-to-one correspondence to
the subsets of a base for the lattice of roots of G relative to a maximal torus.
Cf. [24, 30.1].

The reductive subgroups of reductive complex algebraic groups have been
determined: See, e.g., [4].

There arises the question as to what extent these results are applicable
in order to describe the maximal closed subgroups of a given locally compact
group, or even a Lie group. First of all, we note that an important class of Lie
groups consists in fact of algebraic groups, cf. [35, Ch. 3, Th. 5].

Theorem 10.2. Let G be a connected complex linear Lie group, and assume
that G equals its commutator group. Then G admits a unique complex algebraic
structure. In particular, every complex semi-simple linear Lie group is complex
algebraic.

While every algebraic subgroup of a complex algebraic group G is closed
in the Lie topology, the converse does not hold in general. However, the structure
of the algebraic closure Halg of a connected analytic subgroup H of G (i.e., the
smallest algebraic subgroup that contains H ) is to some extent controlled by the
structure of H . In particular, the commutator group of Halg equals that of H ,
cf. [18, VIII.3.1]. This implies the following.

Theorem 10.3. Let G be a complex semi-simple linear Lie group. Then
every maximal closed connected subgroup is algebraic.

Via complexification, we obtain an estimate for the possible dimensions
of maximal closed subgroups of real semi-simple Lie groups (and thus of locally
compact semi-simple groups).

Theorem 10.4. Let G be a semi-simple (real) Lie group. If H is a
proper subgroup, then dimH ≤ mG , where mG denotes the maximal (complex)
dimension of proper subgroups of the complexification of G .

Since, e.g., the parabolic subgroups have no counterpart in compact real
forms, the estimate in 10.4 may be quite rough. However, it is attained in the
case of split real forms.

Example 10.5. Consider a complex simple Lie group of type G 2 . Then a
reductive subgroup is either semi-simple of type A 2 , A1 ×A1 , A1 , or a product
of A1 with a one-dimensional centralizer, or abelian of dimension at most two.
The maximal parabolic subgroups are semi-direct products of a Levi factor of
type A1 and a solvable radical of dimension 6. Consequently, if G is a locally
compact almost simple group such that the factor group modulo the center is
a real form of G2 , then the maximal elements in Struc(G) have dimension
at most 9. Note that, if G is the compact real form, then every subgroup is
reductive, and the maximal elements in Struc(G) have dimension at most 8.
Since dimG = 14, we infer that if G acts non-trivially on a separable metric
space X , then dimX ≥ 5, and dimX ≥ 6 if G is compact.
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