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The density of the image of the exponential function

and spacious locally compact groups

Wojciech Jaworski

Communicated by Karl H. Hofmann

A connected locally compact group G is called spacious if there
exists a nonempty open set U ⊆ G such that Un ∩ Un+1 = Ø
for every positive integer n . G is called weakly exponential
if the union of its one-parameter subgroups is dense in G . We
prove the following conjecture of Hofmann and Mukherjea [Math.
Ann. 234, 263-273 (1978)]: G is spacious iff it fails to be weakly
exponential.

AMS classification: 22D05, 22E15, 22E46.

Let G be a connected locally compact group. Following Hofmann and Mukherjea
[3] we call G spacious if it admits a nonempty open subset U such that Un ∩
Un+1 = Ø for every positive integer n ∈ N . We call G weakly exponential if
the union of its one-parameter subgroups is dense in G .

When G = SL(n,R) and U ⊆ G is the set of matrices with all entries
strictly negative, then obviously Un ∩ Un+1 = Ø for all n . SL(n,R) is thus
an elementary example of a spacious connected locally compact group. On the
other hand, when G = R , U ⊆ R is open, and x ∈ U , there will be a positive
integer n such that y = nx/(n + 1) ∈ U . So nx = (n + 1)y ∈ Un ∩ Un+1 ,
and therefore R is not spacious. Using this result one immediately concludes
that a weakly exponential locally compact group is not spacious. Hofmann and
Mukherjea conjectured that the converse is also true, i.e., G is spacious iff it fails
to be weakly exponential [3, Conjecture 2.13]. The purpose of the present paper
is to give a proof of this conjecture.

We begin by quoting two lemmas from [3].

Lemma 1. A connected locally compact group G is weakly exponential iff every
neighbourhood of the identity e ∈ G contains a compact normal subgroup K such
that G/K is a weakly exponential Lie group.
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Of course, a connected Lie group G is weakly exponential iff the image of the
exponential map is dense in G .

Lemma 2. Let R denote the radical of a connected locally compact group G .
Then G is weakly exponential iff G/R is.

It is easy to see that if N is a closed normal subgroup of G such that G/N is
spacious then G is spacious. Therefore it is clear from Lemmas 1 and 2 that it
suffices to prove the conjecture in the case that G is a connected semisimple Lie
group (as pointed out in [3]).

Let G be a connected semisimple Lie group with Lie algebra g . Recall
that a Cartan subalgebra of g is a maximal abelian subalgebra h such that adX
is semisimple for every X ∈ h . The Cartan subgroup H(h) associated with h is
defined as the centralizer of h in G : H(h) = ZG(h) = {g ∈ G; Ad(g)�h = id} .
H(h) is a closed Lie subgroup with Lie algebra h . Thus if H(h) is connected
then H(h) = exp(h). Since the union of all Cartan subgroups of G is dense in
G [5, Theorem 1.4.1.7], one obtains:

Lemma 3. If all Cartan subgroups of a connected semisimple Lie group G are
connected then G is weakly exponential.

As shown in [3, Theorem 2.10] the converse is also true, but we do not need
this in our argument. To prove the conjecture it suffices to show that if some
Cartan subgroup is disconnected then G is spacious. We will achieve this goal
in two steps. First, we will show that spaciousness occurs when the minimal
parabolic subgroups of G are disconnected. Then we will show that if the
minimal parabolic subgroups are connected then the Cartan subgroups are also
connected.

Let G be a real connected semisimple Lie group with Lie algebra g . Let
g = k⊕l be a Cartan decomposition (k the subalgebra) and Θ the associated Car-
tan involution . We shall denote by 〈·, ·〉 the bilinear form 〈X,Y 〉 = −B(X,ΘY ),
X,Y ∈ g , where B(·, ·) is the Killing form. 〈·, ·〉 is a scalar product on g and
we shall write ‖X‖ for the norm

‖X‖ = (〈X,X〉)1/2. (1)

Let a be a maximal abelian subspace of l . For any linear functional λ
let,

gλ = {X ∈ g; (adY )X = λ(Y )X for all Y ∈ a}. (2)

When gλ 6= {0} , λ is called a root of g (relative to a). One proves that
g =

⊕
λ∈∆ gλ , where the sum is over the set ∆ of roots. Moreover, the gλ ’s are

orthogonal with respect to the scalar product 〈·, ·〉 . Let ≥ be any total vector
order in the dual space a∗ of a and denote by ∆+ set of positive (nonzero) roots.
Set n =

⊕
λ∈∆+

gλ . Then n is a nilpotent subalgebra of g and one obtains an
Iwasawa decomposition g = k⊕ a ⊕ n . Let K ,A , and N denote the connected
Lie subgroups of G with Lie algebras k , a , and n , respectively. Then the map
K×A×N 3 (k, a, n)→ kan ∈ G is a diffeomorphism onto G and one obtains an
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Iwasawa decomposition G = KAN . We note that K contains the centre C(G)
and is compact iff C(G) is finite.

We shall denote by M the centralizer of A in K . M is either discrete
or a closed Lie subgroup with Lie algebra m = g0 ∩ k . The set MAN is a closed
cocompact subgroup of G called the minimal parabolic subgroup associated with
the Iwasawa decomposition G = KAN . All Iwasawa decompositions of G , and
therefore also all minimal parabolic subgroups are conjugate.

Let ñ =
⊕

λ∈−∆+
gλ . Then ñ is a nilpotent subalgebra. We shall write

Ñ for the connected Lie subgroup of G with Lie algebra ñ . Given a subgroup
H ⊆ G we shall denote by H0 the connected component of the identity e . We
note that (MAN)0 = M0AN . The following lemma is a version of Lemma III.6
in [1, p. 66].

Lemma 4. There exists an open semigroup S ⊆ G , an open neighbourhood V
of e in G , and an element a ∈ A such that V aM0 ⊆ S ⊆ ÑM0AN .

Proof. Choose Z ∈ a so that λ(Z) > 0 for all λ ∈ ∆+ . Set a = exp(Z)
and γ = exp

(
−min{λ(Z);λ ∈ ∆+}

)
< 1. Then for every X ∈ ñ we have

‖Ad(a)X‖ ≤ γ‖X‖ . where ‖·‖ is the norm (1). Let Ω be an open ball in n with
centre 0. Put E = π

(
exp(Ω)

)
and E′ = π

(
exp(Ω)

)
where π : G→ G/M0AN is

the canonical map. E is clearly a compact subset and E ′ ⊆ E . Now, exp(Ω)
is open because Ñ is a simply connected nilpotent Lie group. As the map
Ñ × MAN 3 (x, y) → xy is a diffeomorphism onto an open subset of G [2,
pp. 406-407], it follows that E ′ = π

(
exp(Ω)

)
= π

(
exp(Ω)M0AN

)
is open.

Furthermore, aE = π
(
exp
(
Ad(a)Ω

))
⊆ π

(
exp(Ω)

)
= E′ .

Define S = {g ∈ G; gE ⊆ E ′} . Then S is a semigroup containing a . S
is open because E is compact while E ′ is open.

Let V be a neighbourhood of e in G such that V a ⊆ S . Let v ∈ V
and g ∈ M0 . Then vagE = vaπ

(
g exp(Ω)

)
= vaπ

(
exp
(
Ad(g)Ω

))
. Since

Ad(g) ∈ Ad(K) is an isometry, Ad(g)Ω = Ω and therefore vagE = vaE ⊆ E ′ .
So V aM0 ⊆ S .

It remains to show that S ⊆ ÑM0AN . But M0AN = π(e) ∈ E . Hence,
π(S) = Sπ(e) ⊆ E′ ⊆ π(Ñ). So S ⊆ ÑM0AN .

Lemma 5. If M is disconnected then G is spacious.

Proof. By Lemma 4 there exists an open semigroup S , an open neighbour-
hood V of e in G , and a ∈ A such that V aM0 ⊆ S ⊆ ÑM0AN . We can assume
that V = exp(Ω) where Ω = {X ∈ g; ‖X‖ < ε} for sufficiently small ε > 0.
Let x ∈ M −M0 . As Ad(x) preserves the norm ‖ · ‖ , we have xV x−1 = V .
Furthermore, V aM0 ⊆ S and xV aM0x

−1 = V aM0 (because x centralizes a

and normalizes M0 ). Consequently, S1 =
⋃∞
i=1

(
V aM0

)i ⊆ S ⊆ ÑMAN is
an open semigroup such that xS1x

−1 = S1 . Hence, setting U = xS1 we have
Un ∩ Un+1 ⊆ xnS1 ∩ xn+1S1 = xn

(
S1 ∩ xS1

)
⊆ xn

(
ÑM0AN ∩ ÑxM0AN

)
(be-

cause x normalizes Ñ ). Using the fact that the map Ñ ×M ×AN 3 (g, h, k)→
ghk is one-to-one we conclude that Un ∩ Un+1 = Ø for all n ∈ N . So G is
spacious.
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Given a Cartan subalgebra h ⊆ g we shall write hk for h ∩ k and hl for
h ∩ l . If h is stable under Θ then h = hk ⊕ hl . We shall denote by Ha the set
of all Cartan subalgebras containing a . Ha coincides with the set of maximal
abelian subspaces of g containing a . If h is a member of Ha then h is Θ-stable,
hl = a and hk ⊆ m = g0 ∩ k .

Lemma 6. m =
⋃

h∈Ha
hk .

Proof. Let X ∈ m . If h is a maximal abelian subspace containing both X
and a , then h ∈ Ha and X ∈ hk .

Lemma 7. There exist :

(i) a compact connected semisimple Lie group G# with Lie algebra g# and
trivial centre;

(ii) a linear isomorphism F : g → g# such that F [X,Y ] = [FX,FY ] for
X ∈ k , Y ∈ g , and F [X,Y ] = −[FX,FY ] for X,Y ∈ l ;

(iii) an analytic homomorphism ϕ : K → G# such that F � k is the differential
of ϕ at e and FAd(g) = Ad

(
ϕ(g)

)
F for all g ∈ K .

Proof. Let g̃ be the complexification of g . Then k⊕ il is a compact real form
of g̃ . Set G# = Int(k⊕ il). Identify k⊕ il with the Lie algebra of G# and define
F by F (X + Y ) = X + iY , X ∈ k , Y ∈ l . Given g ∈ K define ϕ(g) to be the
complexification of Ad(g) restricted to k⊕ il .

Remark 8. Kerϕ = C(G). [F k, F l] ⊆ F l , [F l, F l] ⊆ F k .

Lemma 9. Let W ⊆ g be a subset. Denote by ZK(W ) (resp., ZG#
(FW ))

the centralizer of W (resp., FW ) in K (resp., in G# ). Then ZK(W ) =
ϕ−1

(
ZG#

(FW )
)

.

Proof. Obvious by Lemma 7(iii).

We shall write K# for the connected Lie subgroup of G# with Lie algebra F k .
Clearly, K# = ϕ(K).

Lemma 10. If M is connected then K# ∩ exp(Fa) ⊆ exp(Fm) .

Proof. Let g ∈ K# ∩ exp(Fa). Clearly, g ∈ ZG#
(Fa). But g = ϕ(g′) for

some g′ ∈ K . By Lemma 9, g′ ∈ ZK(a) = M . As M is connected and has
compact Lie algebra m , M = exp(m). So g = ϕ(g′) ∈ ϕ

(
exp(m)

)
= exp(Fm)

by Lemma 7(iii).

For the next lemma see [5, Proposition 1.4.1.2].

Lemma 11. Let h be a Θ-stable Cartan subalgebra. Set HK(h) = H(h) ∩K .
Then H(h) = HK(h) exp(hl) and H(h) is connected iff HK(h) is connected.

Theorem 12. The following conditions are equivalent for a connected semi-
simple Lie group G :
(a) the minimal parabolic subgroups of G are connected;
(b) the Cartan subgroups of G are connected;
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(c) G is weakly exponential;
(d) G is not spacious.

Proof. (a) ⇒ (b): Every Cartan subalgebra h is conjugate in Int(g) to a
Θ-stable Cartan subalgebra h′ such that h′l ⊆ a [5, Proposition 1.3.1.1]. There-
fore it suffices to consider Cartan subgroups H = H(h) where h is Θ-stable and
hl ⊆ a . Due to Lemma 11 it suffices to show that HK = exp(hk).

Let g ∈ HK . Then ĝ = ϕ(g) ∈ ZG#
(Fh) (Lemma 9). It is easy

to see that Fh is a maximal abelian subalgebra of g# . As g# is compact,
this means that Fh is a Cartan subalgebra [4, Lemma 4.12.1]. As G# is
compact and connected, H(Fh) = exp(Fh) [4, Theorems 4.12.3 and 4.12.5].
Therefore ĝ = exp(FX) for some X ∈ h . Write X = X1 + X2 , X1 ∈
hk , X2 ∈ hl . Then ĝ = exp(FX1) exp(FX2), and FX2 ∈ Fhl ⊆ Fa . As
ĝ ∈ K# , ĝ2 = exp(FX2) = exp(−FX1)ĝ ∈ K# ∩ exp(Fa). By Lemma 10
exp(FX2) = exp(FX ′2) where X ′2 ∈ m . As m =

⋃
h′∈Ha

h′k (Lemma 6), there
exists h′ ∈ Ha with X ′2 ∈ h′k . Then h and h′ are two Θ-stable Cartan
subalgebras such that hl ⊆ h′l = a . By [5, Proposition 1.3.1.3] there exists
k ∈ K such that Ad(k)� hl = id and Ad(k)h′k ⊆ hk . Now, ϕ(k)ĝ2ϕ(k)−1 =
ϕ(k) exp(FX2)ϕ(k)−1 = exp

(
Ad(ϕ(k))FX2

)
= exp

(
FAd(k)X2

)
= exp(FX2) =

ĝ2 (by Lemma 7(iii)). Hence, ĝ2 = ϕ(k)ĝ2ϕ(k)−1 = ϕ(k) exp(FX ′2)ϕ(k)−1 =
exp
(
Ad(ϕ(k))FX ′2

)
= exp

(
FAd(k)X ′2

)
= exp(FX ′′2 ), where X ′′2 ∈ hk . So

ϕ(g) = ĝ = exp(FX1) exp(FX ′′2 ) = exp(FY ) = ϕ
(
exp(Y )

)
, where Y ∈ hk .

Since Kerϕ = C(G), g = exp(Y )c where c ∈ C(G). But C(G) ⊆ M =
exp(m) because M is connected and m is compact. So c = exp(Z) for some
Z ∈ m . Then by Lemma 6 there exists h′ ∈ Ha such that Z ∈ h′k . Again, h and
h′ are two Θ-stable Cartan subalgebras such that hl ⊆ h′l = a . So there exists
k ∈ K such that Ad(k)�hl = id and Ad(k)h′k ⊆ hk [5, Proposition 1.3.1.3]. We
then have c = kck−1 = exp(Ad(k)Z) = exp(Z ′) with Z ′ ∈ hk . Consequently,
g = exp(Y + Z ′), and Y + Z ′ ∈ hk . Thus HK = exp(hk).

(b) ⇒ (c): Lemma 3.

(c) ⇒ (d): explained at the beginning of the paper.

(d) ⇒ (a): Lemma 5.

Corollary 13. A connected locally compact group fails to be weakly exponential
iff it is spacious.

Remark 14. Using Lemma 7 one can prove an analog of Lemma 6 for the
group M . Namely, M =

⋃
h∈Ha

HK(h). This, together with Lemma 11 allows
to obtain the implication (b) ⇒ (a) of Theorem 12 directly, without involving
(c) and (d).
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