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Laplace transform and unitary highest weight modules
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Abstract. The unitarizable modules in the analytic continuation of the

holomorphic discrete series for tube type domains are realized as Hilbert

spaces obtained through the Laplace transform.

0. Introduction

Let G be a connected real semi-simple Lie group with finite center, U a maximal
compact subgroup, and assume G/U is a Hermitian symmetric space. Harish
Chandra constructed a family of irreducible unitary representations of G , called
the holomorphic discrete series, realized on holomorphic sections of some vector
bundles over G/U , square-integrable with respect to the invariant measure on
G/U .

The vector bundles are associated to irreducible (finite-dimensional) re-
presentations of U , with some restriction on the dominant weight of the re-
presentation in order to have non-trivial L2 -sections. However the formulae for
the action of G make sense for all values of the dominant weight, and Harish
Chandra indicated the possibility that some of these modules (or some sub-
modules) might be unitarizable ([10]).

This problem was completely solved ([5],[11]), but the proofs are of
algebraic nature and use case-by-case arguments. Moreover there is no concrete
realization of the corresponding Hilbert spaces. For more recent work in this
direction, see [2], [6], [12]. A few years earlier the special case of line bundles
(associated to characters of U ) had been studied, both from the algebraic point of
view [19] and the analytic counterpart [17]. We follow here the second approach.
To avoid complications, we restrict our attention to tube type domains. We
obtain a characterization and a realization of the unitarizable modules in terms
of some (operator-valued) measure on a cone Ω. In some cases, we are able to
completely determine the corresponding measures.
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1. Geometric preliminaries

Let V be a Euclidean Jordan algebra (for this notion and further properties, see
[7]). For sake of simplicity, V is assumed to be simple. Let < , > be the inner
product, e the neutral element and let n = dimV .

Let Ω be the associated cone. Denote by L the connected component
of the automorphism group of the cone Ω, i.e.

L =
{
l ∈ GL(V ) | lΩ = Ω

}0

The groupe L is closed under conjugation, hence is reductive. The
subgroup K =

{
l ∈ L | le = e

}
is a maximal compact subgroup of L , and

coincides with the connected component of the automorphism group of V .

If x ∈ V , we denote by L(x) the mapping y 7→ xy , and by P (x) =
2L(x)2 − L(x2) the so called quadratic representation of V .

If x ∈ Ω, then P (x) is symmetric with respect to the inner product and
belongs to L . Every element of L can be written as g = kP (x), for some k ∈ K
and some x ∈ Ω. This is in fact the Cartan decomposition of L . For further
use, notice the formula exp 2L(x) = P (expx), for x ∈ V , where on the right
handside exp stands for the exponential map in the Jordan algebra V .

Let ∆ be the Koecher norm function (also called determinant). ∆ is a
polynomial of degree r , where r is the rank of the Jordan algebra V (r is also
the rank of the symmetric space Ω ' L/K ). Up to a positive constant, Ω has a
unique L -invariant measure given by

d∗x = ∆(x)−mdx ,

where m = n
r (m turns out to be an integer or half an integer). For further use,

notice the formula Det(P (x)) = ∆(x)2n/r, for x ∈ V .

The Iwasawa decomposition also has a specific realization. Fix a Jordan
frame , i.e. e = c1 +c2 +. . .+cr , where the (ci)1≤i≤r form a complete orthogonal
system of primitive idempotents. Let R =

{
a =

∑r
i=1 aici , ai ∈ R

}
. The

space a =
{
L(a)|a ∈ R

}
is a Cartan subspace in p =

{
L(x)|x ∈ V

}
. Let

A = {expL(a), a ∈ R} be the corresponding Lie subgroup, which can also be
viewed as A = {P (a), a =

∑r
i=1 aici , ai > 0} . Now for 1 ≤ i < j ≤ r , let

Vij =
{
x ∈ V | cix = cjx =

1

2
x
}

.

Then V = ⊕rj=1Rcj
⊕

1≤i<j≤r Vij (Peirce decomposition). For x, y ∈ V , write
x y = L(xy) + [L(x), L(y)] , and for 1 ≤ i < j ≤ r let nij = Vij ci . Then n =⊕

1≤i<j≤r
nij is the Iwasawa nilpotent subalgebra associated to the Weyl chamber

a+ = {L(a), a =
∑r
i=1 aici , a1 < a2 < . . . < ar} . Let N be the analytic

subgroup of L with Lie(N) = n .

Closely associated to this Iwasawa decomposition is a parametrization of
Ω. Let

V + =
{
u =

r∑

i=1

ujcj +
∑

j<k

ujk | uj > 0, ujk ∈ Vjk
}
.
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For u(j) ∈
r⊕

k=j+1

Vjk let τ(u(j)) = exp(2u cj) , and for u =
∑r
i=1 uici +

∑
j<k ujk in V + , let bj = c1 + . . .+ cj−1 + ujcj + cj+1 + . . .+ cr , 1 ≤ j ≤ r ,

u(j) =
∑r

k=j+1 ujk , 1 ≤ j ≤ r − 1, and define

t(u) = P (b1)τ(u(1))P (b2)τ(u(2)) · · · τ(u(r−1))P (br).

Proposition 1.1. The map u 7→ t(u)e is a bijection from V+ onto Ω . If

x =

r∑

j=1

xjcj +
∑

j<k

xjk

is the Peirce decomposition of x = t(u)e , then

xj = u2
j +

1

2

j−1∑

k=1

‖ ukj ‖2 ,

xjk = ujujk + 2

j−1∑

l=1

uljulk .

The invariant measure on Ω is given by :
∫

Ω

f(x)d∗x = 2r
∫

V+

f(t(u)e)

r∏

j=1

u
−d(j−1)−1
j duj

∏

1≤j<k≤r
dujk .

For later use, we need a careful analysis of the L orbits in Ω. For p ,
0 ≤ p ≤ r , let ep =

∑p
i=1 ci , and let Op be the orbit under L of ep . Observe

that O0 = {0} , and Or = Ω.

Proposition 1.2. Ω =
⊔

0 ≤ p ≤r
Op .

Each orbit can be parametrized in a way similar to the parametrization
of Ω. We need some more notations. For 0 ≤ p ≤ r− 1, let Lp be the stabilizer
of ep , and lp its Lie algebra. Now let

ap = {L(
∑

1≤i≤p
aici), ai ∈ R}

np =
⊕

1≤i≤p
(
⊕

i+1≤j≤r
nij)

It is easily checked that l = lp ⊕ ap ⊕ np . On the group level, we get
the density of LpApNp in L , where Ap and Np are the analytic subgroups of L
corresponding to respectively ap and np (see e.g. [17]). To state this result in a
way similar to Proposition 1.1, let

V +
p =

p∑

i=1

R+ci ⊕ np .

For u =
∑p
i=1 uici +

∑
uij ∈ V +

p , let as above

t(u) = P (b1)τ(u(1))P (b2)τ(u(2)) · · · τ(u(p−1))P (bp),

where u(i) =
∑r
j=i+1 uij , 1 ≤ i ≤ p .
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Proposition 1.3. Let 1 ≤ p ≤ r − 1 . The mapping u 7→ t(u)ep from V +
p into

V is a one-to-one map into a dense subset O′p of Op . There exists a unique (up
to a positive scalar) relatively invariant measure νp on Op .The complementary
set Op \ O′p has νp measure 0 . In the corresponding coordinates νp is given by

∫

Op
f(x)dνp(x) =

∫

V +
p

f(t(u)ep)

p∏

j=1

u
(p−j+1)d−1
j duj

∏

1≤i≤p
i<j≤r

duij .

The relative invariance is expressed by the following formula :
∫

Op
f(lx)dνp(x) = ( det l)−sp

∫

Op
f(x)dνp(x) , ∀l ∈ L,

where sp = r
2ndp (d is the common dimension of all nij , for 1 ≤ i < j ≤ r ).

For a proof, see [17] or [7], p. 134.

Let VC = V + iV be the complexification of V and let TΩ be the
associated tube domain. When equipped with the Bergman metric, TΩ is a
hermitian symmetric space. Let G = G(TΩ) be the connected component of the
identity in the group of bi-holomorphic transformations of TΩ , and let U be the
stabilizer in G of the base point ie ∈ TΩ . An important fact is that L and U are
two real forms of the same complex Lie group, namely the connected component
of the identity in Str(VC), where

Str(VC) = {g ∈ GL(VC) | ∀x ∈ VC , P (gx) = gP (x)gt },
with the obvious extension of P to VC .

If g ∈ L , still denote by g its complex linear extension to VC . It clearly
preserves TΩ , giving a natural map from L into G . The Cartan subspace a
(for the pair (l, k)) turns out to be also a Cartan subspace for the pair (g, u),
where g = Lie(G) and u = Lie(U). Another important subgroup of G is
the subgroup of translations N+ . In fact to each v ∈ V , is associated the
translation tv given by z 7→ z + v . N+ is clearly isomorphic to V (as Abelian
group). Moreover, the semi-direct product LN+ (where L acts on N+ by its
natural action on V ) is the group of all affine transformations of TΩ . N+ is
a subgroup of the Iwasawa subgroup associated to the positive Weyl chamber
a++ = {∑r

i=1 aici | 0 < a1 < a2 < . . . < ar} . In fact the full Iwasawa subgroup
is the semi-direct product NN+ . Finally, it is worth mentioning that the group
G is generated by L , N+ , and the inversion z 7→ −z−1 .

The action of G on TΩ can be (locally) extended to an action of GC

on TΩ . For g ∈ GC, z ∈ TΩ and g.z ∈ TΩ , define the automorphy factor

J(g, z) = ∂(g.z)
∂z . When defined, it turns out that J(g, z) is always in LC , and

satisfies the cocycle identity J(g1g2, z) = J(g1, g2.z)J(g2, z) . Obviously, if l is
in L , then J(l, z) = l .

2. Invariant cones and Ol’shanskĭı semigroups

An important property of the hermitian pairs is the existence of Ad(G) invariant
cones in g . Cones are assumed to be convex, closed with a nonvoid interior and
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proper. One of the main facts is the existence of a minimal invariant cone Cmin

and a maximal invariant cone Cmax , in the sense that any invariant cone C
contains either Cmin or −Cmin and similarly is contained in Cmax or −Cmax .

Theorem 2.1. The cone Cmin is generated (up to ±1) by ter viewed as
an element in n+ = Lie(N+) , i.e. Cmin is the smallest closed convex cone
containing the Ad(G)-orbit of ter in g .

Proof. By Vinberg’s theorem ([18]), Cmin contains a (unique) ray which
is invariant by a minimal parabolic subgroup. Thanks to the structure of the
nilpotent factor NN+ , it is clear that this ray can only be ±R+ter .

From now on, denote by Cmin (resp., Cmax ) the minimal (resp., maxi-
mal) cone that contains ter .

As discovered by Ol’shanskĭı (see [16]), to any invariant cone C , it is
possible to associate a semi-group ΓC = G exp iC in GC . The semi-group
Γmax = G exp iCmax is exactly the semi-group of compressions of TΩ , namely

Γmax = {g ∈ GC | g(TΩ) ⊂ TΩ} .

Theorem 2.2. Γmin ⊃ {tiv}v∈Ω .

Proof. As ter ∈ Cmin , it is easily seen, using the action of L and the
convexity of Ω, that tv is contained in Cmin for any v ∈ Ω. Hence the result
follows.

The importance of these cones and semi-groups for highest weight rep-
resentations has been noticed by Ol’shanskĭı and in fact if (π,H) is any unitary
representation, let H∞ be the space of C∞ vectors, and let

Cπ = {X ∈ g | < idπ(X)ξ, ξ > ≤ 0, ∀ ξ ∈ H∞ } .

Cπ is a cone, which is non trivial if and only if π has a highest weight,
and then the representation π can be extended as a (holomorphic) representation
of Γπ = G exp iCπ by contractions.

3. Reproducing kernels and unitarity

Let (µ, Vµ) be a finite dimensional irreducible unitary representation of the
maximal compact subgroup U of G . As explained before, it is convenient to
consider µ as a finite dimensional (holomorphic) representation of LC . Moreover

it satisfies the relation µ(l∗) = µ(l)∗ , where l∗ = l
t
, for l ∈ LC (extension of the

unitarity property of µ). For g ∈ G , and z ∈ TΩ , set Jµ(g, z) = µ(J(g, z))

Now let Vµ be the space of holomorphic functions on TΩ with values in
Vµ . Define the following action of G on Vµ :

Tµ(g)f(z) = (Jµ(g−1, z))−1f(g−1z) ,

where f ∈ Vµ, z ∈ TΩ and g ∈ G .
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We want to discuss the existence of an invariant inner product on Vµ .
There is in fact a natural inner product given by

(f, g)µ =

∫

TΩ

(µ(P (y)−1)f(z)|g(z))Vµd∗z ,

where z ∈ TΩ , y = =(z), and d∗z is the G invariant measure on TΩ . The
invariance of the inner product by N+ is obvious, its invariance by L is easy. It
remains to check invariance by the inversion z 7→ −z−1 . But this is a consequence
of the following formula : P (z)P (=(z))−1P (z) = P (=(−z−1))−1 (see [4] p. 163).
Now let Hµ = {f ∈ Vµ|(f, f)µ < +∞} . Then if Hµ 6= {0} , (Tµ,Hµ) defines
a unitary representation, and in fact this is the celebrated holomorphic discrete
series.

Now let Hµ be an irreducible unitary representation of G , and assume
there exists a continuous non trivial intertwining operator from Hµ into Vµ ,
where the latter space is equipped with the compact-open topology. Then the
evaluation map at any point z ∈ TΩ is a continuous linear map on Hµ , so Hµ
admits a reproducing kernel. In fact, let Ez : Hµ → Vµ be the evaluation map
at z ∈ TΩ and define

Qµ(z, w) = EzE
∗
w.

Then Qµ : TΩ × TΩ → End (Vµ) satisfies

(3.1i) Qµ is holomorphic in z and antiholomorphic in w

(3.1ii) Qµ(w, z) = Qµ(z, w)∗

(3.1iii) ∀q ∈ N, ∀ (wj)1≤j≤q ∈ TΩ , ∀ (ξj)1≤j≤q ∈ Vµ
∑

i

∑

j

(
Qµ(wj , wi)ξi|ξj

)
Vµ
≥ 0

(3.1iv) Qµ(g.z, g.w) = Jµ(g, z)Qµ(z, w)Jµ(g, w)∗

A mapping Q : TΩ × TΩ → End (Vµ) which satisfies (3.1 i, ii, and iii) is said to
be a positive definite (operator-valued) kernel (see [14]). If it moreover satisfies
(3.1iv), the kernel Q is said to be invariant (with respect to µ).

Proposition 3.1. Let µ be a finite dimensional holomorphic irreducible repre-
sentation of LC , and let Q be an invariant positive definite kernel (with respect
to µ). Let Lµ be the span of the functions z 7→ Q(z, w)ξ , where w is arbitrary
in TΩ , and ξ arbitrary in Vµ . Introduce the (well defined) Hermitian form on
Lµ given by

(∑

i

Q(., wi)ξi|
∑

j

Q(., w′j)ξ
′
j

)
=
∑

i

∑

j

(
Q(w′j , wi)ξi|ξ′j

)
Vµ

.
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Let Hµ be the usual (separate) completion of Lµ with respect to this (well-
defined) form. Then Hµ is invariant under Tµ and the restriction of Tµ to Hµ
is unitary and irreducible.

For the proof, see [14]. Let us observe moreover, that Lµ always contains
the “highest weight vector”, namely Q(z, ie)ξµ , where ξµ is the highest weight
vector in Vµ (cf. [17]). So Hµ is a highest weight representation.

However, the kernel Qµ(z, w) satisfies another important condition which
is related to the remark due to Ol’shanskĭı we mentioned above.

Proposition 3.2. Let µ be a finite dimensional holomorphic representation
of LC , and assume that Qµ is positive definite. Then Qµ satisfies

(3.1v) ∀ q ∈ N, ∀ (wj)1≤j≤q ∈ TΩ , ∀ (ξj)1≤j≤q ∈ Vµ , ∀ y ∈ Ω

(∑

i

∑

j

Qµ(wj + iy, wi + iy)ξi|ξj
)
Vµ
≤
(∑

i

∑

j

Qµ(wj , wi)ξi|ξj
)
Vµ

.

Proof. In fact, the cone CTµ = Cµ contains −ter (see the original argument
in [10]), hence Cµ ⊃ −Cmin by Theorem 2.2. (cf [16]), and from the holo-
morphic extension of Tµ to the Olshanskĭı semigroup G exp iCπ by contractions

yields ‖Tµ(t−iy)Φ‖2 ≤ ‖Φ‖2 , where y ∈ Ω, and Φ(.) =
∑

i

Qµ(., wi)ξi ∈ Hµ .

But this is exactly the inequality we were looking for, once observed that
Tµ(t−iy)Qµ(., w) = Qµ(., w + iy).

The conditions (3.1i-iv) completely determine (up to a positive scalar)
the possible kernels (cf [4]). In fact by using the action of the translations
{ty}y∈V , it is easily seen that Q must be of the form Q(z, w) = Q( z−w2 ), where
Q is a holomorphic map from TΩ into End (Vµ). Moreover, if one considers
the origin ie ∈ TΩ , then from (3.1iv) we immediately see that Q(ie) must
commute with the operators µ(J(k, ie)) for any k in the stabilizer U of ie
in G . An application of Schur’s lemma forces Q(ie) to be a multiple of the
identity. The invariance property applied to P (y1/2), where y ∈ Ω shows
that Q(iy) = Q(P (y1/2).ie) = µ(P (y)), up to a positive constant. As Q is
holomorphic, the only possibility for Q is (up to a positive constant)

Q(z, w) = µ(P (
z − w

2i
)).

Conversely, properties (3.1i) and (3.1ii) are immediate. The invariance property
can easily be established for the translations and the elements of L . For the
inversion z 7→ −z−1 , one uses the identity

P (w −1 − z−1) = P (w −1)P (z − w)P (z−1), for z, w ∈ TΩ

(cf. [7] page 200), and takes images of both sides under µ to get the desired
invariance property.
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Henceforth we concentrate our effort towards property (3.1v), which is
crucial for discussing unitarity.

If W is a finite-dimensional Hilbert space, denote by Herm(W ) the the
space of Hermitian operators on W and by Herm+(W ) the cone of positive
semidefinite Hermitian operators on W . In what follows, by a measure on Ω
with values in Herm+W , we mean, following Bourbaki (see [1]), a linear map R
from the space Cc(Ω) of continuous real valued functions with compact support
on Ω into Herm(W ), which is continuous for the usual topology on Cc(Ω), and
such that for any nonnegative function ϕ in Cc(Ω), R(ϕ) ∈ Herm+(W ).

Theorem 3.3. Let W be a finite dimensional Hilbert space and let q : Ω →
Herm+(W ) be a continuous map with the property (3.1v). Then there exists a
unique measure R on Ω , with values in Herm+(W ), such that :

q(y) =

∫

Ω

e−(y|v)dR(v) ,

for all y ∈ Ω .

Proof. First fix ξ ∈W . Define qξ(y) = (q(y)ξ|ξ). Clearly qξ is a continuous
function on Ω, which satisfies

0 ≤
∑

i

∑

j

λiλjqξ(yi + yj + y) ≤
∑

i

∑

j

λiλjqξ(yi + yj),

for all (yi)1≤i≤n, y ∈ Ω, (λi)1≤i≤n ∈ C . By Nussbaum’s theorem (see [15],[17]),
there exists a unique positive measure Rξ on Ω, such that

qξ(y) =

∫

Ω

e−(y|w)dRξ(w) .

Now define for ξ, η ∈W

Rξ,η =
1

4
[Rξ+η − Rξ−η + iRξ+iη − iRξ−iη ] .

The way it depends on ξ, η is clearly of Hermitian nature. So there exists
a measure R on Ω, mith values in Herm(W ), such that Rξ,η(.) = (R(.)ξ|η). As
Rξ = Rξ,ξ , R has values in Herm+(W ), and the result follows. The uniqueness
is clear from properties of the Laplace transform.

It is now possible to apply this result to the reproducing kernels Qµ .

Theorem 3.4. Let µ be a finite dimensional representation of L on a vector
space Vµ . Then the associated kernel Qµ is positive definite if and only if there
exists a measure Rµ on Ω , with values in Herm+(Vµ) , such that

(3.4i) dRµ(l.) = µ(l)∗
−1

dRµ(.)µ(l)−1 , ∀l ∈ L

(3.4ii)

∫

Ω

e−trv dRµ(v) = Id

Proof. The existence of such a measure, when Qµ is positive definite is
clear from the preceding results. Conversely, use a change of variable to get
from properties (3.4 i) and (3.4 ii) the equality µ(P (x)) =

∫
Ω
e−(x|w)dRµ(w)

which gives immediately Qµ(z, w) =
∫

Ω
e−( z−w2i |v)dRµ(v) proving the positive-

definiteness of Qµ .
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It is possible to give a more concrete realization of the Hilbert space Hµ
corresponding to the kernel Qµ (according to Proposition (3.1)). In fact define
Gµ as the space of all measurable functions Φ : Ω→ Vµ , which satisfy

||Φ||2µ =

∫

Ω

(
dRµ(2v)Φ(v)|Φ(v)

)
< +∞.

Then, after identifying two functions which are equal Rµ -almost everywhere, Gµ
has a Hilbert space structure for the inner product

(Φ,Ψ)Gµ =

∫

Ω

(
dRµ(2v)Φ(v)|Ψ(v)

)
.

If Φ ∈ Gµ define, for z ∈ TΩ , FΦ : TΩ → Vµ

FΦ(z) =

∫

Ω

ei<z|v>dRµ(2v)Φ(v).

Let ξ ∈ Vµ ; then
∣∣(dRµ(2v)Φ(v)|ξ

)
Vµ

∣∣ ≤
(
dRµ(2v)Φ(v)|Φ(v)

)1/2(
dRµ(2v)ξ|ξ

)1/2
,

and by applying Schwarz inequality, we get

| < FΦ(z)|ξ > |2 ≤
( ∫

Ω

(dRµ(2v)Φ(v)
∣∣Φ(v)

)( ∫

Ω

e−2<y|v>(dRµ(2v)ξ|ξ)
)
,

where z = x + iy . This shows that the integral in the definition of FΦ is
(absolutely) convergent and it is then easy to verify that FΦ is holomorphic.
Now let Fµ be the space of all (holomorphic) Vµ -valued functions of the form
FΦ with Φ ∈ Gµ , and define ||FΦ||Fµ = ||Φ||Gµ . Thanks to the injectivity of
the Laplace transform, ||FΦ||Fµ = 0 if and only if Φ = 0 dRµ − a.e. , so if and
only if FΦ(z) = 0 everywhere. Hence Fµ is a Hilbert space. Moreover, the
evaluation map at any point z ∈ TΩ is a continuous linear (Vµ -valued) map. So
Fµ has a reproducing kernel K(z, w). By definition, there exists a measurable
function k : Ω× TΩ → End (Vµ), such that, for every ξ ∈ Vµ

K(z, w)ξ =
(
Fk(., w)ξ

)
(z), z, w ∈ TΩ.

For every Φ ∈ Gµ , and w ∈ TΩ ,
(
(FΦ)(w)|ξ

)
Vµ

=
(
FΦ|K(., w)ξ

)
Fµ

=
(
Φ|k(., w)ξ

)
Gµ .

The first term is ∫

Ω

ei<w|v>
(
dRµ(2v)Φ(v)|ξ

)
Vµ
,

whereas the last is ∫

Ω

(
dRµ(2v)Φ(v)|k(v, w)ξ

)
Vµ
.

We easily conclude that k(v, w)ξ = e−i<w|v>ξ , for Rµ -almost every v in Ω.
Hence

K(z, w)ξ =

∫

Ω

ei<z|v>e−i<w|v>dRµ(2v)ξ = Qµ(z, w)ξ.

Hence the following conclusion :
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Theorem 3.5. Let µ be a representation of LC such that Qµ is positive definite.
Let Fµ be as above. Then Fµ is a Hilbert space with reproducing kernel
Qµ(z, w) . The space Fµ is stable under Tµ and the restriction of Tµ to Fµ
is unitary and irreducible.

4. Some necessary conditions for the existence of the measure Rµ

Let µ be a holomorphic finite dimensional representation of LC . Still denote
by µ the restricted highest weight of the representation µ with respect to the
Iwasawa decomposition considered in section 1 and by ξµ a non-zero highest
weight vector. To be more explicit, one has

µ
(

exp 2

r∑

k=1

aiL(ci)
)
ξµ =

r∏

k=1

eakmk ξµ ,

for all (ak)1≤k≤r ∈ R , and µ(n)ξµ = ξµ , for all n ∈ N . The restricted highest
weights are characterized by the conditions

∀ 1 ≤ k ≤ r, mk ∈ Z and m1 ≤ m2 ≤ . . . ≤ mr .

(cf [4], p. 167). For further use, notice the formula µ(P (a))ξµ =
∏r
k=1 a

mk
k ξµ ,

where a =
∑r
k=1 akck, ak > 0, ∀k, 1 ≤ k ≤ r .

The property (3.4i) clearly shows the fact that the support of Rµ is a
union of L orbits. Because of the structure of these orbits, there is an integer p ,
with 0 ≤ p ≤ r , such that Supp(Rµ) ⊂ Op and Supp(Rµ) 6⊂ Op−1 .

Theorem 4.1. Let µ = (m1,m2, . . . ,mr) as above. A necessary condition for
the existence of a measure Rµ satisfying the conditions (3.4i) and (3.4ii) and
such that Supp(Rµ) = Ω is :

(4.1i) mr < −
d(r − 1)

2
.

A necessary condition for the existence of a measure Rµ satisfying the conditions
(3.4i) and (3.4ii) and such that Supp(Rµ) = Op , for some p , 0 ≤ p ≤ r − 1 is

(4.1ii) mp+1 = mp+2 = . . . = mr = −dp
2
.

Proof. Assume first that Supp(Rµ) = Op , for some p, 0 ≤ p ≤ r − 1.
Consider the restriction of Rµ to Op as a distribution . It must coincide with a

C∞ function. In fact, let X ∈ l = Lie(L) ⊂ gl(V ). It induces a vector field X̃
on Op . The invariance property (3.4i) implies the differential relation :

X̃Rµ = −µ(Xt) ◦Rµ −Rµ ◦ µ(X) .
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Choose vectors X1, X2, . . . , Xk ∈ l , such that X̃1, X̃2, . . . , X̃k form a
basis of the tangent plane in a neigbourhood of some point of the the orbit Op
(say, ep for example). Compute

∑k
j=1 X̃

2
jRµ near ep using the last relation.

It shows that Rµ is (near ep ) solution of a partial differential system, which is
clearly elliptic. Hence, by the classical regularity results, Rµ has locally near ep
a C∞ density w.r.t. the relatively invariant measure νp . From the invariance
property (3.4i), this property is true everywhere on Op . In other words, there
exists an analytic function ρµ : Op → Herm+(Vµ), such that Rµ coincides with
ρµdνp on Op . The invariance condition now reads :

µ(l)∗
−1

ρµ(w)µ(l)−1 = ( det l)spρµ(lw) ,

for l ∈ L and w ∈ Op .

Let Eµ = ρµ(ep). As Supp(Rµ) = Oµ , Eµ 6= 0. For l ∈ Lp , the
invariance condition (3.4i) implies

Eµ ◦ µ(l) = ( det l)−spµ(l)∗
−1 ◦Eµ .

Now let ξµ be a non-zero vector in Vµ of highest restricted weight µ ,
and consider the function Φ : L → C defined by Φ(l) = (Eµµ(l)ξµ|µ(l)ξµ).
Recall that LpApNp is dense in L , and take l = lpapnp , where lp ∈ Lp, ap ∈
Ap and n ∈ Np . Then

Φ(l) = a2µ
p (Eµ ◦ µ(lp)ξµ|µ(lp)ξµ) = a2µ

p ( det lp)
−sp(µ(lp)

∗−1 ◦Eµξµ|µ(lp)ξµ)

= a2µ
p ( det lp)

−sp(Eµξµ|ξµ) .

As Eµ 6= 0, Φ(l) cannot be 0 for all l ∈ L , hence (Eµξµ|ξµ) 6= 0. Now,
for (ak)p+1≤k≤r ∈ R+ , consider the element

a = P (c1 + c2 + · · ·+ cp + ap+1cp+1 + ap+2cp+2 + · · ·+ arcr).

Now µ(a)ξµ = a
mp+1

p+1 a
mp+2

p+2 . . . amrr ξµ , whereas det (a) = (ap+1ap+2 . . . ar)
2n
r .

So Φ(a) = a2µ(Eµξµ|ξµ) = ( det a)−sp(Eµξµ|ξµ). Hence the relation

mp+1 = mp+2 = . . . = mr = −dp
2
.

Let now consider the case where Supp(Rµ) = Ω. The first part of the
preceding argument is still valid. In particular, the restriction of Rµ to Ω has
an analytic density, say ρµ(x) with respect to the invariant measure d∗x . Let
Eµ = ρµ(e). It is still true that (Eµξµ|ξµ) 6= 0, and the invariance condition
now implies :

ρ(t(u)e) = µ(t(u))∗
−1

ρµ(e) µ(t(u))−1 ,

for u ∈ V + . Now the first condition (3.4ii) implies in particular

∫

Ω

e−trv
(
ρµ(v)ξµ|ξµ

)
d∗v <∞ .
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Use the parametrization described in section 2 (cf [7] p. 123). As µ(t(u))−1ξµ =∏r
j=1 u

−mj
j ξµ , the integral converges if (and only if)

∫ +∞

o

. . .

∫ +∞

o

r∏

j=1

u
−2mj
j u

−d(j−1)−1
j e−u

2
j duj <∞ .

But this happens if and only if mr < −
d(r − 1)

2
.

To finish the proof, observe that the conditions already obtained are
mutually incompatible. So that, if Supp(Rµ) = Op and if ρµ is its density on
Op , then the difference dRµ − ρµ(.)dνp has its support contained in Op−1 and
still satisfies the condition (3.4ii). If it were non zero on Op−1 , the first part

of the proof would imply mr = − (p−1)d
2 , whereas the condition mr = −pd2 (or

mr < −d(r−1)
2 in case p = r ) has been shown to be necessary. By induction we

eventually get dRµ − ρµ(.)dνp = 0, completing the proof of theorem (4.1).

5. An example

It seems in general quite hard to find explicit expressions for the measure Rµ .
These measures are known when µ has dimension 1 (see [17]). Here we want
to discuss a vector-valued case, where however, computations are easy because
of the fact that the representation µ stays irreducible when restricted to the
maximal compact subgroup K of L (see also [9]).

Let H = Hr be the real vector space of r × r Hermitian matrices,
and define the Jordan product to be x.y = 1

2 (xy + yx), which turns H into
a Euclidean Jordan algebra for the standard inner product trxy . The cone Ω
is the cone of positive-definite matrices, the group L may be identified with
R+ × SL(r,C), where SL(r,C) acts by l.x = lxl∗ (l ∈ SL(r,C), x ∈ H), its
maximal compact subgroup K is SU(r) and for x, y ∈ H, P (x)y = xyx . As for
a Jordan frame, the natural choice is

ci =




0
. . .

1
. . .

0




, 1 ≤ i ≤ r ,

where 1 stands in the i th row and column. The corresponding Cartan subspace
is

a =








a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · ar


 , a1, a2, . . . , ar ∈ R





.

The dimension of H is n = r2 , and d = 2 .
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Let µ be a (finite-dimensional) representation of L of the form l 7→
det (l)mν(l), where m is an integer and ν is a holomorphic representation
of SL(r,C), (for short we say µ is holomorphic) and still denote by µ its
dominant weight µ = (m1,m2, . . . ,mr), where for 1 ≤ i ≤ r,mi ∈ Z , and
m1 ≤ m2 ≤ . . . ≤ mr . Notice that the weights of the representation are complex
linear forms on aC , and so are determined by their restrictions to a .

Theorem 5.1. Let µ as above. The kernel Qµ is of positive definite type if
and only if either :

(5.i) mr < −(r − 1)

(5.ii) mp+1 = mp+2 = . . . = mr = −p .

Proof. In the first case, the corresponding measure Rµ is supported in Ω,
whereas it is supported in Op in the second case. These measures are made
explicit in due course of the proof.

Sticking to notations used in section 4, first consider the functional
equation for the regular orbit Ω. Observe that Eµ must commute with µ(l),
when l ∈ SU(r). But by assumption µ is a holomorphic representation and so
is still irreducible when restricted to SU(r). By Schur’s lemma this implies the
fact that Eµ must be a multiple of the identity. But now this forces the equality
ρµ(x) = µ(P (x))−1, for all x ∈ Ω, up to a positive scalar. As the positivity
condition is clearly satisfied, it remains to check the integrability condition. To
this end, define

Wµ =
{
ξ ∈ Vµ|

∫

Ω

e− tr v(ρµ(v)ξ, ξ)d∗v < +∞
}

Clearly by Schwarz inquality, Wµ is a vector subspace, and it is invariant under
K . As the restriction of µ to K is irreducible, Wµ is 0 or Vµ , but Wµ = {0}
would imply Eµ = 0. So Wµ = Vµ . So it suffices to check the integrability
condition for, say, a highest weight vector. As the integrability condition for a
highest weight vector was already tested in the general case, this finishes this
case.

Now assume Supp(Rµ) = Op , for some p, 0 ≤ p ≤ r − 1. This forces
mp+1 = mp+2 = . . . = mr = −p . As before, let ρµ be the density with respect
to the relatively invariant measure νp , and let Eµ = ρµ(ep). Let

l =



eiθ1

. . .

eiθr


 ,

where θ1 + . . . + θr ≡ 0 mod 2π . Observe that l.ep = ep, l
∗ = l−1 and

| det (l)| = 1. The condition (3.4i) clearly implies that Eµ commutes with all
matrices µ(l), when l is diagonal in SU(r). So Eµ preserves the weight spaces of
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Vµ . Now let ξλ be a weight vector corresponding to the weight λ = (l1, l2, . . . , lr).
Notice from the preceding remark that Eµξλ is also of weight λ . Let

l =




1
. . .

1
ap+1

. . .

ar



,

where ap+1, ap+2, . . . , ar ∈ C∗, ap+1ap+2 . . . ar ∈ R . Then l ∈ Lp ,

Eµξλ = |ap+1ap+2 . . . ar|−2p|ap+1|−2lp+1 |ap+2|−2lp+2 . . . |ar|−2lrEµξλ .

Hence, if Eµξλ 6= 0, lp+1 = lp+2 + . . . = lr = −p . Let W be the sum of all weight
spaces with a weight satisfying this condition. W coincides with the submodule
of Vµ generated by the highest weight vector ξλ under the action of the subgroup

Hp =
{(

h 0
0 1q

)
, h ∈ SL(p,C) and q = r − p

}
.

Clearly, W as Hp module is isomorphic with the highest weight module of
SL(p,C) with highest weight (m1,m2, . . . ,mp) and in particular is irreducible.
Since µ is holomorphic, W is also irreducible under the action of the maximal
compact subgroup Kp of Hp (isomorphic to p)). But Eµ commutes with µ(l)
when l belongs to Kp , so is the identity (up to a scalar) on W . In other terms,
Eµ is (up to a positive scalar) the orthogonal projection on W .

Consider now the representation l 7→ det (l)−pµ(lt)−1 . Its lowest weight
is (−p − m1,−p − m2, . . . ,−p − mp, 0, 0, . . . , 0), so this representation can be
extended polynomially to the full algebra Mr(C). By checking on each weight
vector, one verifies µ̃(ep) = Eµ . By a simple computation using the condition
(3.3i), this implies that ρµ(y) = µ̃(y), for all y ∈ Op . For the integrability
condition, one has (with obvious notations)

∫

Op
e− trw(µ̃(w)ξµ|ξµ)dνp(w)

=

∫ +∞

0

. . .

∫ +∞

0

. . .

∫

C
. . .

∫

Cq×p
e−(a2

1+...+a2
p)e−‖u‖

2

e−‖v‖
2

. . .

. . . a
2(−m1−p)
1 . . . a2(−mp−p)

p da1 . . . dap . . . duij . . . duij . . . dv dv ,

and the last integral converges, as m1 ≤ m2 ≤ . . . ≤ mp ≤ −p .
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