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In this paper we continue the study of functional calculus for the Laplace–
Beltrami operator on symmetric spaces of the noncompact type begun in [3];
this paper is dedicated to a study of the Poisson semigroup, which we define
shortly.

Let G and K be a connected noncompact semisimple Lie group with
finite center and a maximal compact subgroup thereof, and consider the sym-
metric space G/K, also denoted by X. We denote by n the dimension of X, by
` its real rank, and by ν the “pseudo–dimension” 2

∣∣Σ +
0

∣∣+ `, where
∣∣Σ +

0

∣∣ is the
cardinality of the set of the positive indivisible (restricted) roots.

There is a canonical invariant Riemannian metric on X; denote by −L0

the associated Laplace–Beltrami operator. By general nonsense, L0 is positive
and essentially self-adjoint on C∞c (X); let L be the unique self-adjoint extension
of L0 and {Pη} the spectral resolution of the identity for which

Lf =

∫ ∞

R 2
0

η dPηf ∀f ∈ Dom(L),

where R0 = 〈ρ, ρ〉1/2, ρ being the usual half-sum of the positive roots.

For θ in [0, 1] and σ in (0, 1), the θ–heat and the (σ, θ)–Poisson semi-
groups (Ht,θ)t>0 and (P σ

t,θ)t>0 are defined thus:

Ht,θf =

∫ ∞

R 2
0

exp
(
−t(η − θR 2

0 )
)
dPηf ∀t ∈ (0,∞) ∀f ∈ L2(X)

P σ
t,θf =

∫ ∞

R 2
0

exp
(
−t(η − θR 2

0 )σ
)
dPηf ∀t ∈ (0,∞) ∀f ∈ L2(X).

The (σ, θ)–Poisson semigroup may be obtained from the θ–heat semigroup by
subordination. However, while estimates from above can be proved using this

∗Work supported by the Australian Research Council and the Italian M.U.R.S.T., fondi 60%.

ISSN 0940–2268 / $2.50 C© Heldermann Verlag



2 Cowling, Giulini and Meda

fact, estimates from below cannot. If 1 ≤ p, q ≤ ∞ and the operator P σ
t,θ satisfies

a norm inequality of the form

∥∥P σ
t,θf

∥∥
q
≤ C ‖f‖p ∀f ∈ L2(X) ∩ Lp(X),

P σ
t,θ is said to be Lp –Lq -bounded.

In this paper we examine for which p and q the operator P σ
t,θ is Lp –Lq -

bounded, and we study the behaviour of the Lp –Lq -operator norms |||P σ
t,θ|||p;q

as t tends to 0 and to ∞ for all such p and q. As t tends to ∞, the expression
describing the behaviour of |||P σ

t,θ|||p;q involves powers of t, in which the indices ν

and ` play an important rôle. Two features of our study are noteworthy. First,
while Ht,θ is Lp –Lq -bounded whenever 1 ≤ p ≤ q ≤ ∞, P σ

t,θ is not Lp –Lq -
bounded for many such p and q. Second, when p or q reach the critical index
for Lp –Lq -boundedness, the exponent `+ 1 appears; in our previous work, we
saw only `. We refer to [3] for an account of related work.

In order to state our main theorem, we introduce a little notation: if
0 ≤ θ ≤ 1,

pθ = 2
/(

1 + (1− θ)1/2
)
,

Rθ = [(1− θ) 〈ρ, ρ〉]1/2,

Rθ,p =
[
(

4

pp′
− θ) 〈ρ, ρ〉

]1/2
;

in the definition of Rθ,p, pθ ≤ p ≤ pθ
′. Observe that 1 ≤ pθ ≤ 2, that Rθ

defined here agrees with R0 as defined previously when θ = 0, that Rθ,p = Rθ
when p = 2, and that Rθ,p = 0 when p = pθ or p = pθ

′.

Theorem 1. Suppose that 0 ≤ θ ≤ 1, 0 < σ < 1, and 1 ≤ p, q ≤ ∞. The
following conditions hold:

(i) if t > 0, then P σ
t,θ is Lp –Lq -bounded only if p ≤ q, p ≤ pθ

′,

and q ≥ pθ;
(ii) if pθ ≤ p ≤ pθ ′, then

|||P σ
t,θ|||p;p = exp

(
−R 2σ

θ,p t
)

∀t ∈ (0,∞);

(iii) if p ≤ q, p ≤ pθ ′ and q ≥ pθ, then

|||P σ
t,θ|||p;q ∼ t

−n(1/p−1/q)/2σ ∀t ∈ (0, 1];

(iv) if p < q = 2 or 2 = p < q, then

|||P σ
t,θ|||p;q ∼ t

−ν/4 exp
(
−R 2σ

θ t
)

∀t ∈ [1,∞);

(v) if p < 2 < q, then

|||P σ
t,θ|||p;q ∼ t

−ν/2 exp
(
−R 2σ

θ t
)

∀t ∈ [1,∞);

(vi) if p < q < 2 and q > pθ, then
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|||P σ
t,θ|||p;q ∼ t

−`/2q′ exp
(
−R 2σ

θ,q t
)

∀t ∈ [1,∞);

(vii) if p < q = pθ, then

|||P σ
t,θ|||p;q ∼ t

−(`+1)/2σq′ ∀t ∈ [1,∞);

(viii) if 2 < p < q and p < pθ
′, then

|||P σ
t,θ|||p;q ∼ t

−`/2p exp
(
−R 2σ

θ,p t
)

∀t ∈ [1,∞);

(ix) if pθ
′ = p < q, then

|||P σ
t,θ|||p;q ∼ t

−(`+1)/2σp ∀t ∈ [1,∞).

Section 1 of this paper is devoted to notation, and a summary of relevant
material, such as the the spherical Fourier transformation. In Section 2 we prove
our theorem.

1. Notation and Background Material

We use the standard notation of the theory of Lie groups and symmetric spaces,
as in, for instance, S. Helgason [6]. Our notation here is also consistent with our
paper [3], to which we refer several times.

For any x in G, we denote by A(x) the element of a such that x ∈
N expA(x)K (the Iwasawa decomposition). For any (complex-valued) linear
form Λ on a, the elementary spherical function φΛ is defined by the rule

φΛ(x) =

∫

K

exp
(
(iΛ + ρ)A(kx)

)
dk ∀x ∈ G.

The spherical Fourier transform f̃ of an L1(G)–function f is defined by the
formula

f̃ (Λ) =

∫

G

f(x)φ−Λ(x) dx ∀Λ ∈ a∗.

Harish–Chandra proved an inversion formula and a Plancherel formula for the
spherical Fourier transformation, namely

f(x) =

∫

a∗
f̃ (Λ)φΛ(x) dµ(Λ) ∀x ∈ G

for “nice” K –bi-invariant functions f on G, and

‖f‖2 =

[∫

a∗

∣∣∣f̃ (Λ)
∣∣∣
2

dµ(Λ)

]1/2

∀f ∈ L2(K\X),

where dµ(Λ) = c
G
|c(Λ)|−2

dΛ, and c denotes the Harish–Chandra c–function.
For the details, see, for instance, Theorem IV.7.5 of Helgason [6]. We often
deal with the inversion formula and the Plancherel formula with purely radial
integrands. From the formula for the c–function (Theorem IV.6.14 of [6]), it is
clear that if F : [0,∞)→ C and f(Λ) = F (|Λ|) for all Λ in a∗, then

(1)

∫

a∗
f(Λ) dµ(Λ) = c

G

∫

a∗
F (|Λ|) |c(Λ)|−2

dΛ ∼
∫ ∞

0

F (r) (1 + r)n−ν rν−1 dr,
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provided the integrals converge. We shall also use a modified version of the
Plancherel measure, µ̃ , defined by the rule

dµ̃(Λ)
/
dΛ =

∏

α∈Σ +
0

(1 + |〈α,Λ〉|)dα

(see [3] for the notation). Clearly

C ≤ dµ̃(Λ)/dΛ ≤ C ′(1 + |Λ|n−`),

where C and C ′ are constants. The modified Plancherel measure appears in
several results of harmonic analysis on symmetric spaces; see [3].

Let W1 be the interior of the convex hull in a∗ of the images of ρ under
the Weyl group of (g, a). For δ in (0, 1), we denote by Wδ and Tδ the dilate
of W1 by δ and the tube over the polygon Wδ, i.e., Tδ = a∗ + iδW1. If
1 ≤ p < 2, the spherical Fourier transform of an Lp(G)-function extends to a
bounded holomorphic function in the tube Tδ(p), where δ(p) is defined by the
rule

δ(p) = 2/p− 1.

We define the quadratic function Qθ on a∗C :

Qθ(Λ) = 〈Λ,Λ〉+ (1− θ)〈ρ, ρ〉 ∀Λ ∈ a∗C,

and denote by p σt,θ the K –bi-invariant function on G such that

p̃ σt,θ (Λ) = exp
(
−tQθ(Λ)σ

)
∀Λ ∈ Tδ(pθ).

Then
P σ
t,θf = f ∗ p σt,θ ∀t ∈ (0,∞) ∀f ∈ L2(X).

Note that Q σ
θ and p̃ σt,θ continue analytically to the tube Tδ(pθ), but to no

larger tube. We denote by ht the kernel associated to the heat operator, i. e.,
h̃ t(Λ) = exp

(
− tQ0(Λ)

)
.

Throughout this paper, the following assumptions are made about the
parameters:

1 ≤ p, q ≤ ∞,
1/p+ 1/p′ = 1,

0 ≤ θ ≤ 1,

0 < σ < 1,

0 < t <∞.

Recall that pθ = 2
/[

1+(1−θ)1/2
]
, and note that δ(pθ) = (1−θ)1/2. By C and C ′

we denote positive constants which may not be the same at different occurrences;
C and C ′ may depend on anything quantified, implicitly or explicitly, before the
formula in which they appear. The expression

A(t) ∼ B(t) ∀t ∈ D,
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where D is some subset of the domains of A and of B, means that there exist
constants C and C ′ such that

C |A(t)| ≤ |B(t)| ≤ C ′ |A(t)| ∀t ∈ D.

If the operator T on L2(X) satisfies a norm inequality of the form

‖Tf‖q ≤ C ‖f‖p ∀f ∈ L2(X) ∩ Lp(X),

then T extends uniquely to a bounded operator from Lp(X) to Lq(X) (where
the weak-star topology should be used if p = ∞); conversely, if a continuous
extension to a bounded operator from Lp(X) to Lq(X) exists, then such a norm
inequality holds. We denote by |||T |||p;q the norm of the linear operator T from
Lp(X) to Lq(X).

2. Estimates for the (σ, θ)–Poisson semigroup

First we prove a couple of technical results on integration, then we estimate the
Lp –norms of p σt,θ for various p. Finally we put the ingredients together to prove
the main theorem.

Lemma 1. Suppose that 0 ≤ α < β ≤ ∞, ω > 0, and η > 0. Suppose also that
ψ is a function on the interval [α, β), which is continuous and strictly positive
throughout [α, β), such that, for constants C and k,

|ψ(s)| ≤ C (1 + s)k ∀s ∈ [α, β).

Then

(i) if α = 0,
∫ β

α

exp(−tsω) (s− α)η−1 ψ(s) ds ∼ t−η/ω ∀t ∈ [1,∞);

(ii) if α > 0,
∫ β

α

exp(−tsω) (s− α)η−1 ψ(s) ds ∼ t−η exp(−αωt) ∀t ∈ [1,∞).

Proof. We assume initially that β <∞.
We first prove (i). By changing variables (v = tsω ), we transform the

integral to

t−η/ω

ω

∫ tβω

0

exp(−v) vη/ω−1 ψ
(
(v/t)1/ω

)
dv;

the integrand is dominated by

exp(−v) vη/ω−1 max
{
|ψ(s)| : s ∈ [α, β)

}
,

which is integrable on R+, and as t tends to ∞ the integral tends to

∫ ∞

0

exp(−v) vη/ω−1 ψ(0) dv
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by the Lebesgue dominated convergence theorem.

We now prove (ii). Let γ denote βω − αω. Since ψ on [α, β) is con-
tinuous, bounded, and strictly positive, the function φ on [0, γ), such that
φ(0) = ω1−η αη(1−ω) ψ(α) and

φ(v) =
[ (v + αω)1/ω − α

v

]η−1

ψ
(
(v + αω)1/ω

)
(v + αω)1/ω−1 ∀v ∈ (0, γ),

is too. By changing variables (v = sω − αω ), we transform the integral to

exp(−tαω)

ω

∫ γ

0

exp(−tv) vη−1 φ(v) dv.

We have therefore an integral of the form already treated in (i), and are done.

The case where β = ∞ now follows: we write the integral as the sum
of an integral from α to α + 1 and one from α + 1 to ∞; the first integral is
treated by the result already established, and the second is easily shown to be
O(tk+η+1 exp

(
−(α+ 1)ωt)

)
. ut

Lemma 2. Suppose that 0 < τ <∞ and R > 0. Then

∫ 1

0

exp
(
−t[r2 +R2]σ

)
rτ−1 dr ∼

{
1 ∀t ∈ (0, 1]
t−τ/2 exp(−R2σt) ∀t ∈ [1,∞)

and
∫ ∞

1

exp
(
−t[r2 + R2]σ

)
rτ−1 dr ∼

{
t−τ/2σ ∀t ∈ (0, 1]
t−1 exp

(
−[1 + R2]σ t

)
∀t ∈ [1,∞).

Proof. It is trivial that the first integral behaves as claimed for t in (0, 1]. To
study its behaviour for t in [1,∞), we change variables

(
s = [r2 +R2]1/2

)
, and

it becomes

∫ √R2+1

R

exp
(
−ts2σ

)
(s2 − R2)(τ−2)/2 s ds

=

∫ √R2+1

R

exp
(
−ts2σ

)
(s− R)(τ−2)/2 (s+R)(τ−2)/2 s ds.

The required behaviour for t in [1,∞) is a corollary of Lemma 1 (where ω = 2σ,
η = τ/2, α = R, and ψ(s) = (s+ R)(τ−2)/2 s).

By performing the same change of variables, we transform the second
integral to ∫ ∞

√
R2+1

exp
(
−ts2σ

)
(s2 − R2)(τ−2)/2 s ds.

The result stated for t in [1,∞) follows from Lemma 1 (where ω = 2σ, η = 1,
α = [R2 + 1]1/2, and ψ(s) = (s2 − R2)(τ−2)/2 s). By changing variables again,
we transform the last integral to

t−τ/2σ
∫ ∞
√
R2+1 t1/2σ

exp
(
−v2σ

) (
v2 − (t1/2σR)2

)(τ−2)/2
v dv
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and the required behaviour for t in (0, 1] is an immediate consequence. ut

Note that the preceding lemma holds for any positive σ.

We now begin the harmonic analysis.

Lemma 3. The following norm estimates for p σt,θ hold:

(i) if p = 2, then

∥∥p σt,θ
∥∥
p
∼
{
t−n/4σ ∀t ∈ (0, 1]
t−ν/4 exp(−R 2σ

θ t) ∀t ∈ [1,∞);

(ii) if p =∞, then

∥∥p σt,θ
∥∥
p
∼
{
t−n/2σ ∀t ∈ (0, 1]
t−ν/2 exp(−R 2σ

θ t) ∀t ∈ [1,∞);

(iii) if pθ < p < 2, then

∥∥p σt,θ
∥∥
p
∼
{
t−n/2σp

′ ∀t ∈ (0, 1]

t−`/2p
′
exp
(
−R 2σ

θ,p t
)

∀t ∈ [1,∞);

(iv) if p = pθ < 2, then

∥∥p σt,θ
∥∥
p
∼
{
t−n/2σp

′ ∀t ∈ (0, 1]

t−(`+1)/2σp′ ∀t ∈ [1,∞).

Proof. To prove (i) we use the Plancherel formula and pass to polar co-
ordinates, using formula (1):

∥∥p σt,θ
∥∥

2
=

[∫

a∗
exp
(
−2tQθ(Λ)σ

)
dµ(Λ)

]1/2

∼
[∫ ∞

0

exp
(
−2t[r2 + R 2

θ ]σ
)

(1 + r)n−ν rν−1 dr

]1/2

∼
[∫ 1

0

exp
(
−2t[r2 +R 2

θ ]σ
)
rν−1 dr

+

∫ ∞

1

exp
(
−2t[r2 + R 2

θ ]σ
)
rn−1 dr

]1/2

∀t ∈ (0,∞).

Now, from Lemma 2,

∫ 1

0

exp
(
−2t[r2 + R 2

θ ]σ
)
rν−1 dr ∼

{
1 ∀t ∈ (0, 1]
t−ν/2 exp(−2R 2σ

θ t) ∀t ∈ [1,∞)

and

∫ ∞

1

exp
(
−2t[r2 +R 2

θ ]σ
)
rn−1 dr ∼

{
t−n/2σ ∀t ∈ (0, 1]
t−1 exp

(
−2[1 + R 2

θ ]σ t
)

∀t ∈ [1,∞).

This proves (i).
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To prove (ii), we proceed similarly, using the inversion formula. For any
x in G,

∣∣p σt,θ(x)
∣∣ =

∣∣∣∣
∫

a∗
exp
(
−tQθ(Λ)σ

)
φΛ(x) dµ(Λ)

∣∣∣∣

≤
∫

a∗
exp
(
−tQθ(Λ)σ

)
|φΛ(x)| dµ(Λ)

≤
∫

a∗
exp
(
−tQθ(Λ)σ

)
φΛ(e) dµ(Λ)

= p σt,θ(e),

so that
∥∥p σt,θ

∥∥
∞ = p σt,θ(e). Now it is easy to see that

∥∥p σt,θ
∥∥
∞ =

∫

a∗
exp
(
−tQθ(Λ)σ

)
dµ(Λ) ∼

{
t−n/2σ ∀t ∈ (0, 1]
t−ν/2 exp(−R 2σ

θ t) ∀t ∈ [1,∞)

by a calculation like that of the L2(G)–norm of p σt,θ.

The hardest parts of this lemma are (iii) and (iv). We prove both cases
by obtaining first a lower bound, then an upper bound.

We begin the proof of (iii). Suppose that pθ < p < 2. By Theorem 2.1
of [3], and the fact that dµ̃(Λ)/dΛ ≥ C,

∥∥p σt,θ
∥∥
p
≥ C

[∫

a∗

∣∣p̃ σt,θ (Λ + iδ(p)ρ)
∣∣p′ dµ̃(Λ)

]1/p′

(2)

≥ C
[∫

b

exp
(
−tp′ Re

(
[Qθ(Λ + iδ(p)ρ)]σ

))
dΛ

]1/p′

∀t ∈ [1,∞),

where b denotes the unit ball in a∗. We denote the right hand side of the last
inequality by I(t). Now for all Λ in a∗,

Re
(
[Qθ(Λ + iδ(p)ρ)]σ

)
≤ |Qθ(Λ + iδ(p)ρ)|σ

=
(
〈Λ,Λ〉+ R 2

θ,p + 2iδ(p)〈ρ,Λ〉
)σ/2

≤
(
[〈Λ,Λ〉+ R 2

θ,p ]2 + 4δ(p)
2
R 2

0 〈Λ,Λ〉
)σ/2

=
(
〈Λ,Λ〉2 + γ1〈Λ,Λ〉+ γ2

)σ/2
,

where γ1 = 2R 2
θ,p + 4δ(p)

2
R 2

0 and γ2 = R 4
θ,p , so, by using polar co-ordinates,

and then changing variables
(
s = (r4 + γ1r

2 + γ2)1/4
)
, we see that

I(t) ≥ C
[∫ 1

0

exp
(
−tp′

(
r4 + γ1r

2 + γ2

)σ/2)
r`−1 dr

]1/p′

= C

[∫ γ

Rθ,p

exp
(
−tp′s2σ

)
(s− Rθ,p)`/2−1 ψ(s) ds

]1/p′

∀t ∈ [1,∞),



Cowling, Giulini and Meda 9

where γ = (1+γ1 +γ2)1/4 and ψ is a continuous strictly positive function on the
interval [Rθ,p, γ]. Now, Lemma 1 applies (where ω = 2σ, η = `/2 and α = Rθ,p )
and we conclude that

(3) I(t) ≥ C t−`/2p′ exp(−R 2σ
θ,p t) ∀t ∈ [1,∞);

combined with (2), this proves the lower bound of (iii).

We now prove the upper bound of (iii). From [3], Theorem 2.4, if
pθ ≤ p < 2, then ∥∥p σt,θ

∥∥
p
≤
∥∥p σt,θ φiδ(p)ρ

∥∥δ(p)
1

N1−δ(p),

where

N =

[∫

a∗

∣∣p̃ σt,θ (Λ + iδ(p)ρ)
∣∣2 dµ̃(Λ)

]1/2

=

[∫

a∗

∣∣exp
(
−t[Qθ(Λ + iδ(p)ρ)]σ

)∣∣2 dµ̃(Λ)

]1/2

=

[∫

a∗
exp
(
−2tRe

(
[Qθ(Λ + iδ(p)ρ)]σ

))
dµ̃(Λ)

]1/2

.

Since p σt,θ is a positive function,

∥∥p σt,θ φiδ(p)ρ
∥∥

1
= p̃ σt,θ (−iδ(p)ρ) = exp

(
−R 2σ

θ,p t
)
.

Thus

(4)
∥∥p σt,θ

∥∥
p
≤ exp

(
−δ(p)R 2σ

θ,p t
)
N1−δ(p).

To estimate N, we observe that

Re
(
[Qθ(Λ + iδ(p)ρ)]σ

)
≥
(
Re[Qθ(Λ + iδ(p)ρ)]

)σ
= [〈Λ,Λ〉+ R 2

θ,p ]σ ∀Λ ∈ a∗,

because, for any complex number z with nonnegative real part and any σ in
(0, 1), Re

(
zσ
)
≥
(
Re(z)

)σ
. We recall that dµ̃(Λ)/dΛ ≤ C(1 + |Λ|n−`), and pass

to polar co-ordinates, to deduce that

N ≤ C
[∫ ∞

0

exp
(
−2t[r2 +R 2

θ,p ]σ
)(

1 + rn−`
)
r`−1 dr

]1/2

∼
[∫ 1

0

exp
(
−2t[r2 +R 2

θ,p ]σ
)
r`−1 dr

+

∫ ∞

1

exp
(
−2t[r2 + R 2

θ,p ]σ
)
rn−1 dr

]1/2

≤ C t−`/4 exp
(
−R 2σ

θ,p t
)

∀t ∈ [1,∞),

by Lemma 2, so that

∥∥p σt,θ
∥∥
p
≤ exp

(
−δ(p)R 2σ

θ,p t
)
N1−δ(p) ≤ C t−`/2p′ exp

(
−R 2σ

θ,p t
)

∀t ∈ [1,∞),
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as required to prove (iii).

We now consider (iv). If p > 1 and ` > 1, then, much as argued to
prove (2),

∥∥p σt,θ
∥∥
p
≥ C

[∫

a∗

∣∣p̃ σt,θ (Λ + iδ(p)ρ)
∣∣p′ dµ̃(Λ)

]1/p′

≥ C
[∫

c

exp
(
−tp′ |Qθ(Λ + iδ(p)ρ)|σ

)
dΛ

]1/p′

∀t ∈ [1,∞),

where c denotes the subset of a∗ of all elements of the form Λ0 +λ1ρ, such that
〈Λ0, ρ〉 = 0, 〈Λ0,Λ0〉 ≤ 1, and 0 ≤ λ1 ≤ 1. We denote the right hand side of the
last inequality by J(t). Now if Λ may be written in this way, then

|Qθ(Λ + iδ(p)ρ)| =
∣∣〈Λ0,Λ0〉+ λ2

1R
2
0 + 2iδ(p)λ1R

2
0

∣∣
≤ 〈Λ0,Λ0〉+ λ2

1R
2
0 + 2λ1R

2
0

≤ 〈Λ0,Λ0〉+ 3λ1R
2
0 ,

so, passing to polar co-ordinates in ρ⊥, and then changing variables, we deduce
that

J(t) ≥ C
[∫ 1

0

∫ 1

0

exp
(
−tp′

∣∣λ2
0 + 3λ1R

2
0

∣∣σ)λ`−2
0 dλ0 dλ1

]1/p′

≥ C t−(`+1)/2σp′
[∫ t1/2σ

0

∫ t1/σ

0

exp
(
−p′

∣∣λ2
0 + 3λ1R

2
0

∣∣σ)λ`−2
0 dλ0 dλ1

]1/p′

≥ C t−(`+1)/2σp′ ∀t ∈ [1,∞),

as required to prove the lower bound. If p = 1 or ` = 1, the argument simplifies
but the conclusion is the same.

To prove the upper bound, we note first that (4) continues to hold, and
that R 2σ

θ,p = 0, so that
∥∥p σt,θ

∥∥
p
≤ N1−δ(p).

To estimate N, we write Λ = Λ0 + λ1ρ, where 〈Λ0, ρ〉 = 0, as above, and note
that

Re
(
[Qθ(Λ + iδ(p)ρ)]σ

)
= Re

(
[〈Λ0,Λ0〉+ λ2

1R
2
0 + 2iδ(p)λ1R

2
0 ]σ
)

≥ Re
(
[〈Λ0,Λ0〉+ 2iδ(p)λ1R

2
0 ]σ
)
.

We let Φ and Ψ : R+ ×R→ R be the functions given by the formulae

Φ(λ0, λ1) = Re
(
[λ2

0 + 2iδ(p)R 2
0 λ1]σ

)
∀λ0 ∈ (0,∞), ∀λ1 ∈ (−∞,∞)

Ψ(λ0, λ1) =
(
1 + λ0 + |λ1|

)n−` ∀λ0 ∈ (0,∞), ∀λ1 ∈ (−∞,∞),
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and recall that dµ̃(Λ)/dΛ ≤ C(1 + |Λ|n−`). By passing to polar co-ordinates in
ρ⊥ and changing variables, we deduce that

N =

[∫

a∗
exp
(
−2tRe

(
[Qθ(Λ + iδ(p)ρ)]σ

))
dµ̃(Λ)

]1/2

≤ C
[∫ ∞

−∞

∫ ∞

0

exp
(
−2tΦ(λ0, λ1)

)
Ψ(λ0, λ1)λ`−2

0 dλ0 dλ1

]1/2

= C t−(`+1)/4σ

[∫ ∞

−∞

∫ ∞

0

exp
(
−2 Φ(λ0, λ1)

)
Ψ(

λ0

t1/2σ
,
λ1

t1/σ
)λ`−2

0 dλ0 dλ1

]1/2

≤ C t−(`+1)/4σ ∀t ∈ [1,∞).

Now we can conclude that

∥∥p σt,θ
∥∥
p
≤ C t−(1−δ(p))(`+1)/4σ = C t−(`+1)/2σp′ ∀t ∈ [1,∞),

as required. This finishes the proof of (iv), and of Lemma 3. ut

For convenience, we list the results of our main theorem.

(i) if t > 0, then P σ
t,θ is Lp –Lq -bounded only if p ≤ q, p ≤ pθ

′,
and q ≥ pθ;

(ii) if pθ ≤ p ≤ pθ ′, |||P σ
t,θ|||p;p = exp

(
−R 2σ

θ,p t
)

for all t in (0,∞);

(iii) if p ≤ pθ
′ and q ≥ pθ, |||P σ

t,θ|||p;q ∼ t−n(1/p−1/q)/2σ for all t in

(0, 1];

(iv) if p < q = 2 or 2 = p < q, |||P σ
t,θ|||p;q ∼ t−ν/4 exp(−R 2σ

θ t) for all

t in [1,∞);

(v) if p < 2 < q, |||P σ
t,θ|||p;q ∼ t

−ν/2 exp(−R 2σ
θ t) for all t in [1,∞);

(vi) if p < q < 2 and q > pθ, |||P σ
t,θ|||p;q ∼ t−`/2q

′
exp
(
−R 2σ

θ,q t
)

for all

t in [1,∞);

(vii) if p < q = pθ, |||P σ
t,θ|||p;q ∼ t

−(`+1)/2σq′ for all t in [1,∞);

(viii) if 2 < p < q, |||P σ
t,θ|||p;q ∼ t

−`/2p exp
(
−R 2σ

θ,p t
)

for all t in [1,∞);

(ix) if pθ
′ = p < q, |||P σ

t,θ|||p;q ∼ t
−(`+1)/2σp for all t in [1,∞).

Proof of the theorem. First, a result of L. Hörmander [8] shows that P σ
t,θ

cannot be Lp –Lq -bounded unless p ≤ q. Next, P σ
t,θ cannot be Lp –Lq -bounded

when q < pθ, by the sufficient condition of J. L. Clerc and E. M. Stein [1] and the
fact that p̃ σt,θ continues analytically to Tδ(pθ) but to no larger tube. By duality,
P σ
t,θ cannot be Lp –Lq -bounded if p > pθ

′. This proves (i) . Observe that parts
(ii) to (ix) imply that P σ

t,θ is Lp –Lq -bounded if p ≤ q, p ≤ pθ ′, and q ≥ pθ.
We now prove (ii), for p in [pθ, 2]. Define Λp to be iδ(p)ρ. By C. S. Herz’

principe de majoration [7] and spherical Fourier analysis, we have that

|||P σ
t,θ|||p;p =

∫

G

p σt,θ(x)φΛp(x) dx = p̃ σt,θ (−Λp) = exp
(
−R 2σ

θ,p t
)

∀t ∈ (0,∞).
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By duality, this result also holds for p in [2, pθ
′].

Estimate (iii) is a consequence of the theory of ultracontractive semi-
groups, combined with the fact that |||P σ

t,θ|||1;∞ =
∥∥p σt,θ

∥∥
∞ and the estimate for∥∥p σt,θ

∥∥
∞ in Lemma 3 above. See, e.g., Cowling and Meda [4], E. B. Davies [5],

or N. Th. Varopoulos et al. [9].

Next we prove (iv). By duality, it suffices to treat the case where
p < 2 and q = 2. On the one hand, by the Kunze–Stein phenomenon [2],
|||P σ

t,θ|||p;2 ≤ C
∥∥p σt,θ

∥∥
2
, so that

|||P σt,θ|||p;2 ≤ C t
−ν/4 exp(−R 2σ

θ t) ∀t ∈ [1,∞),

from Lemma 3. On the other hand,

∥∥h1 ∗ p σt,θ
∥∥

2
≤ |||P σ

t,θ|||p;2 ‖h1‖p = C |||P σ
t,θ|||p;2 ∀t ∈ [1,∞);

by the Plancherel formula, formula (1), and Lemma 2,

∥∥h1 ∗ p σt,θ
∥∥

2
=

[∫

a∗
exp
(
−2tQθ(Λ)σ − 2Q0(Λ)

)
dµ(Λ)

]1/2

∼
[∫ ∞

0

exp
(
−2t[r2 +R 2

θ ]σ − 2[r2 + R 2
0 ]
)

(1 + r)n−ν rν−1 dr

]1/2

≥ C
[∫ 1

0

exp
(
−2t[r2 + R 2

θ ]σ
)
rν−1 dr

]1/2

∼ t−ν/4 exp(−R 2σ
θ t) ∀t ∈ [1,∞),

so that
|||P σt,θ|||p;2 ≥ C t

−ν/4 exp(−R 2σ
θ t) ∀t ∈ [1,∞).

It follows that |||P σ
t,θ|||p;2 ∼ t−ν/4 exp(−R 2σ

θ t) for all t in [1,∞), and (iv) is

proved.

To prove (v), we proceed similarly. On the one hand, from (iv),

|||P σ
t,θ|||p;q ≤ |||P

σ
t/2,θ|||p;2 |||P

σ
t/2,θ|||2;q

∼ t−ν/2 exp(−R 2σ
θ t) ∀t ∈ [1,∞).

On the other hand,

|||H1,0|||1;p |||P σ
t,θ|||p;q |||H1,0|||q;∞ ≥

∥∥h2 ∗ p σt,θ
∥∥
∞ ∼ t

−ν/2 exp(−R 2σ
θ t) ∀t ∈ [1,∞),

by an argument similar to that used in the proof of (iv) above. This completes
the proof of (v).

We now prove (vi). On the one hand, Theorem 2.2 in [3] and Lemma 3
may be invoked to show that

|||P σ
t,θ|||p;q ≤ C

∥∥p σt,θ
∥∥
q
≤ C t−`/2q′ exp

(
−R 2σ

θ,q t
)

∀t ∈ [1,∞).
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On the other hand,

∥∥h1 ∗ p σt,θ
∥∥
q
≤ |||P σ

t,θ|||p;q ‖h1‖p = C |||P σ
t,θ|||p;q ∀t ∈ [1,∞).

As argued to prove (2), if b again denotes the unit ball in a∗,

∥∥h1 ∗ p σt,θ
∥∥
q
≥ C

[∫

a∗

∣∣∣h̃1 (Λ + iδ(q)ρ) p̃ σt,θ (Λ + iδ(q)ρ)
∣∣∣
q′

dµ̃(Λ)

]1/q′

≥ C
[∫

b

∣∣∣h̃1 (Λ + iδ(q)ρ) p̃ σt,θ (Λ + iδ(q)ρ)
∣∣∣
q′

dΛ

]1/q′

≥ C
[∫

b

∣∣p̃ σt,θ (Λ + iδ(q)ρ)
∣∣q′ dΛ

]1/q′

∀t ∈ [1,∞),

since for Λ in b,
∣∣∣h̃1 (Λ + iδ(q)ρ)

∣∣∣ is bounded away from 0. This integral was

treated in the proof of Lemma 3 (see (3)), and we conclude that

|||P σt,θ|||p;q ≥ C t
−`/2q′ exp

(
−R 2σ

θ,q t
)

∀t ∈ [1,∞),

completing the proof of (vi).

Finally, (vii) is proved in the same way as (vi), but part (iv) of Lemma 3
is used instead of part (iii), and (viii) and (ix) follow from (vi) and (vii) by
duality. ut
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