Laplace transform and unitary highest weight modules

Jean-Louis Clerc
Communicated by K.-H. Neeb

Abstract

The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.

0. Introduction

Let G be a connected real semi-simple Lie group with finite center, U a maximal compact subgroup, and assume G / U is a Hermitian symmetric space. Harish Chandra constructed a family of irreducible unitary representations of G, called the holomorphic discrete series, realized on holomorphic sections of some vector bundles over G / U, square-integrable with respect to the invariant measure on G / U.

The vector bundles are associated to irreducible (finite-dimensional) representations of U, with some restriction on the dominant weight of the representation in order to have non-trivial L^{2}-sections. However the formulae for the action of G make sense for all values of the dominant weight, and Harish Chandra indicated the possibility that some of these modules (or some submodules) might be unitarizable ([10]).

This problem was completely solved ([5],[11]), but the proofs are of algebraic nature and use case-by-case arguments. Moreover there is no concrete realization of the corresponding Hilbert spaces. For more recent work in this direction, see [2], [6], [12]. A few years earlier the special case of line bundles (associated to characters of U) had been studied, both from the algebraic point of view [19] and the analytic counterpart [17]. We follow here the second approach. To avoid complications, we restrict our attention to tube type domains. We obtain a characterization and a realization of the unitarizable modules in terms of some (operator-valued) measure on a cone $\bar{\Omega}$. In some cases, we are able to completely determine the corresponding measures.

1. Geometric preliminaries

Let V be a Euclidean Jordan algebra (for this notion and further properties, see [7]). For sake of simplicity, V is assumed to be simple. Let $<,>$ be the inner product, e the neutral element and let $n=\operatorname{dim} V$.

Let Ω be the associated cone. Denote by L the connected component of the automorphism group of the cone Ω, i.e.

$$
L=\{l \in G L(V) \mid l \Omega=\Omega\}^{0}
$$

The groupe L is closed under conjugation, hence is reductive. The subgroup $K=\{l \in L \mid l e=e\}$ is a maximal compact subgroup of L, and coincides with the connected component of the automorphism group of V.

If $x \in V$, we denote by $L(x)$ the mapping $y \mapsto x y$, and by $P(x)=$ $2 L(x)^{2}-L\left(x^{2}\right)$ the so called quadratic representation of V.

If $x \in \Omega$, then $P(x)$ is symmetric with respect to the inner product and belongs to L. Every element of L can be written as $g=k P(x)$, for some $k \in K$ and some $x \in \Omega$. This is in fact the Cartan decomposition of L. For further use, notice the formula $\exp 2 L(x)=P(\exp x)$, for $x \in V$, where on the right handside exp stands for the exponential map in the Jordan algebra V.

Let Δ be the Koecher norm function (also called determinant). Δ is a polynomial of degree r, where r is the rank of the Jordan algebra V (r is also the rank of the symmetric space $\Omega \simeq L / K)$. Up to a positive constant, Ω has a unique L-invariant measure given by

$$
d^{*} x=\Delta(x)^{-m} d x
$$

where $m=\frac{n}{r}$ (m turns out to be an integer or half an integer). For further use, notice the formula $\operatorname{Det}(P(x))=\Delta(x)^{2 n / r}$, for $x \in V$.

The Iwasawa decomposition also has a specific realization. Fix a Jordan frame, i.e. $e=c_{1}+c_{2}+\ldots+c_{r}$, where the $\left(c_{i}\right)_{1 \leq i \leq r}$ form a complete orthogonal system of primitive idempotents. Let $R=\left\{a=\sum_{i=1}^{r} a_{i} c_{i}, a_{i} \in \mathbb{R}\right\}$. The space $\mathfrak{a}=\{L(a) \mid a \in R\}$ is a Cartan subspace in $\mathfrak{p}=\{L(x) \mid x \in V\}$. Let $A=\{\exp L(a), a \in R\}$ be the corresponding Lie subgroup, which can also be viewed as $A=\left\{P(a), a=\sum_{i=1}^{r} a_{i} c_{i}, a_{i}>0\right\}$. Now for $1 \leq i<j \leq r$, let

$$
V_{i j}=\left\{x \in V \left\lvert\, c_{i} x=c_{j} x=\frac{1}{2} x\right.\right\}
$$

Then $V=\oplus_{j=1}^{r} \mathbb{R} c_{j} \bigoplus_{1<i<j<r} V_{i j}$ (Peirce decomposition). For $x, y \in V$, write $x \square y=L(x y)+[L(x), L(y)]$, and for $1 \leq i<j \leq r$ let $\mathfrak{n}_{i j}=V_{i j} \square c_{i}$. Then $\mathfrak{n}=$
$\bigoplus \mathfrak{n}_{i j}$ is the Iwasawa nilpotent subalgebra associated to the Weyl chamber $1 \leq i<j \leq r$
$\mathfrak{a}^{+}=\left\{L(a), a=\sum_{i=1}^{r} a_{i} c_{i}, a_{1}<a_{2}<\ldots<a_{r}\right\}$. Let N be the analytic subgroup of L with $\operatorname{Lie}(N)=\mathfrak{n}$.

Closely associated to this Iwasawa decomposition is a parametrization of Ω. Let

$$
V^{+}=\left\{u=\sum_{i=1}^{r} u_{j} c_{j}+\sum_{j<k} u_{j k} \quad \mid \quad u_{j}>0, u_{j k} \in V_{j k}\right\} .
$$

For $u^{(j)} \in \bigoplus_{k=j+1}^{r} V_{j k}$ let $\tau\left(u^{(j)}\right)=\exp \left(2 u \square c_{j}\right)$, and for $u=\sum_{i=1}^{r} u_{i} c_{i}+$ $\sum_{j<k} u_{j k} \quad$ in V^{+}, let $b_{j}=c_{1}+\ldots+c_{j-1}+u_{j} c_{j}+c_{j+1}+\ldots+c_{r}, 1 \leq j \leq r$, $u^{(j)}=\sum_{k=j+1}^{r} u_{j k}, 1 \leq j \leq r-1$, and define

$$
t(u)=P\left(b_{1}\right) \tau\left(u^{(1)}\right) P\left(b_{2}\right) \tau\left(u^{(2)}\right) \cdots \tau\left(u^{(r-1)}\right) P\left(b_{r}\right) .
$$

Proposition 1.1. The map $u \mapsto t(u) e$ is a bijection from V_{+}onto Ω. If

$$
x=\sum_{j=1}^{r} x_{j} c_{j}+\sum_{j<k} x_{j k}
$$

is the Peirce decomposition of $x=t(u) e$, then

$$
\begin{aligned}
x_{j} & =u_{j}^{2}+\frac{1}{2} \sum_{k=1}^{j-1}\left\|u_{k j}\right\|^{2} \\
x_{j k} & =u_{j} u_{j k}+2 \sum_{l=1}^{j-1} u_{l j} u_{l k} .
\end{aligned}
$$

The invariant measure on Ω is given by :

$$
\int_{\Omega} f(x) d^{*} x=2^{r} \int_{V_{+}} f(t(u) e) \prod_{j=1}^{r} u_{j}^{-d(j-1)-1} d u_{j} \prod_{1 \leq j<k \leq r} d u_{j k}
$$

For later use, we need a careful analysis of the L orbits in $\bar{\Omega}$. For p, $0 \leq p \leq r$, let $e_{p}=\sum_{i=1}^{p} c_{i}$, and let \mathcal{O}_{p} be the orbit under L of e_{p}. Observe that $\mathcal{O}_{0}=\{0\}$, and $\mathcal{O}_{r}=\Omega$.
Proposition 1.2. $\bar{\Omega}=\bigsqcup_{0 \leq p \leq r} \mathcal{O}_{p}$.
Each orbit can be parametrized in a way similar to the parametrization of Ω. We need some more notations. For $0 \leq p \leq r-1$, let L_{p} be the stabilizer of e_{p}, and \mathfrak{l}_{p} its Lie algebra. Now let

$$
\begin{aligned}
\mathfrak{a}_{p} & =\left\{L\left(\sum_{1 \leq i \leq p} a_{i} c_{i}\right), a_{i} \in \mathbb{R}\right\} \\
\mathfrak{n}_{p} & =\bigoplus_{1 \leq i \leq p}\left(\bigoplus_{i+1 \leq j \leq r} \mathfrak{n}_{i j}\right)
\end{aligned}
$$

It is easily checked that $\mathfrak{l}=\mathfrak{l}_{p} \oplus \mathfrak{a}_{p} \oplus \mathfrak{n}_{p}$. On the group level, we get the density of $L_{p} A_{p} N_{p}$ in L, where A_{p} and N_{p} are the analytic subgroups of L corresponding to respectively \mathfrak{a}_{p} and \mathfrak{n}_{p} (see e.g. [17]). To state this result in a way similar to Proposition 1.1, let

$$
V_{p}^{+}=\sum_{i=1}^{p} \mathbb{R}^{+} c_{i} \oplus \mathfrak{n}_{p}
$$

For $u=\sum_{i=1}^{p} u_{i} c_{i}+\sum u_{i j} \in V_{p}^{+}$, let as above

$$
t(u)=P\left(b_{1}\right) \tau\left(u^{(1)}\right) P\left(b_{2}\right) \tau\left(u^{(2)}\right) \cdots \tau\left(u^{(p-1)}\right) P\left(b_{p}\right)
$$

where $u^{(i)}=\sum_{j=i+1}^{r} u_{i j}, 1 \leq i \leq p$.

Proposition 1.3. Let $1 \leq p \leq r-1$. The mapping $u \mapsto t(u) e_{p}$ from V_{p}^{+}into V is a one-to-one map into a dense subset \mathcal{O}_{p}^{\prime} of \mathcal{O}_{p}. There exists a unique (up to a positive scalar) relatively invariant measure ν_{p} on \mathcal{O}_{p}. The complementary set $\mathcal{O}_{p} \backslash \mathcal{O}_{p}^{\prime}$ has ν_{p} measure 0 . In the corresponding coordinates ν_{p} is given by

$$
\int_{\mathcal{O}_{p}} f(x) d \nu_{p}(x)=\int_{V_{p}^{+}} f\left(t(u) e_{p}\right) \prod_{j=1}^{p} u_{j}^{(p-j+1) d-1} d u_{j} \prod_{\substack{1 \leq i \leq p \\ i<j \leq r}} d u_{i j}
$$

The relative invariance is expressed by the following formula :

$$
\int_{\mathcal{O}_{p}} f(l x) d \nu_{p}(x)=(\operatorname{det} l)^{-s_{p}} \int_{\mathcal{O}_{p}} f(x) d \nu_{p}(x), \forall l \in L
$$

where $s_{p}=\frac{r}{2 n} d p$ (d is the common dimension of all $\mathfrak{n}_{i j}$, for $\left.1 \leq i<j \leq r\right)$. For a proof, see [17] or [7], p. 134.

Let $V_{\mathbb{C}}=V+i V$ be the complexification of V and let T_{Ω} be the associated tube domain. When equipped with the Bergman metric, T_{Ω} is a hermitian symmetric space. Let $G=G\left(T_{\Omega}\right)$ be the connected component of the identity in the group of bi-holomorphic transformations of T_{Ω}, and let U be the stabilizer in G of the base point $i e \in T_{\Omega}$. An important fact is that L and U are two real forms of the same complex Lie group, namely the connected component of the identity in $\operatorname{Str}\left(V_{\mathbb{C}}\right)$, where

$$
\operatorname{Str}\left(V_{\mathbb{C}}\right)=\left\{g \in G L\left(V_{\mathbb{C}}\right) \mid \forall x \in V_{\mathbb{C}}, P(g x)=g P(x) g^{t}\right\}
$$

with the obvious extension of P to $V_{\mathbb{C}}$.
If $g \in L$, still denote by g its complex linear extension to $V_{\mathbb{C}}$. It clearly preserves T_{Ω}, giving a natural map from L into G. The Cartan subspace \mathfrak{a} (for the pair $(\mathfrak{l}, \mathfrak{k}))$ turns out to be also a Cartan subspace for the pair $(\mathfrak{g}, \mathfrak{u})$, where $\mathfrak{g}=\operatorname{Lie}(G)$ and $\mathfrak{u}=\operatorname{Lie}(U)$. Another important subgroup of G is the subgroup of translations N^{+}. In fact to each $v \in V$, is associated the translation t_{v} given by $z \mapsto z+v$. N^{+}is clearly isomorphic to V (as Abelian group). Moreover, the semi-direct product $L N^{+}$(where L acts on N^{+}by its natural action on V) is the group of all affine transformations of $T_{\Omega} . N^{+}$is a subgroup of the Iwasawa subgroup associated to the positive Weyl chamber $\mathfrak{a}^{++}=\left\{\sum_{i=1}^{r} a_{i} c_{i} \mid 0<a_{1}<a_{2}<\ldots<a_{r}\right\}$. In fact the full Iwasawa subgroup is the semi-direct product $N N^{+}$. Finally, it is worth mentioning that the group G is generated by L, N^{+}, and the inversion $z \mapsto-z^{-1}$.

The action of G on T_{Ω} can be (locally) extended to an action of $G^{\mathbb{C}}$ on T_{Ω}. For $g \in G^{\mathbb{C}}, z \in T_{\Omega}$ and $g . z \in T_{\Omega}$, define the automorphy factor $J(g, z)=\frac{\partial(g, z)}{\partial z}$. When defined, it turns out that $J(g, z)$ is always in $L^{\mathbb{C}}$, and satisfies the cocycle identity $J\left(g_{1} g_{2}, z\right)=J\left(g_{1}, g_{2} . z\right) J\left(g_{2}, z\right)$. Obviously, if l is in L, then $J(l, z)=l$.

2. Invariant cones and Ol'shanskiĭ semigroups

An important property of the hermitian pairs is the existence of $\operatorname{Ad}(G)$ invariant cones in \mathfrak{g}. Cones are assumed to be convex, closed with a nonvoid interior and
proper. One of the main facts is the existence of a minimal invariant cone $C_{\min }$ and a maximal invariant cone $C_{\text {max }}$, in the sense that any invariant cone C contains either $C_{\min }$ or $-C_{\min }$ and similarly is contained in $C_{\max }$ or $-C_{\max }$.

Theorem 2.1. The cone $C_{\min }$ is generated (up to ± 1) by $t_{e_{r}}$ viewed as an element in $\mathfrak{n}^{+}=$Lie $\left(N^{+}\right)$, i.e. $C_{\min }$ is the smallest closed convex cone containing the $\operatorname{Ad}(G)$-orbit of $t_{e_{r}}$ in \mathfrak{g}.
Proof. By Vinberg's theorem ([18]), $C_{\min }$ contains a (unique) ray which is invariant by a minimal parabolic subgroup. Thanks to the structure of the nilpotent factor $N N^{+}$, it is clear that this ray can only be $\pm \mathbb{R}^{+} t_{e_{r}}$.

From now on, denote by $C_{\min }$ (resp., $C_{\max }$) the minimal (resp., maximal) cone that contains $t_{e_{r}}$.

As discovered by Ol'shanskiĭ (see [16]), to any invariant cone C, it is possible to associate a semi-group $\Gamma_{C}=G \exp i C$ in $G^{\mathbb{C}}$. The semi-group $\Gamma_{\max }=G \exp i C_{\max }$ is exactly the semi-group of compressions of T_{Ω}, namely

$$
\Gamma_{\max }=\left\{g \in G^{\mathbb{C}} \mid g\left(T_{\Omega}\right) \subset T_{\Omega}\right\}
$$

Theorem 2.2. $\Gamma_{\text {min }} \supset\left\{t_{i v}\right\}_{v \in \bar{\Omega}}$.
Proof. As $t_{e_{r}} \in C_{\min }$, it is easily seen, using the action of L and the convexity of $\bar{\Omega}$, that t_{v} is contained in $C_{\min }$ for any $v \in \bar{\Omega}$. Hence the result follows.

The importance of these cones and semi-groups for highest weight representations has been noticed by Ol'shanskiĭ and in fact if (π, \mathcal{H}) is any unitary representation, let \mathcal{H}^{∞} be the space of \mathcal{C}^{∞} vectors, and let

$$
C_{\pi}=\left\{X \in \mathfrak{g} \mid<i d \pi(X) \xi, \xi>\leq 0, \forall \xi \in \mathcal{H}^{\infty}\right\}
$$

C_{π} is a cone, which is non trivial if and only if π has a highest weight, and then the representation π can be extended as a (holomorphic) representation of $\Gamma_{\pi}=G \exp i C_{\pi}$ by contractions.

3. Reproducing kernels and unitarity

Let $\left(\mu, V_{\mu}\right)$ be a finite dimensional irreducible unitary representation of the maximal compact subgroup U of G. As explained before, it is convenient to consider μ as a finite dimensional (holomorphic) representation of $L^{\mathbb{C}}$. Moreover it satisfies the relation $\mu\left(l^{*}\right)=\mu(l)^{*}$, where $l^{*}=\bar{l}^{t}$, for $l \in L^{\mathbb{C}}$ (extension of the unitarity property of μ). For $g \in G$, and $z \in T_{\Omega}$, set $J_{\mu}(g, z)=\mu(J(g, z))$

Now let \mathcal{V}_{μ} be the space of holomorphic functions on T_{Ω} with values in V_{μ}. Define the following action of G on \mathcal{V}_{μ} :

$$
T_{\mu}(g) f(z)=\left(J_{\mu}\left(g^{-1}, z\right)\right)^{-1} f\left(g^{-1} z\right)
$$

where $f \in \mathcal{V}_{\mu}, z \in T_{\Omega}$ and $g \in G$.

We want to discuss the existence of an invariant inner product on \mathcal{V}_{μ}. There is in fact a natural inner product given by

$$
(f, g)_{\mu}=\int_{T_{\Omega}}\left(\mu\left(P(y)^{-1}\right) f(z) \mid g(z)\right)_{V_{\mu}} d_{*} z
$$

where $z \in T_{\Omega}, y=\Im(z)$, and $d_{*} z$ is the G invariant measure on T_{Ω}. The invariance of the inner product by N^{+}is obvious, its invariance by L is easy. It remains to check invariance by the inversion $z \mapsto-z^{-1}$. But this is a consequence of the following formula : $P(\bar{z}) P(\Im(z))^{-1} P(z)=P\left(\Im\left(-z^{-1}\right)\right)^{-1}$ (see [4] p. 163). Now let $\mathcal{H}_{\mu}=\left\{f \in \mathcal{V}_{\mu} \mid(f, f)_{\mu}<+\infty\right\}$. Then if $\mathcal{H}_{\mu} \neq\{0\},\left(T_{\mu}, \mathcal{H}_{\mu}\right)$ defines a unitary representation, and in fact this is the celebrated holomorphic discrete series.

Now let \mathcal{H}_{μ} be an irreducible unitary representation of G, and assume there exists a continuous non trivial intertwining operator from \mathcal{H}_{μ} into \mathcal{V}_{μ}, where the latter space is equipped with the compact-open topology. Then the evaluation map at any point $z \in T_{\Omega}$ is a continuous linear map on \mathcal{H}_{μ}, so \mathcal{H}_{μ} admits a reproducing kernel. In fact, let $E_{z}: \mathcal{H}_{\mu} \rightarrow V_{\mu}$ be the evaluation map at $z \in T_{\Omega}$ and define

$$
\mathbb{Q}_{\mu}(z, w)=E_{z} E_{w}^{*} .
$$

Then $\mathbb{Q}_{\mu}: T_{\Omega} \times T_{\Omega} \rightarrow \operatorname{End}\left(V_{\mu}\right)$ satisfies \mathbb{Q}_{μ} is holomorphic in z and antiholomorphic in w

$$
\begin{gather*}
\forall q \in \mathbb{N}, \forall\left(w_{j}\right)_{1 \leq j \leq q} \in T_{\Omega}, \forall\left(\xi_{j}\right)_{1 \leq j \leq q} \in V_{\mu} \tag{3.1iii}\\
\sum_{i} \sum_{j}\left(\mathbb{Q}_{\mu}\left(w_{j}, w_{i}\right) \xi_{i} \mid \xi_{j}\right)_{V_{\mu}} \geq 0
\end{gather*}
$$

$$
\begin{equation*}
\mathbb{Q}_{\mu}(g . z, g . w)=J_{\mu}(g, z) \mathbb{Q}_{\mu}(z, w) J_{\mu}(g, w)^{*} \tag{3.1iv}
\end{equation*}
$$

A mapping $\mathbb{Q}: T_{\Omega} \times T_{\Omega} \rightarrow \operatorname{End}\left(V_{\mu}\right)$ which satisfies (3.1 i, ii, and iii) is said to be a positive definite (operator-valued) kernel (see [14]). If it moreover satisfies (3.1iv), the kernel \mathbb{Q} is said to be invariant (with respect to μ).

Proposition 3.1. Let μ be a finite dimensional holomorphic irreducible representation of $L^{\mathbb{C}}$, and let \mathbb{Q} be an invariant positive definite kernel (with respect to $\mu)$. Let \mathcal{L}_{μ} be the span of the functions $z \mapsto \mathbb{Q}(z, w) \xi$, where w is arbitrary in T_{Ω}, and ξ arbitrary in V_{μ}. Introduce the (well defined) Hermitian form on \mathcal{L}_{μ} given by

$$
\left(\sum_{i} \mathbb{Q}\left(., w_{i}\right) \xi_{i} \mid \sum_{j} \mathbb{Q}\left(., w_{j}^{\prime}\right) \xi_{j}^{\prime}\right)=\sum_{i} \sum_{j}\left(\mathbb{Q}\left(w_{j}^{\prime}, w_{i}\right) \xi_{i} \mid \xi_{j}^{\prime}\right)_{V_{\mu}}
$$

Let \mathcal{H}_{μ} be the usual (separate) completion of \mathcal{L}_{μ} with respect to this (welldefined) form. Then \mathcal{H}_{μ} is invariant under T_{μ} and the restriction of T_{μ} to \mathcal{H}_{μ} is unitary and irreducible.

For the proof, see [14]. Let us observe moreover, that \mathcal{L}_{μ} always contains the "highest weight vector", namely $\mathbb{Q}(z, i e) \xi_{\mu}$, where ξ_{μ} is the highest weight vector in V_{μ} (cf. [17]). So \mathcal{H}_{μ} is a highest weight representation.

However, the kernel $\mathbb{Q}_{\mu}(z, w)$ satisfies another important condition which is related to the remark due to Ol'shanskiĭ we mentioned above.

Proposition 3.2. Let μ be a finite dimensional holomorphic representation of $L^{\mathbb{C}}$, and assume that \mathbb{Q}_{μ} is positive definite. Then \mathbb{Q}_{μ} satisfies

$$
\begin{equation*}
\forall q \in \mathbb{N}, \forall\left(w_{j}\right)_{1 \leq j \leq q} \in T_{\Omega}, \forall\left(\xi_{j}\right)_{1 \leq j \leq q} \in V_{\mu}, \forall y \in \bar{\Omega} \tag{3.1v}
\end{equation*}
$$

$$
\left(\sum_{i} \sum_{j} \mathbb{Q}_{\mu}\left(w_{j}+i y, w_{i}+i y\right) \xi_{i} \mid \xi_{j}\right)_{V_{\mu}} \leq\left(\sum_{i} \sum_{j} \mathbb{Q}_{\mu}\left(w_{j}, w_{i}\right) \xi_{i} \mid \xi_{j}\right)_{V_{\mu}}
$$

Proof. In fact, the cone $C_{T_{\mu}}=C_{\mu}$ contains $-t_{e_{r}}$ (see the original argument in [10]), hence $C_{\mu} \supset-C_{\min }$ by Theorem 2.2. (cf [16]), and from the holomorphic extension of T_{μ} to the Olshanskiĭ semigroup $G \exp i C_{\pi}$ by contractions yields $\left\|T_{\mu}\left(t_{-i y}\right) \Phi\right\|^{2} \leq\|\Phi\|^{2}$, where $y \in \bar{\Omega}$, and $\Phi()=.\sum_{i} \mathbb{Q}_{\mu}\left(., w_{i}\right) \xi_{i} \in \mathcal{H}_{\mu}$. But this is exactly the inequality we were looking for, once observed that $T_{\mu}\left(t_{-i y}\right) \mathbb{Q}_{\mu}(., w)=\mathbb{Q}_{\mu}(., w+i y)$.

The conditions (3.1i-iv) completely determine (up to a positive scalar) the possible kernels (cf [4]). In fact by using the action of the translations $\left\{t_{y}\right\}_{y \in V}$, it is easily seen that \mathbb{Q} must be of the form $\mathbb{Q}(z, w)=Q\left(\frac{z-\bar{w}}{2}\right)$, where Q is a holomorphic map from T_{Ω} into End $\left(V_{\mu}\right)$. Moreover, if one considers the origin $i e \in T_{\Omega}$, then from (3.1iv) we immediately see that $Q(i e)$ must commute with the operators $\mu(J(k, i e))$ for any k in the stabilizer U of ie in G. An application of Schur's lemma forces $Q(i e)$ to be a multiple of the identity. The invariance property applied to $P\left(y^{1 / 2}\right)$, where $y \in \Omega$ shows that $Q(i y)=Q\left(P\left(y^{1 / 2}\right) \cdot i e\right)=\mu(P(y))$, up to a positive constant. As Q is holomorphic, the only possibility for \mathbb{Q} is (up to a positive constant)

$$
\mathbb{Q}(z, w)=\mu\left(P\left(\frac{z-\bar{w}}{2 i}\right)\right) .
$$

Conversely, properties (3.1i) and (3.1ii) are immediate. The invariance property can easily be established for the translations and the elements of L. For the inversion $z \mapsto-z^{-1}$, one uses the identity

$$
P\left(\bar{w}^{-1}-z^{-1}\right)=P\left(\bar{w}^{-1}\right) P(z-\bar{w}) P\left(z^{-1}\right), \text { for } z, w \in T_{\Omega}
$$

(cf. [7] page 200), and takes images of both sides under μ to get the desired invariance property.

Henceforth we concentrate our effort towards property (3.1v), which is crucial for discussing unitarity.

If W is a finite-dimensional Hilbert space, denote by $\operatorname{Herm}(W)$ the the space of Hermitian operators on W and by $\operatorname{Herm}^{+}(W)$ the cone of positive semidefinite Hermitian operators on W. In what follows, by a measure on $\bar{\Omega}$ with values in $\mathrm{Herm}^{+} W$, we mean, following Bourbaki (see [1]), a linear map R from the space $C_{c}(\bar{\Omega})$ of continuous real valued functions with compact support on $\bar{\Omega}$ into $\operatorname{Herm}(W)$, which is continuous for the usual topology on $C_{c}(\bar{\Omega})$, and such that for any nonnegative function φ in $C_{c}(\bar{\Omega}), R(\varphi) \in \operatorname{Herm}^{+}(W)$.

Theorem 3.3. Let W be a finite dimensional Hilbert space and let $q: \Omega \rightarrow$ $\operatorname{Herm}^{+}(W)$ be a continuous map with the property (3.1v). Then there exists a unique measure R on $\bar{\Omega}$, with values in $\operatorname{Herm}^{+}(W)$, such that :

$$
q(y)=\int_{\bar{\Omega}} e^{-(y \mid v)} d R(v)
$$

for all $y \in \Omega$.
Proof. First fix $\xi \in W$. Define $q_{\xi}(y)=(q(y) \xi \mid \xi)$. Clearly q_{ξ} is a continuous function on Ω, which satisfies

$$
0 \leq \sum_{i} \sum_{j} \lambda_{i} \bar{\lambda}_{j} q_{\xi}\left(y_{i}+y_{j}+y\right) \leq \sum_{i} \sum_{j} \lambda_{i} \bar{\lambda}_{j} q_{\xi}\left(y_{i}+y_{j}\right),
$$

for all $\left(y_{i}\right)_{1 \leq i \leq n}, y \in \Omega,\left(\lambda_{i}\right)_{1 \leq i \leq n} \in \mathbb{C}$. By Nussbaum's theorem (see [15],[17]), there exists a unique positive measure R_{ξ} on $\bar{\Omega}$, such that

$$
q_{\xi}(y)=\int_{\bar{\Omega}} e^{-(y \mid w)} d R_{\xi}(w) .
$$

Now define for $\xi, \eta \in W$

$$
R_{\xi, \eta}=\frac{1}{4}\left[R_{\xi+\eta}-R_{\xi-\eta}+i R_{\xi+i \eta}-i R_{\xi-i \eta}\right] .
$$

The way it depends on ξ, η is clearly of Hermitian nature. So there exists a measure R on $\bar{\Omega}$, mith values in $\operatorname{Herm}(W)$, such that $R_{\xi, \eta}()=.(R(.) \xi \mid \eta)$. As $R_{\xi}=R_{\xi, \xi}, R$ has values in $\operatorname{Herm}^{+}(W)$, and the result follows. The uniqueness is clear from properties of the Laplace transform.

It is now possible to apply this result to the reproducing kernels \mathbb{Q}_{μ}.
Theorem 3.4. Let μ be a finite dimensional representation of L on a vector space V_{μ}. Then the associated kernel \mathbb{Q}_{μ} is positive definite if and only if there exists a measure R_{μ} on $\bar{\Omega}$, with values in $\operatorname{Herm}^{+}\left(V_{\mu}\right)$, such that

$$
\begin{gather*}
d R_{\mu}(l .)=\mu(l)^{*^{-1}} d R_{\mu}(.) \mu(l)^{-1}, \forall l \in L \tag{3.4i}\\
\int_{\bar{\Omega}} e^{-\operatorname{tr} v} d R_{\mu}(v)=I d \tag{3.4ii}
\end{gather*}
$$

Proof. The existence of such a measure, when \mathbb{Q}_{μ} is positive definite is clear from the preceding results. Conversely, use a change of variable to get from properties (3.4 i) and (3.4 ii) the equality $\mu(P(x))=\int_{\bar{\Omega}} e^{-(x \mid w)} d R_{\mu}(w)$ which gives immediately $\mathbb{Q}_{\mu}(z, w)=\int_{\Omega} e^{-\left(\left.\frac{z \bar{w}}{2 i} \right\rvert\, v\right)} d R_{\mu}(v)$ proving the positivedefiniteness of \mathbb{Q}_{μ}.

It is possible to give a more concrete realization of the Hilbert space \mathcal{H}_{μ} corresponding to the kernel \mathbb{Q}_{μ} (according to Proposition (3.1)). In fact define \mathcal{G}_{μ} as the space of all measurable functions $\Phi: \bar{\Omega} \rightarrow V_{\mu}$, which satisfy

$$
\|\Phi\|_{\mu}^{2}=\int_{\bar{\Omega}}\left(d R_{\mu}(2 v) \Phi(v) \mid \Phi(v)\right)<+\infty
$$

Then, after identifying two functions which are equal R_{μ}-almost everywhere, \mathcal{G}_{μ} has a Hilbert space structure for the inner product

$$
(\Phi, \Psi)_{\mathcal{G}_{\mu}}=\int_{\bar{\Omega}}\left(d R_{\mu}(2 v) \Phi(v) \mid \Psi(v)\right)
$$

If $\Phi \in \mathcal{G}_{\mu}$ define, for $z \in T_{\Omega}, \mathcal{F} \Phi: T_{\Omega} \rightarrow V_{\mu}$

$$
\mathcal{F} \Phi(z)=\int_{\bar{\Omega}} e^{i<z \mid v>} d R_{\mu}(2 v) \Phi(v)
$$

Let $\xi \in V_{\mu}$; then

$$
\left|\left(d R_{\mu}(2 v) \Phi(v) \mid \xi\right)_{V_{\mu}}\right| \leq\left(d R_{\mu}(2 v) \Phi(v) \mid \Phi(v)\right)^{1 / 2}\left(d R_{\mu}(2 v) \xi \mid \xi\right)^{1 / 2}
$$

and by applying Schwarz inequality, we get

$$
|<\mathcal{F} \Phi(z)| \xi>\left.\right|^{2} \leq\left(\int_{\bar{\Omega}}\left(d R_{\mu}(2 v) \Phi(v) \mid \Phi(v)\right)\left(\int_{\bar{\Omega}} e^{-2<y \mid v>}\left(d R_{\mu}(2 v) \xi \mid \xi\right)\right)\right.
$$

where $z=x+i y$. This shows that the integral in the definition of $\mathcal{F} \Phi$ is (absolutely) convergent and it is then easy to verify that $\mathcal{F} \Phi$ is holomorphic. Now let \mathcal{F}_{μ} be the space of all (holomorphic) V_{μ}-valued functions of the form $\mathcal{F} \Phi$ with $\Phi \in \mathcal{G}_{\mu}$, and define $\|\mathcal{F} \Phi\|_{\mathcal{F}_{\mu}}=\|\Phi\|_{\mathcal{G}_{\mu}}$. Thanks to the injectivity of the Laplace transform, $\|\mathcal{F} \Phi\|_{\mathcal{F}_{\mu}}=0$ if and only if $\Phi=0 d R_{\mu}$ - a.e., so if and only if $\mathcal{F} \Phi(z)=0$ everywhere. Hence \mathcal{F}_{μ} is a Hilbert space. Moreover, the evaluation map at any point $z \in T_{\Omega}$ is a continuous linear (V_{μ}-valued) map. So \mathcal{F}_{μ} has a reproducing kernel $\mathbb{K}(z, w)$. By definition, there exists a measurable function $k: \bar{\Omega} \times T_{\Omega} \rightarrow \operatorname{End}\left(V_{\mu}\right)$, such that, for every $\xi \in V_{\mu}$

$$
\mathbb{K}(z, w) \xi=(\mathcal{F} k(., w) \xi)(z), \quad z, w \in T_{\Omega}
$$

For every $\Phi \in \mathcal{G}_{\mu}$, and $w \in T_{\Omega}$,

$$
\begin{aligned}
((\mathcal{F} \Phi)(w) \mid \xi)_{V_{\mu}} & =(\mathcal{F} \Phi \mid \mathbb{K}(., w) \xi)_{\mathcal{F}_{\mu}} \\
& =(\Phi \mid k(., w) \xi)_{\mathcal{G}_{\mu}}
\end{aligned}
$$

The first term is

$$
\int_{\bar{\Omega}} e^{i<w \mid v>}\left(d R_{\mu}(2 v) \Phi(v) \mid \xi\right)_{V_{\mu}}
$$

whereas the last is

$$
\int_{\bar{\Omega}}\left(d R_{\mu}(2 v) \Phi(v) \mid k(v, w) \xi\right)_{V_{\mu}}
$$

We easily conclude that $k(v, w) \xi=e^{-i<\bar{w} \mid v>} \xi$, for R_{μ}-almost every v in $\bar{\Omega}$. Hence

$$
\mathbb{K}(z, w) \xi=\int_{\bar{\Omega}} e^{i<z|v\rangle} e^{-i<\bar{w}|v\rangle} d R_{\mu}(2 v) \xi=\mathbb{Q}_{\mu}(z, w) \xi
$$

Hence the following conclusion :

Theorem 3.5. Let μ be a representation of $L^{\mathbb{C}}$ such that \mathbb{Q}_{μ} is positive definite. Let \mathcal{F}_{μ} be as above. Then \mathcal{F}_{μ} is a Hilbert space with reproducing kernel $\mathbb{Q}_{\mu}(z, w)$. The space \mathcal{F}_{μ} is stable under T_{μ} and the restriction of T_{μ} to \mathcal{F}_{μ} is unitary and irreducible.

4. Some necessary conditions for the existence of the measure R_{μ}

Let μ be a holomorphic finite dimensional representation of $L^{\mathbb{C}}$. Still denote by μ the restricted highest weight of the representation μ with respect to the Iwasawa decomposition considered in section 1 and by ξ_{μ} a non-zero highest weight vector. To be more explicit, one has

$$
\mu\left(\exp 2 \sum_{k=1}^{r} a_{i} L\left(c_{i}\right)\right) \xi_{\mu}=\prod_{k=1}^{r} e^{a_{k} m_{k}} \xi_{\mu},
$$

for all $\left(a_{k}\right)_{1 \leq k \leq r} \in \mathbb{R}$, and $\mu(n) \xi_{\mu}=\xi_{\mu}$, for all $n \in N$. The restricted highest weights are characterized by the conditions

$$
\forall 1 \leq k \leq r, \quad m_{k} \in \mathbb{Z} \quad \text { and } m_{1} \leq m_{2} \leq \ldots \leq m_{r}
$$

(cf [4], p. 167). For further use, notice the formula $\mu(P(a)) \xi_{\mu}=\prod_{k=1}^{r} a_{k}^{m_{k}} \xi_{\mu}$, where $a=\sum_{k=1}^{r} a_{k} c_{k}, a_{k}>0, \forall k, 1 \leq k \leq r$.

The property (3.4i) clearly shows the fact that the support of R_{μ} is a union of L orbits. Because of the structure of these orbits, there is an integer p, with $0 \leq p \leq r$, such that $\operatorname{Supp}\left(R_{\mu}\right) \subset \overline{\mathcal{O}}_{p}$ and $\operatorname{Supp}\left(R_{\mu}\right) \not \subset \overline{\mathcal{O}}_{p-1}$.

Theorem 4.1. Let $\mu=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ as above. A necessary condition for the existence of a measure R_{μ} satisfying the conditions (3.4i) and (3.4ii) and such that $\operatorname{Supp}\left(R_{\mu}\right)=\bar{\Omega}$ is:

$$
\begin{equation*}
m_{r}<-\frac{d(r-1)}{2} . \tag{4.1i}
\end{equation*}
$$

A necessary condition for the existence of a measure R_{μ} satisfying the conditions (3.4i) and (3.4ii) and such that $\operatorname{Supp}\left(R_{\mu}\right)=\overline{\mathcal{O}}_{p}$, for some $p, 0 \leq p \leq r-1$ is

$$
\begin{equation*}
m_{p+1}=m_{p+2}=\ldots=m_{r}=-\frac{d p}{2} . \tag{4.1ii}
\end{equation*}
$$

Proof. Assume first that $\operatorname{Supp}\left(R_{\mu}\right)=\overline{\mathcal{O}}_{p}$, for some $p, 0 \leq p \leq r-1$. Consider the restriction of R_{μ} to \mathcal{O}_{p} as a distribution. It must coincide with a C^{∞} function. In fact, let $X \in \mathfrak{l}=\operatorname{Lie}(L) \subset \mathfrak{g l}(V)$. It induces a vector field \tilde{X} on \mathcal{O}_{p}. The invariance property (3.4i) implies the differential relation :

$$
\tilde{X} R_{\mu}=-\mu\left(X^{t}\right) \circ R_{\mu}-R_{\mu} \circ \mu(X) .
$$

Choose vectors $X_{1}, X_{2}, \ldots, X_{k} \in \mathfrak{l}$, such that $\tilde{X}_{1}, \tilde{X}_{2}, \ldots, \tilde{X}_{k}$ form a basis of the tangent plane in a neigbourhood of some point of the the orbit \mathcal{O}_{p} (say, e_{p} for example). Compute $\sum_{j=1}^{k} \tilde{X}_{j}^{2} R_{\mu}$ near e_{p} using the last relation. It shows that R_{μ} is (near e_{p}) solution of a partial differential system, which is clearly elliptic. Hence, by the classical regularity results, R_{μ} has locally near e_{p} a C^{∞} density w.r.t. the relatively invariant measure ν_{p}. From the invariance property (3.4i), this property is true everywhere on \mathcal{O}_{p}. In other words, there exists an analytic function $\rho_{\mu}: \mathcal{O}_{p} \rightarrow \operatorname{Herm}^{+}\left(V_{\mu}\right)$, such that R_{μ} coincides with $\rho_{\mu} d \nu_{p}$ on \mathcal{O}_{p}. The invariance condition now reads :

$$
\mu(l)^{*^{-1}} \rho_{\mu}(w) \mu(l)^{-1}=(\operatorname{det} l)^{s_{p}} \rho_{\mu}(l w),
$$

for $l \in L$ and $w \in \mathcal{O}_{p}$.
Let $E_{\mu}=\rho_{\mu}\left(e_{p}\right) . \operatorname{As} \operatorname{Supp}\left(R_{\mu}\right)=\overline{\mathcal{O}}_{\mu}, E_{\mu} \neq 0$. For $l \in L_{p}$, the invariance condition (3.4i) implies

$$
E_{\mu} \circ \mu(l)=(\operatorname{det} l)^{-s_{p}} \mu(l)^{*^{-1}} \circ E_{\mu} .
$$

Now let ξ_{μ} be a non-zero vector in V_{μ} of highest restricted weight μ, and consider the function $\Phi: L \rightarrow \mathbb{C}$ defined by $\Phi(l)=\left(E_{\mu} \mu(l) \xi_{\mu} \mid \mu(l) \xi_{\mu}\right)$. Recall that $L_{p} A_{p} N_{p}$ is dense in L, and take $l=l_{p} a_{p} n_{p}$, where $l_{p} \in L_{p}, a_{p} \in$ A_{p} and $n \in N_{p}$. Then

$$
\begin{gathered}
\Phi(l)=a_{p}^{2 \mu}\left(E_{\mu} \circ \mu\left(l_{p}\right) \xi_{\mu} \mid \mu\left(l_{p}\right) \xi_{\mu}\right)=a_{p}^{2 \mu}\left(\operatorname{det} l_{p}\right)^{-s_{p}}\left(\mu\left(l_{p}\right)^{*^{-1}} \circ E_{\mu} \xi_{\mu} \mid \mu\left(l_{p}\right) \xi_{\mu}\right) \\
=a_{p}^{2 \mu}\left(\operatorname{det} l_{p}\right)^{-s_{p}}\left(E_{\mu} \xi_{\mu} \mid \xi_{\mu}\right) .
\end{gathered}
$$

As $E_{\mu} \neq 0, \Phi(l)$ cannot be 0 for all $l \in L$, hence $\left(E_{\mu} \xi_{\mu} \mid \xi_{\mu}\right) \neq 0$. Now, for $\left(a_{k}\right)_{p+1 \leq k \leq r} \in \mathbb{R}^{+}$, consider the element

$$
a=P\left(c_{1}+c_{2}+\cdots+c_{p}+a_{p+1} c_{p+1}+a_{p+2} c_{p+2}+\cdots+a_{r} c_{r}\right) .
$$

Now $\mu(a) \xi_{\mu}=a_{p+1}^{m_{p+1}} a_{p+2}^{m_{p+2}} \ldots a_{r}^{m_{r}} \quad \xi_{\mu}$, whereas $\operatorname{det}(a)=\left(a_{p+1} a_{p+2} \ldots a_{r}\right)^{\frac{2 n}{r}}$. So $\Phi(a)=a^{2 \mu}\left(E_{\mu} \xi_{\mu} \mid \xi_{\mu}\right)=(\operatorname{det} a)^{-s_{p}}\left(E_{\mu} \xi_{\mu} \mid \xi_{\mu}\right)$. Hence the relation

$$
m_{p+1}=m_{p+2}=\ldots=m_{r}=-\frac{d p}{2} .
$$

Let now consider the case where $\operatorname{Supp}\left(R_{\mu}\right)=\bar{\Omega}$. The first part of the preceding argument is still valid. In particular, the restriction of R_{μ} to Ω has an analytic density, say $\rho_{\mu}(x)$ with respect to the invariant measure $d^{*} x$. Let $E_{\mu}=\rho_{\mu}(e)$. It is still true that $\left(E_{\mu} \xi_{\mu} \mid \xi_{\mu}\right) \neq 0$, and the invariance condition now implies :

$$
\rho(t(u) e)=\mu(t(u))^{*^{-1}} \rho_{\mu}(e) \mu(t(u))^{-1}
$$

for $u \in V^{+}$. Now the first condition (3.4ii) implies in particular

$$
\int_{\Omega} e^{-t r v}\left(\rho_{\mu}(v) \xi_{\mu} \mid \xi_{\mu}\right) d^{*} v<\infty
$$

Use the parametrization described in section 2 (cf [7] p. 123). As $\mu(t(u))^{-1} \xi_{\mu}=$ $\prod_{j=1}^{r} u_{j}^{-m_{j}} \xi_{\mu}$, the integral converges if (and only if)

$$
\int_{o}^{+\infty} \cdots \int_{o}^{+\infty} \prod_{j=1}^{r} u_{j}^{-2 m_{j}} u_{j}^{-d(j-1)-1} e^{-u_{j}^{2}} d u_{j}<\infty
$$

But this happens if and only if $m_{r}<-\frac{d(r-1)}{2}$.
To finish the proof, observe that the conditions already obtained are mutually incompatible. So that, if $\operatorname{Supp}\left(R_{\mu}\right)=\overline{\mathcal{O}}_{p}$ and if ρ_{μ} is its density on \mathcal{O}_{p}, then the difference $d R_{\mu}-\rho_{\mu}(). d \nu_{p}$ has its support contained in $\overline{\mathcal{O}}_{p-1}$ and still satisfies the condition (3.4ii). If it were non zero on \mathcal{O}_{p-1}, the first part of the proof would imply $m_{r}=-\frac{(p-1) d}{2}$, whereas the condition $m_{r}=-\frac{p d}{2}$ (or $m_{r}<-\frac{d(r-1)}{2}$ in case $p=r$) has been shown to be necessary. By induction we eventually get $d R_{\mu}-\rho_{\mu}(). d \nu_{p}=0$, completing the proof of theorem (4.1).

5. An example

It seems in general quite hard to find explicit expressions for the measure R_{μ}. These measures are known when μ has dimension 1 (see [17]). Here we want to discuss a vector-valued case, where however, computations are easy because of the fact that the representation μ stays irreducible when restricted to the maximal compact subgroup K of L (see also [9]).

Let $H=H_{r}$ be the real vector space of $r \times r$ Hermitian matrices, and define the Jordan product to be $x . y=\frac{1}{2}(x y+y x)$, which turns H into a Euclidean Jordan algebra for the standard inner product $\operatorname{tr} x y$. The cone Ω is the cone of positive-definite matrices, the group L may be identified with $\mathbb{R}^{+} \times \operatorname{SL}(r, \mathbb{C})$, where $\operatorname{SL}(r, \mathbb{C})$ acts by $l . x=l x l^{*}(l \in \operatorname{SL}(r, \mathbb{C}), x \in H)$, its maximal compact subgroup K is $\mathrm{SU}(r)$ and for $x, y \in H, P(x) y=x y x$. As for a Jordan frame, the natural choice is

$$
c_{i}=\left(\begin{array}{ccccc}
0 & & & & \\
& \ddots & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right), 1 \leq i \leq r
$$

where 1 stands in the i th row and column. The corresponding Cartan subspace is

$$
\mathfrak{a}=\left\{\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{r}
\end{array}\right) \quad, \quad a_{1}, a_{2}, \ldots, a_{r} \in \mathbb{R}\right\}
$$

The dimension of H is $n=r^{2}$, and $d=2$.

Let μ be a (finite-dimensional) representation of L of the form $l \mapsto$ $\operatorname{det}(l)^{m} \nu(l)$, where m is an integer and ν is a holomorphic representation of $\operatorname{SL}(r, \mathbb{C})$, (for short we say μ is holomorphic) and still denote by μ its dominant weight $\mu=\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, where for $1 \leq i \leq r, m_{i} \in \mathbb{Z}$, and $m_{1} \leq m_{2} \leq \ldots \leq m_{r}$. Notice that the weights of the representation are complex linear forms on $\mathfrak{a}^{\mathbb{C}}$, and so are determined by their restrictions to \mathfrak{a}.

Theorem 5.1. Let μ as above. The kernel \mathbb{Q}_{μ} is of positive definite type if and only if either :

$$
\begin{gather*}
m_{r}<-(r-1) \tag{5.i}\\
m_{p+1}=m_{p+2}=\ldots=m_{r}=-p .
\end{gather*}
$$

Proof. In the first case, the corresponding measure R_{μ} is supported in $\bar{\Omega}$, whereas it is supported in $\overline{\mathcal{O}}_{p}$ in the second case. These measures are made explicit in due course of the proof.

Sticking to notations used in section 4, first consider the functional equation for the regular orbit Ω. Observe that E_{μ} must commute with $\mu(l)$, when $l \in \mathrm{SU}(r)$. But by assumption μ is a holomorphic representation and so is still irreducible when restricted to $\mathrm{SU}(r)$. By Schur's lemma this implies the fact that E_{μ} must be a multiple of the identity. But now this forces the equality $\rho_{\mu}(x)=\mu(P(x))^{-1}$, for all $x \in \Omega$, up to a positive scalar. As the positivity condition is clearly satisfied, it remains to check the integrability condition. To this end, define

$$
\mathcal{W}_{\mu}=\left\{\xi \in \mathcal{V}_{\mu} \mid \int_{\Omega} e^{-\operatorname{tr} v}\left(\rho_{\mu}(v) \xi, \xi\right) d^{*} v<+\infty\right\}
$$

Clearly by Schwarz inquality, \mathcal{W}_{μ} is a vector subspace, and it is invariant under K. As the restriction of μ to K is irreducible, \mathcal{W}_{μ} is 0 or \mathcal{V}_{μ}, but $\mathcal{W}_{\mu}=\{0\}$ would imply $E_{\mu}=0$. So $\mathcal{W}_{\mu}=\mathcal{V}_{\mu}$. So it suffices to check the integrability condition for, say, a highest weight vector. As the integrability condition for a highest weight vector was already tested in the general case, this finishes this case.

Now assume $\operatorname{Supp}\left(R_{\mu}\right)=\overline{\mathcal{O}}_{p}$, for some $p, 0 \leq p \leq r-1$. This forces $m_{p+1}=m_{p+2}=\ldots=m_{r}=-p$. As before, let ρ_{μ} be the density with respect to the relatively invariant measure ν_{p}, and let $E_{\mu}=\rho_{\mu}\left(e_{p}\right)$. Let

$$
l=\left(\begin{array}{ccc}
e^{i \theta_{1}} & & \\
& \ddots & \\
& & e^{i \theta_{r}}
\end{array}\right)
$$

where $\theta_{1}+\ldots+\theta_{r} \equiv 0 \bmod 2 \pi$. Observe that $l . e_{p}=e_{p}, l^{*}=l^{-1}$ and $|\operatorname{det}(l)|=1$. The condition (3.4i) clearly implies that E_{μ} commutes with all matrices $\mu(l)$, when l is diagonal in $\mathrm{SU}(r)$. So E_{μ} preserves the weight spaces of
V_{μ}. Now let ξ_{λ} be a weight vector corresponding to the weight $\lambda=\left(l_{1}, l_{2}, \ldots, l_{r}\right)$. Notice from the preceding remark that $E_{\mu} \xi_{\lambda}$ is also of weight λ. Let

$$
l=\left(\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & a_{p+1} & & \\
& & & & \ddots & \\
& & & & & a_{r}
\end{array}\right)
$$

where $a_{p+1}, a_{p+2}, \ldots, a_{r} \in \mathbb{C}^{*}, a_{p+1} a_{p+2} \ldots a_{r} \in \mathbb{R}$. Then $l \in L_{p}$,

$$
E_{\mu} \xi_{\lambda}=\left|a_{p+1} a_{p+2} \ldots a_{r}\right|^{-2 p}\left|a_{p+1}\right|^{-2 l_{p+1}}\left|a_{p+2}\right|^{-2 l_{p+2}} \ldots\left|a_{r}\right|^{-2 l_{r}} E_{\mu} \xi_{\lambda}
$$

Hence, if $E_{\mu} \xi_{\lambda} \neq 0, l_{p+1}=l_{p+2}+\ldots=l_{r}=-p$. Let \mathcal{W} be the sum of all weight spaces with a weight satisfying this condition. \mathcal{W} coincides with the submodule of \mathcal{V}_{μ} generated by the highest weight vector ξ_{λ} under the action of the subgroup

$$
H_{p}=\left\{\left(\begin{array}{cc}
h & 0 \\
0 & \mathbf{1}_{q}
\end{array}\right), h \in \mathrm{SL}(p, \mathbb{C}) \text { and } q=r-p\right\} .
$$

Clearly, \mathcal{W} as H_{p} module is isomorphic with the highest weight module of $\mathrm{SL}(p, \mathbb{C})$ with highest weight $\left(m_{1}, m_{2}, \ldots, m_{p}\right)$ and in particular is irreducible. Since μ is holomorphic, \mathcal{W} is also irreducible under the action of the maximal compact subgroup K_{p} of H_{p} (isomorphic to p)). But E_{μ} commutes with $\mu(l)$ when l belongs to K_{p}, so is the identity (up to a scalar) on \mathcal{W}. In other terms, E_{μ} is (up to a positive scalar) the orthogonal projection on \mathcal{W}.

Consider now the representation $l \mapsto \operatorname{det}(l)^{-p} \mu\left(l^{t}\right)^{-1}$. Its lowest weight is $\left(-p-m_{1},-p-m_{2}, \ldots,-p-m_{p}, 0,0, \ldots, 0\right)$, so this representation can be extended polynomially to the full algebra $M_{r}(\mathbb{C})$. By checking on each weight vector, one verifies $\tilde{\mu}\left(e_{p}\right)=E_{\mu}$. By a simple computation using the condition (3.3i), this implies that $\rho_{\mu}(y)=\tilde{\mu}(y)$, for all $y \in \mathcal{O}_{p}$. For the integrability condition, one has (with obvious notations)

$$
\begin{gathered}
\int_{\mathcal{O}_{p}} e^{-\operatorname{tr} w}\left(\tilde{\mu}(w) \xi_{\mu} \mid \xi_{\mu}\right) d \nu_{p}(w) \\
=\int_{0}^{+\infty} \ldots \int_{0}^{+\infty} \ldots \int_{\mathbb{C}} \ldots \int_{\mathbb{C}^{q \times p}} e^{-\left(a_{1}^{2}+\ldots+a_{p}^{2}\right)} e^{-\|u\|^{2}} e^{-\|v\|^{2}} \ldots \\
\ldots a_{1}^{2\left(-m_{1}-p\right)} \ldots a_{p}^{2\left(-m_{p}-p\right)} d a_{1} \ldots d a_{p} \ldots d u_{i j} \ldots d \bar{u}_{i j} \ldots d v d \bar{v},
\end{gathered}
$$

and the last integral converges, as $m_{1} \leq m_{2} \leq \ldots \leq m_{p} \leq-p$.

References

[1] Bourbaki, N., "Intégration," 6, Eléments de mathématiques, Hermann, 1963.
[2] Davidson M., T. Enright, and R. Stanke, Differential operators and highest weight representations, Memoirs Amer. Math. Soc. 455, 1991.
[3] Ding H., Hilbert spaces of Vector-Valued Holomorphic Functions and Irreducibility of Multiplier Representations, Contemp. Math. 138 (1992), 119-122.
[4] Ding H., and K. I. Gross, Operator-valued Bessel functions on Jordan algebras., J. reine angew. Math. 435 (1993), 157-196.
[5] Enright T., R. Howe, and N. Wallach, A classification of unitary highest weight modules, in: Representation theory of reductive groups, 97-143, Trombi ed. Progress in Math. 40, Birkhäuser, 1983.
[6] Enright T. J., and A. Joseph, An intrinsic analysis of unitarizable highest weight modules, Math. Ann. 288 (1990), 571-594.
[7] Faraut J., and A. Korányi, "Analysis on Symmetric Cones," Oxford Mathematical Monographs, Clarendon Press, Oxford 1994.
[8] Gross K. I., and R. A. Kunze, Bessel functions and representation theory, I, J. Funct. Anal. 22 (1976), 73-105.
[9] —, Bessel functions and representation theory, II : Holomorphic discrete series and metaplectic representations, J. Funct. Anal. 25 (1977), 1-49.
[10] Harish Chandra, Representations of semisimple Lie groups IV, Amer. J. Math. 77 (1955), 743-777.
[11] Jakobsen H. P., Hermitian Symmetric spaces and their unitary highest weight modules, J. Funct. Anal. 52 (1983), 385-412.
[12] -, An intrinsic classification of the unitarizable highest weight modules as well as their associated varieties, Preprint.
[13] Jakobsen, H. P., and M. Vergne, Wave and Dirac operators, and representations of the conformal group. J. Funct. Anal. 24 (1977), 52-106.
[14] Kunze R., Positive definite operator valued kernels and unitary representations, in: B. R. Gelbaum Ed., Proc. Conf. Functional Anal., Irvine, 1966.
[15] Nussbaum E. A., The Hausdorff-Bernstein-Widder theorem for semigroups in locally compact Abelian groups Duke Math. J. 22 (1955), 573582.
[16] Olshanskiŭ, G.I., Invariant cones in Lie algebras, Lie semi-groups and the holomorphic discrete series, Funct. Anal. and Appl. 15 (1981), 275-285.
[17] Rossi H., and M. Vergne, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), 1-5.
[18] Vinberg, E. B., Homogeneous cones, Soviet Math. Dokl. 1 (1960), 787790.
[19] Wallach N., The analytic continuation of the discrete series, I, Trans. Amer. Math. Soc. 251 (1979), 1-17, II, Trans. Amer. Math. Soc. 251 (1979), 18-37.

Institut Elie Cartan
Université Henri Poincaré B.P. 239
54506 Vandoeuvre-lès-Nancy Cedex France
clerc@iecn.u-nancy.fr

Received October 9, 1995
and in final form January 18

