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Résumé. Pour tout groupe simple réel G possédant des représentations

unitaires de plus haut poids on peut definir l’espace de Hardy H2(G) . C’est

un espace hilbertien formé des fonctions holomorphes dans un tube ‘non–

commutatif’ Γ0 satisfaisant une condition de type Hardy (Γ0 est l’intérieur

d’un semi–groupe complexe Γ contenant le groupe G ). L’espace H2(G) s’i-

dentifie au sous–espace bi–invariant de L2(G) portant la série discrète holo-

morphe. Le noyau reproduisant K de l’espace de Hardy est appelé le noyau

de Cauchy–Szegö. Le résultat principal de l’article est un calcul explicite

de ce noyau pour 3 familles de groupes G : groupes symplectiques Sp(n,R) ,

groupes métaplectiques Mp(n,R) , et groupes pseudo–unitaires SU(p,q) .

Abstract. For any simple real group G possessing unitary highest weight

representations one can define the Hardy space H2(G) . This is a Hilbert

space formed by holomorphic functions in a ‘non–commutative’ tube do-

main Γ0 satisfying a Hardy–type condition (Γ0 is the interior of a non–

commutative complex semigroup Γ containing the group G ). The space

H2(G) is identified with the bi–invariant subspace of L2(G) carrying the

holomorphic discrete series. The reproducing kernel K of the Hardy space

is called the Cauchy–Szegö kernel. The main result of the paper is an ex-

plicit calculation of this kernel for 3 families of groups G : the symplectic

groups Sp(n,R) , the metaplectic groups Mp(n,R) , and the pseudo–unitary

groups SU(p,q) .

Introduction

Let H be a Hilbert space whose elements f are holomorphic functions in a
complex domain D 1 . Then one can associate to H a kernel function K : if

1 More exactly, one should assume that H is continuously embedded into O(D) ,

the space of all holomorphic functions, equipped with the topology of uniform convergence on

compact subsets.
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f1, f2, . . . is an arbitrary orthonormal basis in H then

K(z, w) = f1(z)f1(w) + f2(z)f2(w) + . . . , z, w ∈ D,

and the definition does not depend on the choice of the basis. The kernel K
possesses the following properties: K is holomorphic in z and anti–holomorphic
in w ; K(z, w) = K(w, z); K is a positive definite kernel on D × D ; for any
w ∈ D the function K(·, w) lies in H ; for any function f ∈ H and any w ∈ D

f(w) = (f,K(·, w))H

(the reproducing property); in particular, for any z, w ∈ D

(K(·, w), K(·, z))H = K(z, w);

finally, the initial Hilbert space H is uniquely determined by its kernel function
K .

Classical examples are the Bergman and Hardy (H2 ) spaces in the unit
disc |z| < 1 and the (say, right) half–plane Re z > 0.

For the Bergman space, the square of norm ‖f‖2 is obtained by inte-
grating |f(z)|2 over the domain with respect to the Lebesgue measure, and the
corresponding kernel function has the form

(1− zw)−2 (the disc) or (z + w)−2 (the half–plane).

For the Hardy space, ‖f‖2 is defined as the integral of |f(z)|2 over the
boundary,2 and the corresponding kernel function is

(1− zw)−1 (the disc) or (z + w)−1 (the half–plane).

It is well–known that these examples can be generalized to multidimen-
sional bounded symmetric domains and to tube domains Rn+iC (where C is an
open convex cone in Rn ); further generalizations involve interpolation between
the Bergman and Hardy cases, vector–valued holomorphic functions etc. Note
that various Hilbert spaces of holomorphic functions and their kernel functions
naturally arise in connection with unitary highest weight representations. (See,
e.g., Faraut and Korányi [3], Inoue [10], Stein and Weiss [22], Vergne and Rossi
[23].)

The present paper deals with multidimensional complex domains of an-
other kind, which may be viewed as ‘noncommutative’ tube domains.

Let D be an irreducible bounded symmetric domain and G be a con-
nected group, locally isomorphic to the automorphism group of D . Then G is
(locally isomorphic to) one of the groups SU(p, q), Sp(n,C), SO∗(2n), SO0(2, n)
or certain 2 exceptional groups of type E . Let GC be the complexification of
G .3 Then in GC there exist closed subsemigroups Γ with nonempty interior Γ0

2 The boundary value of f(z) must be defined in a suitable way.
3 To simplify the discussion we tacitly assume here that G is linear, i.e., admits a global

complexification; however, this assumption is not essential.
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such that Γ ⊃ G and Γ 6= GC (in particular, Γ and Γ0 are invariant with respect
to the two–sided action of the group G). The existence of such semigroups is
closely related to the existence of proper closed invariant convex cones C in g ,
the Lie algebra of G : there is a bijective correspondence Γ↔ C between semi-
groups and cones, and each open semigroup Γ0 has the form G exp iC0 , where
C0 is the interior of the cone C . (See Olshanski [19], Hilgert and Neeb [6].)
Thus, Γ0 indeed looks as a ‘noncommutative’ tube domain with skeleton G .

It turns out that for any semigroup Γ one can define a Hilbert space
H2(Γ) ⊂ O(Γ0), which is an analogue of the Hardy H2 space. The space
H2(Γ) admits a canonical isometric embedding into L2(G) as a two–sided G -
invariant subspace. When Γ is the so–called minimal semigroup, H2(Γ) just
carries the holomorphic discrete series of G (in general case H2(Γ) carries a
part of the holomorphic discrete series). Let K(z, w) be the kernel function of
the space H2(Γ) (it is also called the Cauchy–Szegö kernel). Then the kernel
K(z, g), where z ∈ Γ, g ∈ G ,4 defines the orthoprojection L2(G)→ H2(Γ). In
particular, if the semigroup is minimal then this is the orthoprojection onto the
holomorphic discrete series.

The idea of Hardy spaces carrying the holomorphic discrete series is due
to Gelfand and Gindikin [4]. A construction of the spaces H2(Γ) was given in
author’s paper [20]. Further works in this direction are Hilgert and Ólafsson [7],
Hilgert, Ólafsson, and Ørsted [8].

A natural problem is to compute the Cauchy–Szegö kernel explicitly, at
least for the minimal semigroups. To this end, one can try to start from the
following presentation of the Cauchy–Szegö kernel:

Assume the center of G is finite. Let λ range over the set of the highest
weights of the holomorphic discrete series representations Tλ occuring in the
decomposition of H2(Γ) (recall that if Γ is minimal, the whole holomorphic
discrete series occurs). Let fdimλ stand for the formal dimension of Tλ , let χλ
denote the character of Tλ , which admits a canonical holomorphic extension to
Γ0 , and let w 7→ w# be the antilinear antiautomorphism of the semigroup that
extends the antiautomorhism g 7→ g−1 of the group G . Then we have

(0.1) K(z, w) =
∑

λ

fdim(λ) · χλ(w#z), z, w ∈ Γ0.

Since for both fdim(λ) and χλ there exist nice formulas, the problem
consists in evaluating the series

(0.2)
∑

λ

fdim(λ) · χλ(γ), γ ∈ Γ0.

The idea of this approach to computing the Cauchy–Szegö kernel was
indicated in [4]; there it was illustrated on the simplest example of the group
SU(1, 1) = Sp(1,R). In the present paper, the sum (0.2) (and hence the Cauchy–
Szegö kernel) is computed for three families of groups G : the symplectic groups

4 Note that the kernel is still well–defined if one of the argument lies in the interior Γ0

of the semigroup and another argument – on the boundary Γ\Γ0 .
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Sp(n,R), their two–sheeted coverings (the metaplectic groups) Mp(n,R), and
the pseudo–unitary groups SU(p, q) (note that for the first and second families
the semigroup Γ is unique, and for the third family only the minimal semigroup
is considered). These are the main results of the paper.

Two methods to sum the series (0.2) are presented. The first method
is based on a certain preliminary transformation of (0.2), which is effectued in
general terms of root data and holds for any G . The second method consists
in reducing the problem to a certain combinatorial identity involving finite–
dimensional characters of classical groups (a Littlewood–type formula).

The case of G = Sp(n,R) seems to be the simplest one. It can be easily
handled by both methods. Moreover, in this case the result also can be obtained
by a direct elementary computation: in fact, this computation, performed by my
student V. Ivanov, was the starting point of the present work.

The other two cases require more efforts. For G = Mp(n,R) I apply the
first method, and for G = SU(p, q) — the second one.

Note that an analogue of the Hardy space H2(Γ) also can be defined
when the groups G are replaced by certain pseudo–Riemannian symmetric spaces
G/H ; then the role of Γ0 ⊂ GC is played by a domain in GC/HC (see [8]). In
the particular case of the hyperboloids G/H = SO0(1, n)/SO0(1, n − 1) the
Cauchy–Szegö kernel was found by Molchanov . The paper [13] by Koufany and
Ørsted contains (among other things) a calculation of the Cauchy–Szegö kernel
for the group U(1, 1), and in the next papers [14], [15] these authors computed
the ‘odd’ part of the kernel for the groups G = Mp(n,R) and G = Spin∗(2n)
and also the whole kernel for G = U(p, q). Note that the approach of [13]–[15]
is quite different from that of the present paper (it does not use summation of
characters).

It would be interesting to continue the study of Cauchy–Szegö kernels for
groups and symmetric spaces and to single out the cases when the kernel admits
a closed expression.

A related open problem, raised by J. Faraut, is to study (for the same
groups and symmetric spaces) Bergman–type spaces of holomorphic functions
and the corresponding kernels (as was observed by J. Faraut, the Bergman space
on a semigroup Γ can be defined by integrating |f(z)|2 with respect to the Haar
measure of GC , restricted to Γ0 , and a similar definition also holds when GC is
replaced by GC/HC ).

The paper is organized as follows.

– Sections 1–2 contain basic notations and definitions.

– In Sections 3, I use Harish–Chandra’s result [5] about the formal
dimensions of the holomorphic discrete series representations to write down
the Cauchy–Szegö kernel as a series involving finite–dimensional characters only
(Corollary 3.5).

– Section 4 is devoted to a useful transformation of the series (0.2)
(Theorem 4.2). As a corollary, on obtains that the series is essentially a rational
function (Theorem 4.3): this is the only result that I could prove for general
groups G .

– Sections 5–7 contain proofs of the main results (Theorems 5.1, 6.1, and
7.1).
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– In Section 8, I prove two character identities (Lemma 5.2 and Lemma
7.4), which are used in the second proof of Theorem 5.1 and in Theorem 7.1,
respectively.
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1. Basic notation

Let g be a simple real Lie algebra, let k ⊂ g be a maximal compact subalgebra,
and let h ⊂ k be a Cartan subalgebra. One supposes that k is not semisimple:
k 6= [k, k] ; then k has a one–dimensional center and h also is a Cartan subalgebra
for g .

The Lie algebras g with k 6= [k, k] are called Hermitian Lie algebras 5 ;
recall that there exist four infinite series of classical Hermitian algebras (su(p, q),
sp(n,R), o∗(2n), o(2, n)) and two exceptional ones.

Let the symbol (·)C denote complexification. Fix a system ∆+ of posi-
tive roots for (gC, hC); then ∆+ is disjoint union of ∆+

c and ∆+
n , the compact

and noncompact roots, respectively.6 Let ρ (respectively, ρc , ρn ) be the half–
sum of the roots in ∆+ (respectively, ∆+

c , ∆+
n ); then ρ = ρc + ρn . Let W and

Wc be the Weyl groups for (gC, hC) and (kC, hC), respectively.

Put hRe = ih ⊂ hC , let h∗Re be the dual space, and let 〈·, ·〉 be the pairing
between h∗Re and hRe . Note that ∆+ ⊂ h∗Re . For a root α ∈ ∆+ , let α∨ ∈ hRe

be the dual root. Let P ⊂ h∗Re be the lattice of weights for (gC, hC); recall that
〈λ, α∨〉 ∈ Z for λ ∈ P and α ∈ ∆+ .

Let P+ ⊂ P (resp., P+ ⊂ P ) be the set of dominant weights relative
to ∆+ (resp., ∆+

c ). I.e., these are weights λ ∈ P satisfying the condition
〈λ, α∨〉 ≥ 0 for α ∈ ∆+ (for α ∈ ∆+

c , respectively). In particular, P+ is
contained in P+ . Further, let P+− consists of those weights λ ∈ P+ that satisfy
the condition 〈λ+ ρ, β∨〉 < 0 for each β ∈ ∆+

n .

Let GC be the connected simply connected complex Lie group corre-
sponding to gC , and let G , K , H , KC , and HC stand for the (connected)
subgroups in GC corresponding to the subalgebras g , k , h , kC , and hC , respec-
tively. Note that the group G is not simply connected: its fundamental group is

5 Because these are algebras corresponding to Hermitian symmetric spaces.
6 Recall that a root is said to be compact if the corresponding root vector lies in kC ,

and noncompact, otherwise.
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isomorphic to Z .

2. The Cauchy–Szegö kernel

As main references to this section one may use Vinberg [24] and Olshanski [19],
[20]. Also see the introductory paper Faraut [2].

We maintain the notation of section 1. The property k 6= [k, k] implies
that in the vector space ig ⊂ gC there exist (nontrivial) closed convex G -
invariant cones. Among them there is a unique (within multiplication by −1)
minimal cone Cmin . Let cmin ⊂ hRe denote the closed convex cone spanned by
the dual roots β∨ , β ∈ ∆+

n ; then Cmin ∩hRe is either cmin or −cmin (depending
on agreement), and we may choose the first variant.

Put Γ = G expCmin ⊂ GC ; this is a complex semigroup in GC . Let C0
min

be the interior of the cone Cmin ⊂ ig ; then Γ0 := G expC0
min is the interior of

Γ ⊂ GC ; hence Γ0 is a complex variety.

Let O(Γ0) be the space of holomorphic functions on Γ0 ; O(Γ0) is
equipped with the topology of uniform convergence on compact subsets of Γ0 .
The Hardy space H2(G) is a certain Hilbert space, continuously embedded into
O(Γ0). It consists of those functions f ∈ O(Γ0) for which

‖f‖2 := sup
γ∈Γ0

∫
|f(gγ)|2dg <∞.

The reproducing kernel for this Hilbert space is called the Cauchy–Szegö
kernel for the group G (or the semigroup Γ). This is a certain function K(γ1, γ2)
on Γ0 × Γ0 , holomorphic in γ1 and antiholomorphic in γ2 .

Note that K(γ1, γ2) is still well–defined when one of the arguments
belongs to the boundary Γ \ Γ0 of Γ0 . This allows one to put

L(γ) = K(γ, e), γ ∈ Γ0,

where e denotes the unity of the group GC . The function L(γ) is a holomorphic
function in Γ0 , invariant under transformations γ 7→ gγg−1 , where g ranges over
G . Note that the kernel K(γ1, γ2) can be recovered from the function L(γ):

(2.1) K(γ1, γ2) = L(γ#
2 γ1),

where γ 7→ γ# denotes the involutive antiholomorphic antiautomorphism of the
semigroup Γ, defined by

(g expX)# = (expX)g−1 = g−1 exp(Ad(g)X).

The objective of the present paper is to calculate, for certain groups G ,
the Cauchy–Szegö kernel K (or, that is the same, the corresponding function L
in one variable).

Let c0min be the interior of the cone cmin ⊂ hRe , let H+
C = H exp c0min ,

and let H+
Re = exp c0min . Note that H+

C = HC ∩ Γ0 .
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Lemma 2.1. The function L is uniquely determined by its restriction to H+
C ,

even to H+
Re .

Proof. Since L is a holomorphic function on Γ0 , it is uniquely determined
by its restriction to expC0

min ⊂ Γ0 . Now let us regard L as a function on
the open cone C0

min . Since L is G -invariant and each G -orbit in C0
min has

a nonempty intersection with c0min ⊂ hRe (see Vinberg [24], Theorem 5), L is
uniquely determined by its restriction to c0

min , which completes the proof.

3. The holomorphic discrete series
and the Harish–Chandra correspondence

The main reference for this section is Harish–Chandra [5]. See also Faraut [2].

Recall that the holomorphic discrete series for the group G consists of
those irreducible unitary representations of G that are square–integrable and
possess a highest weight λ . The possible values for λ are exactly the set P+−
defined above in section 1. Given λ ∈ P+− , let us denote by Tλ the corresponding
representation of G , which is uniquely determined by the weight λ . Each Tλ
admits a (unique) holomorphic extension to a representation Tλ of the semigroup
Γ, operating in the Hilbert space of Tλ . For γ ∈ Γ0 , the operator Tλ(γ) is
contractive (i.e., ‖Tλ(γ)‖ ≤ 1) and depends holomorphically on γ . Moreover,
Tλ(γ) is of trace class. (About holomorphic extensions of highest weight unitary
representations see [19].7 )

Lemma 3.1. Let fdimTλ denote the formal dimension of Tλ (as a square–
integrable representation). Then

(3.1) L(γ) =
∑

λ∈P+−

fdimTλ · tr Tλ(γ), γ ∈ Γ0.

Note that both fdimTλ and L(γ) depend on the normalization of the Haar
measure dg of the group G .

Proof. For each λ ∈ P+− , choose an orthonormal basis ξλ1, ξλ2, . . . in the
Hilbert space of Tλ . Recall that our Hardy space carries the whole holomorphic
discrete series. Therefore, it follows from the orthogonality relations that the
(normalized) matrix coefficients

fλij(γ) := (fdimTλ)1/2(Tλ(γ)ξλi, ξλj), γ ∈ Γ0,

where λ ∈ P+− and i, j = 1, 2, . . ., constitute an orthonormal basis in the Hardy
space.

It follows that

L(γ) = K(γ, e) =
∑

λ,i,j

fλij(γ)fλij(e)

7 For general Lie groups these topics are discussed in Neeb’s papers [17], [18].
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=
∑

λ,i

(fdimTλ)1/2fλii(γ)

=
∑

λ

fdimTλ
∑

i

(Tλ(γ)ξλi, ξλi)

=
∑

λ

fdimTλ · tr Tλ(γ).

Formula (3.1) is the starting point for our computation of the function
L .

Since P+− ⊂ P+ , for each λ ∈ P+− there exists an irreducible finite–
dimensional representation πλ of the complex group KC with highest weight λ .
For x ∈ HC and λ ∈ P , let us write xλ for the value of λ , viewed as a one–
dimensional character of the torus HC , at x . That is to say, xλ = exp〈λ, logx〉 .

Lemma 3.2. For each λ ∈ P+−

trTλ(x) = trπλ(x)θ(x), x ∈ HC,

where

(3.2) θ(x) =
∏

β∈∆+
n

(1− x−β)−1.

Proof. Assume first Tλ is an arbitrary irreducible unitary highest weight rep-
resentation of G (not necessarily square integrable). Consider the corresponding
irreducible unitarizable Harish–Chandra (g, K)-module that is realized in the
space of K -finite vectors of Tλ . Then this module is either the generalized
Verma module Mλ (induced from an irreducible finite–dimensional module πλ
over a maximal parabolic subalgebra of g) or the minimal proper quotient Lλ of
Mλ . In the former case Tλ is called nondegenerate, and in the latter case it is
called degenerate. It is easily verified that for a nondegenerate Tλ , the trace of
its holomorhic extension Tλ is given by the above formula. Finally one applies a
Harish–Chandra’s result [5] stating (in our terms) that if Tλ is square–integrable
then it is nondegenerate.

Let w0 ∈ Wc stand for the (unique) element of maximal length; note
that w2

0 = 1. Then

w0(∆+
c ) = −∆+

c , w0(∆+
n ) = ∆+

n ,

whence
w0(ρc) = −ρc, w0(ρn) = ρn.

Define ϕ : P → P by

ϕ(λ) = −w0(λ+ ρ)− ρ = −w0(λ)− 2ρn.

Note that
−w0(λ+ ρ) = ϕ(λ) + ρ,

so ϕ is an involutive map of P .
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Lemma 3.3. One has ϕ(P+−) = P+ and ϕ(P+) = P+− , so that ϕ defines a
bijective correspondence P+− ↔ P+ .

Proof. Remark that P+ and P+− may be described as follows:

P+ = {µ ∈ P
∣∣ 〈µ+ ρ, α∨〉 > 0 for each α ∈ ∆+ }

P+− = {λ ∈ P
∣∣ 〈λ+ ρ, α∨〉 > 0 for α ∈ ∆+

c and 〈λ+ ρ, β∨〉 < 0 for β ∈ ∆+
n }

Now the claim of the Lemma follows from the fact that

−w0(∆+
c ) = ∆+

c , −w0(∆+
n ) = −∆+

n .

For µ ∈ P+ , let Vµ denote the irreducible finite–dimensional (complex–
analytic) representation of the group GC with highest weight µ , and let dimVµ
denote the dimension of Vµ .

Lemma 3.4. For an appropriate normalization of the Haar measure dg on the
group G ,

(3.3) fdimTλ = dimVϕ(λ) for each λ ∈ P+− .

Proof. For a proof, see Harish–Chandra [5], paper VI, Theorem 4.

It is natural to call the correspondence P+− ↔ P+ or {Tλ} ↔ {Vϕ(λ)}
the Harish–Chandra correspondence.

Throughout the paper we assume that the normalization of the Haar
measure is chosen so that relation (3.3) does hold.

Lemmas 3.1–3.4 imply the following

Corollary 3.5. For each x ∈ H+
C

(3.4) L(x) = θ(x)
∑

µ∈P+

dimVµ · trπϕ(µ)(x),

where θ(x) is defined by (3.2).

Example 3.6. Consider the simplest case G = SU(1, 1). Then each element
x ∈ H+

C may be viewed as the 2 × 2 diagonal matrix with the diagonal entries
x−1 , x , where x now stands for a complex number, |x| < 1. Then the series
(3.4) turns into

(3.5) L(x) = (1− x2)−1
∞∑

m=0

(m+ 1)
xm+2

1− x2
=

x2

(1− x)3(1 + x)
.

An equivalent expression can be found in Gelfand and Gindikin [4] (see also
Faraut [2]).
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4. An expression for the function L

Let ε : W → {±1} denote the standard multiplicative function,

ε(w) = (−1)length(w).

We shall need Weyl’s character formulas for the groups GC and KC :

(4.1) trVµ(z) =

∑
w∈W ε(w)w(z)µ+ρ

∑
w∈W ε(w)w(z)ρ

, z ∈ HC, µ ∈ P+,

(4.2) trπλ(z) =

∑
w′∈Wc

ε(w′)w′(z)λ+ρ

∑
w′∈Wc

ε(w′)w′(z)ρ
, z ∈ HC, λ ∈ P+.

(It should be noted that there is a small subtlety in formula (4.2), because
the group KC is not semisimple and ρ is distinct from ρc , the object associated
with the semisimple group [KC, KC] . But it is not difficult to derive (4.2) from
Weyl’s formula for the semisimple group [KC, KC] .)

Let DG and DK denote the denominators in (4.1) and (4.2), respec-
tively:

(4.3) DG(z) =
∑

w∈W
ε(w)w(z)ρ =

∏

α∈∆+

(zα/2 − z−α/2),

(4.4) DK(z) =
∑

w′∈Wc

ε(w′)w′(z)ρ = zρn
∏

α∈∆+
c

(zα/2 − z−α/2).

These are regular functions on the torus HC .

(Strictly speaking, in (4.1) and (4.2) one should assume that DG(z) 6= 0
and DK(z) 6= 0, respectively.)

Let Ω ⊂ h∗Re be the dual cone of the cone cmin , i.e.,

(4.5) Ω = {ν ∈ h∗Re | 〈ν, β∨〉 ≥ 0 for each β ∈ ∆+
n }.

Since P is a lattice in the vector space h∗Re , the intersection Ω∩P is an additive
monoid.

Lemma 4.1. Suppose z ∈ HC is such that z−1 ∈ H+
C . Then the sum

(4.6) F (z) :=
∑

ν∈Ω∩P
zν

is absolutely convergent.

(One could call F (z) the characteristic function of the monoid Ω ∩ P .)

Proof. Write z = ux where u ∈ H , x = exp(−X), and X ∈ c0
min . Then

|zν | = exp(−〈ν,X〉). Since the linear functional 〈·, X〉 is strictly positive on
Ω \ {0} , the claim follows from obvious estimates.

Let x 7→ x̂ be the involutive map of the torus HC defined by

x̂ = w0(x)−1.

Note that if x ∈ H+
C then the function F (z) is well–defined in a neighborhood

of the element x̂ in HC .
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Theorem 4.2. Let the group G satisfy the assumption of section 1 and let
L(x) be the function on H+

C , associated with the Cauchy–Szegö kernel of the
Hardy space H2(G) . Let x ∈ H+

C be such that DK(x) 6= 0 , and let t range over
the subset of elements of HC satisfying DG(t) 6= 0 . Then

(4.7) L(x) =
θ(x)

DK(x)
lim
t→e

1

DG(t)

∑

w∈W
ε(w)F (w(t)x̂),

where F is the function on Ω ∩ P , defined in (4.6).

Proof. We shall transform formula (3.4) of Corollary 3.5. From

dimVµ = trVµ(e) = lim
t→e

trVµ(t),

it follows

(4.8) dimVµ = lim
t→e

1

DG(t)

∑

w∈W
ε(w)(w(t))µ+ρ,

by virtue of (4.1) and (4.3).

Further,

(4.9) trπϕ(µ)(x) =
1

DK(x)

∑

w′∈Wc

ε(w′)(w′(x))ϕ(µ)+ρ,

by virtue of (4.2) and (4.4).

Let us rewrite the right–hand side of (4.9) by making use of the definition
of ϕ and x̂ :

(w′(x))ϕ(µ)+ρ = (w′(x))−w0(µ+ρ)

= ((w0w
′)(x−1))µ+ρ

= ((w0w
′w0)(w0(x)−1))µ+ρ

= ((w0w
′w0)(x̂))µ+ρ.

Since ε(w′) = ε(w0w
′w0), one may replace w0w

′w0 by w′ , and finally we obtain

(4.10) trπϕ(µ)(x) =
1

DK(x)

∑

w′∈Wc

ε(w′)(w′(x̂))µ+ρ.

By substituting the expressions (4.8) and (4.10) into formula (3.4) of
Corollary 3.5 we obtain

L(x) =
θ(x)

DK(x)
lim
t→e

1

DG(t)

∑

µ∈P+

∑

w∈W

∑

w′∈Wc

ε(w)ε(w′)(w(t)w′(x̂))µ+ρ.

After a change of variables, (w,w′) 7→ (w′w,w′), this turns into

(4.11) L(x) =
θ(x)

DK(x)
lim
t→e

1

DG(t)

∑

µ∈P+

∑

w∈W

∑

w′∈Wc

ε(w)(w(t)x̂)w
′(µ+ρ).
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Let Preg denote the set of regular weights,

Preg = {ν ∈ P
∣∣ 〈ν, α∨〉 6= 0 for each α ∈ ∆+ }.

When µ runs through P+ , the weight µ+ ρ runs through P+ ∩Preg . Since the
sets of the form w′(P+ ∩ Preg) (where w′ ∈Wc ) are pairwise disjoint, we have

∑

w′∈Wc

∑

µ∈P+

(w(t)x̂)w
′(µ+ρ) =

∑

{ν}
(w(t)x̂)ν ,

where
{ν} :=

⋃

w′∈Wc

w′(P+ ∩ Preg).

The set {ν} can be written as

{ν ∈ Preg

∣∣ 〈ν, β∨〉 ≥ 0 for each β ∈ ∆+
n },

from which it follows that
{ν} = Ω ∩ Preg.

Therefore,

L(x) =
θ(x)

DK(x)
lim
t→e

1

DG(t)

∑

w∈W
ε(w)

∑

ν∈Ω∩Preg

(w(t)x̂)ν .

Now we remark that
∑

w∈W
ε(w)w(t)ν = 0 if ν ∈ P \ Preg .

Hence summation over ν ∈ Ω∩Preg can be replaced by that over ν ∈ Ω∩P . By
virtue of the definition (4.6) of the function F we obtain the desired formula.

The argument of Theorem 4.2 implies the following corollary:

Theorem 4.3. Let the group G satisfy the assumption of section 1, and let
L(x) be the function on H+

C = HC∩Γ0 , associated with the Cauchy–Szegö kernel
of the Hardy space H2(G) . Then L(x) is restriction to H+

C of a rational function
on the complex torus HC .

Proof. Probably, the first idea which occurs when looking at formula (4.7)
of Theorem 4.2 is to show that the ‘characteristic function’ (4.6) of the additive
monoid Ω ∩ P is rational. However, the structure of this monoid seems to be
cumbersome, so it is better to use, instead of (4.7), formula (4.11) (an advantage
of the latter formula is that the structure of the monoid P+ is very simple).

It is immediate from the definition of θ , DG , and DK (see (3.2), (4.3),
and (4.4)) that these are rational functions. Since both w and w′ in (4.11) range
over finite sets, it suffices to prove that the series

(4.12)
∑

µ∈P+

zµ+ρ, ẑ ∈ H+
C ,
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is a rational function.

Let ω1, . . . , ωr stand for the fundamental weights of the system ∆+ ,
where r is the rank of gC . Then we have

P+ = Z+ω1 + . . .+ Z+ωr,

whence
∑

µ∈P+

zµ+ρ = zρ
∑

µ∈P+

zµ = zρ
r∏

i=1

1

1− zωi ,

which is a rational function.

5. The case of Sp(n,R)

Throughout this section one assumes G = Sp(n,R) and GC = Sp(n,C). Let

ξ = (ξ1, . . . , ξ2n) and η = (η1, . . . , η2n)

be arbitrary vectors in C2n . Let us regard GC = Sp(n,C) as the group of
automorphisms of the alternating form

ξ1η2n + . . .+ ξnηn+1 − ξn+1ηn − . . .− ξ2nη1,

and realize the group G = Sp(n,R) as the intersection U(n, n)∩Sp(n,C) where
U(n, n) is realized as the group preserving the Hermitian form

(5.1) [ξ, η] = −ξ1η̄1 − . . .− ξnη̄n + ξn+1η̄n+1 + . . .+ ξ2nη̄2n.

The subgroup K , which is isomorphic to U(n), is realized as the sub-
group of G that fixes the direct sum decomposition C2n = Cn ⊕ Cn .

Given complex numbers z1, . . . , z2n , let us write diag(z1, . . . , z2n) for the
diagonal matrix with diagonal entries z1, . . . , z2n .

The space hRe consists of the real matrices of the form

X = diag(X1, . . . , Xn,−Xn, . . . ,−X1);

it will be identified with Rn via the map X 7→ (X1, . . . , Xn) ∈ Rn . The dual
space h∗Re may be identified with hRe and hence with Rn , too.

Let ε1, . . . , εn be the canonical basis of h∗Re = Rn . Then

∆+
c = {εi − εj (1 ≤ i < j ≤ n)},

∆+
n = {εi + εj (1 ≤ i ≤ j ≤ n)},

∆+ = {εi ± εj (1 ≤ i < j ≤ n), 2εi (1 ≤ i ≤ n)},

ρ = (n, n− 1, . . . , 1),

ρc = (n−1
2 , n−3

2 , . . . ,−n−3
2 ,−n−1

2 ),

ρn = (n+1
2 , . . . , n+1

2 ).
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The weight lattice P ⊂ h∗Re = Rn is simply the integer lattice Zn ⊂ Rn ,
and the set P+ ⊂ P is identified with the set of partitions of length ≤ n ,

P+ = {µ ∈ Zn | µ1 ≥ . . . µn ≥ 0}.

The Weyl group Wc is isomorphic to the symmetric group Sn of degree
n ; it operates on hRe = h∗Re = Rn by permuting the basis vectors ε1, . . . , εn . The
Weyl group W is isomorphic to the hyperoctahedral group Hn , the semidirect
product of Sn with the Abelian group An = Zn2 ; the i -th generator of An
multiplies the i -th basis vector εi by −1 and fixes all remaining vectors εj ,
j 6= i .

The cone cmin ⊂ hRe = Rn is the ‘hyperoctant’ Rn+ ⊂ Rn , and the dual
cone Ω also coincides with Rn+ .

The complex torus HC consists of the diagonal matrices of the form

diag(z1, . . . , zn, z
−1
n , . . . , z−1

1 )

with nonzero complex z1, . . . , zn . The subset H+
C ⊂ HC is described by the

inequalities |z1| > 1, . . . , |zn| > 1.

The transformation z → ẑ = w0(z)−1 of the torus HC takes the form

diag(z1, . . . , zn, z
−1
n , . . . , z−1

1 ) 7→ diag(z−1
n , . . . , z−1

1 , z1, . . . , zn).

A complex 2n× 2n matrix γ is called weakly J -contractive if [γξ, γξ]≤
[ξ, ξ] for each ξ ∈ C2n , where [·, ·] is the indefinite inner product (5.1). If the
above inequality is strict for each ξ 6= 0, then γ is called strictly J -contractive.
The semigroup Γ is formed by all weakly J -contractive matrices in Sp(n,C),
and the interior Γ0 ⊂ Γ consists of strictly J -contractive symplectic matrices.

Note that the eigenvalues of each matrix γ ∈ Γ0 are of the form

(5.2) x1, x
−1
1 , . . . , xn, x

−1
n , where |x1|, . . . , |xn| < 1.

Theorem 5.1. Let K(γ1, γ2) be the Cauchy–Szegö kernel for the Hardy space
H2(Sp(n,R)) ⊂ O(Γ0) , where Γ0 is the open semigroup of strictly J -contractive
matrices in Sp(n,C) . Let L(γ) = K(γ, e) be the corresponding function in one
variable γ ∈ Γ0 . Given γ ∈ Γ0 , write its eigenvalues as in (5.2). Finally, recall
that the Haar measure on the group is normalized so that the relation (3.3) holds.

Then

(5.3) L(γ) =

n∏

i=1

xn+1
i

(1 + xi)(1− xi)2n+1
.

(Note that in the case n = 1 the expression (5.3) agrees with formula (3.5).)

This result can be derived in several ways. First this was done by
Vladimir Ivanov (a student of the Moscow State University) by a direct cal-
culation. Namely, I suggested him to evaluate the sum in the left–hand side of
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(5.13) (see below), where the dimension of an irreducible Sp(n,C)-module is ex-
pressed by classical Weyl’s formula. When he obtained formula (5.13) I realized
that this is in fact a corollary of the well–known character identity (5.12).

I give below two proofs of the theorem: the first proof is based on
Theorem 4.2, while the second proof is simply reduction to the identity (5.12).

First Proof. Remark that the right–hand side of (5.3) is a holomorphic
function on Γ0 , invariant under conjugation by elements of the group G . Then
the argument of Lemma 2.1 shows that it suffices to check (5.3) for diagonal
matrices γ ∈ HC ∩ Γ0 = H+

C . Hence one may assume

γ = x = diag(x−1
n , . . . , x−1

1 , x1, . . . , xn), |x1|, . . . , |xn| < 1,

whence
x̂ = diag(x1, . . . , xn, x

−1
n , . . . , x−1

1 ).

Further, by (3.2),

(5.4) θ(x) =
∏

i≤j
(1− xixj)−1 =

∏

i<j

(1− xixj)−1
∏

i

(1− x2
i )
−1

and, by (4.4),

DK(x) = (x1 . . . xn)−(n+1)/2
∏

i<j

(x
−1/2
j x

1/2
i − x1/2

j x
−1/2
i )

= (x1 . . . xn)−n
∏

i<j

(xi − xj),

whence

(5.5)
θ(x)

DK(x)
=

(x1 . . . xn)n∏
i<j(xi − xj)

∏
i<j(1− xixj)

∏
i(1− x2

i )
.

Let
t = diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 ) ∈ HC.
Then, by (4.3),

(5.6)

DG(t) =
∏

i<j

(t
1/2
i t

−1/2
j − t−1/2

i t
1/2
j )

∏

i≤j
(t

1/2
i t

1/2
j − t−1/2

i t
−1/2
j )

=
∏

i<j

(ti + t−1
i − tj − t−1

j )
∏

i

(ti − t−1
i )

.

As the monoid Ω∩P coincides with Zn+ ⊂ Rn , its ‘characteristic function’
F (z) is given by

(5.7) F (diag(z1, . . . , zn, z
−1
n , . . . , z−1

1 )) =
∏

i

(1− zi)−1.
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For w ∈ W = Hn and t ∈ HC as above, let w(t)i be the i -th diagonal
entry of the matrix w(t), i = 1, . . . , n . By Theorem 4.2 and formulas (5.5)–(5.7),

(5.8)

L(x) =
(x1 . . . xn)n∏

i<j(xi − xj)
∏
i<j(1− xixj)

∏
i(1− x2

i )

· lim
t→e

1∏
i<j(ti + t−1

i − tj − t−1
j )

∏
i(ti − t−1

i )

·
∑

w∈Hn

ε(w)
∏

i

1

1− w(t)ixi
.

To evaluate the latter sum, let us write it as

(5.9)
∑

s∈Sn

ε(s)
∑

a∈An

ε(a)
∏

i

1

1− (a(s(t)))ixi
.

First, let us fix s ∈ Sn and denote

u1 = s(t)1, . . . , un = s(t)n ,

so that (u1, . . . , un) is a permutation of (t1, . . . , tn), determined by s . Then the
interior sum in (5.9) equals

∏

i

(
1

1− uixi
− 1

1− u−1
i xi

)

=
∏

i

xi
∏

i

(ui − u−1
i )

∏

i

1

(1− uixi)(1− u−1
i xi)

=
∏

i

xi
∏

i

(ti − t−1
i )

∏

i

1

(1− uixi)(1− u−1
i xi)

.

Let us substitute this expression into (5.9) and recall that u1, . . . , un are
a permutation of t1, . . . , tn . It follows that alternating over s ∈ Sn gives an
n× n determinant, so that (5.9) turns into

(5.10)
∏

i

xi
∏

i

(ti − t−1
i ) det

[
1

(1− tjxi)(1− t−1
j xi)

]

1≤i,j≤n
.

The determinant in (5.10) can be easily computed by reduction to the
well–known Cauchy determinant (see Littlewood [16], Chap. XI, 11.7, Lemma
III). The result is as follows

(5.11)

det

[
1

(1− tjxi)(1− t−1
j xi)

]

1≤i,j≤n

=

∏
i<j(ti + t−1

i − tj − t−1
j )

∏
i<j(xi − xj)

∏
i<j(1− xixj)∏

i

∏
j(1− tjxi)(1− t−1

j xi)
.
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Let us substitute this into (5.10) and next substitute the resulting ex-
pression into (5.8), instead of the sum. Then we obtain, after cancellations,

L(x) =
(x1 . . . xn)n+1

∏
i(1− x2

i )
lim

t1,...,tn→1

∏

i

∏

j

1

(1− tjxi)(1− t−1
j xi)

=
(x1 . . . xn)n+1

∏
i(1− x2

i )(1− xi)2n
,

which coincides with (5.3).

Another way to establish formula (5.3) is to derive it from the following
well–known character identity (which is one of the the so–called Littlewood
formulas):

Lemma 5.2. Let M = (M1 ≥ M2 ≥ . . . ≥ Mn ≥ 0) range over the set of
partitions of length ≤ n ; let sM (x1, . . . , xM) be the Schur function in n variables,
indexed by M ; and let sp(n)M (t±1

1 , . . . , t±1
n ) be the character of the irreducible

finite–dimensional Sp(n,C)-module VM that is indexed by M (one regards the
character as a function on the complex torus HC ⊂ Sp(n,C) of diagonal matrices
diag(t1, . . . , tn, t

−1
n , . . . , t−1

1 )). Then

(5.12)
∑

M

sp(n)M (t±1
1 , . . . , t±1

n )sM (x1, . . . , xn) =

∏
i<j(1− xixj)∏

i

∏
j(1− tjxi)(1− t−1

j xi)
.

Proof. See Koike and Terada [12], Lemma 1.5.1, or Sundaram [21]. Another
argument, due to M. Ishikawa and M. Wakayama (personal communication) is
presented below in section 8. Finally, note that the identity (5.12) also can
be derived from the explicit weight correspondence in Howe’s duality between
the compact group Sp(k) and noncompact group SO∗(2n), for the special case
k = n . (See Howe [9] and Enright, Howe and Wallach [1].)

Corollary 5.3. Let M , sM , and VM be as in Lemma 5.2. Then

(5.13)
∑

M

dimVM sM (x1, . . . , xn) =

∏
i<j(1− xixj)∏
i(1− xi)2n

.

Proof. Take t1 = . . . = tn = 1 in (5.12).

Second Proof of Theorem 5.1. Look at formula (3.4) of Corollary 3.5. We
shall see that its right–hand side coincides (up to certain simple factors) with the
left–hand side of (5.13), so that formula (5.3) is equivalent to formula (5.13).

Indeed, one may view each dominant weight µ ∈ P+ as a partition M
of length ≤ n : the correspondence µ↔M is given by

µ = diag(M1, . . . ,Mn,−Mn, . . . ,−M1) ∈ h∗Re.
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In this notation,

ϕ(µ) = diag(−Mn, . . . ,−M1,M1, . . . ,Mn) + (n+ 1) diag(−1, . . . ,−1, 1, . . . , 1).

Let as above

γ = x = diag(x−1
n , . . . , x−1

1 , x1, . . . , xn).

Then

trπϕ(µ)(x) = (x1 . . . xn)n+1sM (x1, . . . , xn).

Therefore, formula (3.4) turns into

L(x) = θ(x)(x1 . . . xn)n+1
∑

M

dimVM sM (x1, . . . , xn).

By using the expression (5.4) for θ(x) we obtain

L(x) =
(x1 . . . xn)n+1

∏
i<j(1− xixj)

∏
i(1− x2

i )

∑

M

dimVMsM (x1, . . . , xn).

It follows that (5.3) and (5.13) are equivalent.

6. The case of G̃ = Mp(n,R)

Consider the metaplectic group G̃ = Mp(n,R), which is the two–sheeted cover-

ing over the symplectic group G = Sp(n,R). Let Γ̃ and Γ̃0 be the two–sheeted
coverings over Γ and Γ0 , respectively (recall that Γ is the semigroup of J -

contractive matrices in Sp(n,C)). The Hardy space H2(G̃) ⊂ O(Γ̃0) can be
defined in exactly the same manner as for the group G (or other linear groups;

the lack of a global complexification for G̃ plays no role here). Let K̃(γ̃1, γ̃2) be

the Cauchy–Szegö kernel on Γ̃0× Γ̃0 corresponding to that Hardy space, and let
L̃(γ̃) = K̃(γ̃, e) be the associated function in one variable γ̃ ∈ Γ̃0 .

The following theorem was obtained after I learned about the idea of
K. Koufany and B. Ørsted to consider the ‘odd’ part of the Hardy space on the
metaplectic group.

Theorem 6.1. Let γ̃ ∈ Γ̃0 , let γ be the image of γ̃ in Γ0 , and let x±1
1 , . . . , x±1

n

be the eigenvalues of γ , where one assumes that |x1|, . . . , |xn| < 1 . Then

(6.1) L̃(γ̃) = L(γ) + L(γ)

∏n
i=1(1 + xi)

2n(x1 . . . xn)1/2
,

where L(γ) denotes the function computed in Theorem 5.1.
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Note that the function (x1 · · ·xn)1/2 is well–defined on the covering Γ̃0 . Note
also that formula (6.1) may be written as follows

(6.2) L̃(γ̃) =
(x1 · · ·xn)n+1

∏n
i=1(1 + xi)(1− xi)2n+1

+
(x1 · · ·xn)n+1/2

2n
∏n
i=1(1− xi)2n+1

.

When n = 1, the latter expression turns into

L̃(γ̃) =
x2

(1 + x)(1− x)3
+

x3/2

2(1− x)3
(n = 1, x = x1, |x| < 1),

which can be verified by summing the series

∑

m≥0

(m+ 1)
xm+2

1− x2
+
∑

m≥0

(m+ 1/2)
xm+3/2

1− x2
.

Proof. We shall slightly modify the basic notation of section 1 and the
preliminary results of sections 3 and 4; then we shall argue as in the first proof
of Theorem 5.1.

Let K̃ ⊂ G̃ be the inverse image of the maximal compact subgroup
K ⊂ G ; when K is identified with U(n), the group K̃ is identified with the
double covering over U(n) making the function det(·)1/2 single–valued. Let

H̃ ⊂ K̃ be the corresponding covering over H ⊂ K , and let H̃C ⊃ H̃ be the
complex torus complexifying the compact torus H̃ . The (additive) group of

characters of H̃ (or H̃C ) is identified with the lattice

P̃ := P ∪ (P + ε) ⊂ h∗Re = Rn,

where ε = ( 1
2 , · · · , 1

2 ) ∈ Rn .

Let P̃+− be the set of those weights λ ∈ P̃ that satisfy two conditions:
first, 〈λ, α∨〉 ∈ Z+ for each α ∈ ∆+

c and, second, 〈λ + ρ, β∨〉 < 0 for each
β ∈ ∆+

n . This can be restated as follows:

P̃+− = {λ ∈ P̃
∣∣ 〈λ+ ρ, α∨〉 > 0 ∀α ∈ ∆+

c ; 〈λ+ ρ, β∨〉 < 0 ∀β ∈ ∆+
n },

from which it becomes clear that the set P̃+ := ϕ(P̃+−) can be described as
follows:

P̃+ = {µ ∈ P̃
∣∣ 〈µ+ ρ, α∨〉 > 0 ∀α ∈ ∆+}.

The holomorphic discrete series {Tλ} for the metaplectic group G̃ is

parametrized by the weights λ ∈ P̃+− . Each Tλ can be extended to a holomor-

phic representation Tλ of the covering semigroup Γ̃, and the analogue of Lemma
3.1 reads as follows:

L̃(γ̃) =
∑

λ∈P̃+−

fdimTλ · trTλ(γ̃), γ̃ ∈ Γ̃0.



260 Olshanski

It is convenient to split this sum into two parts:

L̃(γ̃) = L̃even(γ̃) + L̃odd(γ̃),

where
L̃even(γ̃) =

∑

λ∈P+−

fdimTλ tr Tλ(γ̃),

L̃odd(γ̃) =
∑

λ∈P̃+−\P+−

fdimTλ trTλ(γ̃).

Note that this splitting exactly corresponds to the splitting

H2(G̃) = H2
even(G̃)⊕H2

odd(G̃) ⊂ O(Γ̃0) = Oeven(Γ̃0)⊕Oodd(Γ̃0),

where ‘even’ functions are assumed to be constant on fibers of canonical projec-
tion Γ̃0 → Γ0 whereas ‘odd’ functions take opposite values on each fiber. Thus,
L̃even and L̃odd determine the Cauchy-Szegö kernels for H2

even(G̃) and H2
odd(G̃),

respectively.

Clearly L̃even(γ̃) = L(γ), so that formula (6.1) is equivalent to the
following one:

(6.3) L̃odd(γ̃) = L(γ)

∏n
i=1(1 + xi)

2n(x1 · · ·xn)1/2
.

Let µ range over the set

P̃+ \ P+ = {µ ∈ P + ε
∣∣ 〈µ+ ρ, α∨〉 > 0 ∀α ∈ ∆+}.

We cannot write fdimTϕ(µ) = dimVµ as before, because there is no finite–
dimensional representation with highest weight µ (for there is no double covering
over the group Sp(n,C)!), so a claim similar to that of Lemma 3.4 literally fails.
Nevertheless, by Harish-Chandra’s result cited above ([5], paper VI, Theorem 4),
the formal dimension fdimTϕ(µ) is still given by the same analytic expression as
for weights µ ∈ P+ :

fdimTϕ(µ) =

∏
α∈∆+〈µ+ ρ, α∨〉∏
α∈∆+〈ρ, α∨〉

= lim
t→e

∑
w∈W ε(w)(w(t))µ+ρ

DG(t)
.

As for Lemma 3.2, it needs no change.

Now one can repeat the argument of Theorem 4.2, which leads to the
following result:

L̃odd(γ̃) =
θ(x)

DK(x)
lim
t→e

1

DG(t)

∑

w∈W
ε(w)F̃odd(w(t)x̂),
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where, for z = diag(z1, . . . , zn, z
−1
n , . . . , z−1

1 ),

F̃odd(z) =
∑

ν∈Ω∩(P+ε)

zν = (z1 · · · zn)1/2F (z) =

n∏

i=1

z
1/2
i

1− zi
.

Next we repeat the argument of the first proof of Theorem 5.1. The only
new point is that the sum in (5.8) (which is rewritten in (5.9)) must be replaced
by the following expression:

(6.4)
∑

ν∈Sn

ε(s)
∑

a∈An

ε(a)
(a(ui)xi)

1/2

1− a(ui)xi
,

where, as before, (u1, . . . , un) stands for the permutation of (t1, . . . , tn) deter-
mined by s ∈ Sn . The interior sum in (6.4) is equal to

n∏

i=1

(
u

1/2
i x

1/2
i

1− uixi
− u

−1/2
i x

1/2
i

1− u−1
i xi

)

=
∏

i

x
1/2
i (1 + xi)

∏

i

(u
1/2
i − u−1/2

i )
∏

i

1

(1− uixi)(1− u−1
i xi)

=
∏

i

x
1/2
i (1 + xi)

∏

i

(t
1/2
i − t−1/2

i )
∏

i

1

(1− uixi)(1− u−1
i xi)

,

which differs by the factor
∏
i(1 + xi)

(x1 · · ·xn)1/2
∏
i(t

1/2
i + t

−1/2
i )

from its counterpart (5.10) in section 5. Since this factor does not vary under

alternation over the ti ’s, we see that L̃odd(γ̃) differs from L(γ) by the factor

lim
t1→1,...,tn→1

∏
i(1 + xi)

(x1 · · ·xn)1/2
∏
i(t

1/2
i + t

−1/2
i )

=

∏
i(1 + xi)

2n(x1 · · ·xn)1/2
,

which completes the proof.

7. The case of G = SU(p, q)

In this section we fix numbers p, q ∈ {1, 2, 3, . . .} and we put n = p + q . Equip
the space Cn = Cp+q with the indefinite inner product

[ξ, η] = −ξ1η̄1 − ξ2η̄2 − . . .− ξpη̄p + ξp+1η̄p+1 + . . .+ ξnη̄n, ξ, η ∈ Cn,

and realize the group G := SU(p, q) as the group of unimodular complex matrices
preserving this inner product:

G = SU(p, q) = {g ∈ SL(n,C)
∣∣ [gξ, gη] = [ξ, η], ξ, η ∈ Cn}.
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The group GC is SL(n,C). The group K is the subgroup of G that
preserves the direct sum decomposition Cn = Cp ⊕ Cq ; K is isomorphic to
S (U(p)× U(q)).

Let ε1, . . . , εn be the canonical basis of Rn and put ε = (1, . . . , 1).

Let Rn0 be the hyperplane in Rn , orthogonal to ε :

Rn0 = {(x1, . . . , xn) ∈ Rn
∣∣ x1 + . . .+ xn = 0}.

We have
hRe = {x = diag(x1, . . . , xn)

∣∣ (x1, . . . , xn) ∈ Rn0},
so that hRe may be identified with Rn0 ⊂ Rn . The dual space h∗Re will be
identified with the factor space Rn/Rε ; for brevity, elements of h∗Re often will be
written simply as vectors of Rn . In this notation we have

∆+
c = {εi − εj

∣∣ 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n}
∆+
n = {εi − εj

∣∣ 1 ≤ i ≤ p, p+ 1 ≤ j ≤ n}
∆+ = {εi − εj

∣∣ 1 ≤ i < j ≤ n}.

The weight lattice P ⊂ h∗Re can be identified with Zn/Zε , and its subset
P+ ⊂ P of dominant weights is described as

(7.1) P+ = {µ ∈ Zn/Zε
∣∣ µ1 ≥ µ2 ≥ . . . ≥ µn},

and the transformation ϕ : P+ → P+− takes the form

(7.2) ϕ(µ) = (−µp − q, . . . ,−µ1 − q, −µn + p, . . . ,−µp+1 + p) (mod Zε).

The Weyl group W is isomorphic to the symmetric group Sn ; its action
on hRe = Rn0 and h∗Re = Rn/Rε consists in permuting the coordinates. The
Weyl group Wc ⊂W is isomorphic to Sp ×Sq , naturally embedded into Sn .

The cone cmin ⊂ hRe = Rn0 is described as follows:

cmin = {x ∈ Rn0
∣∣ x1, . . . , xp ≥ 0 ; xp+1, . . . , xn ≤ 0}.

The complex torus HC consists of the complex diagonal matrices of the
form

diag(z1, . . . , zn) , z1 · · · zn = 1.

The subset H+
C ⊂ HC is described by the inequalities

|z1| > 1, . . . , |zp| > 1 ; |zp+1| < 1, . . . |zn| < 1.

The semigroup Γ is formed by matrices in SL(n,C) which are weakly
J -contractive in the sense of being ‘contractive with respect to the inner product
[·, ·] .’

The interior Γ0 ⊂ Γ is formed by strictly J -contractive matrices.
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Given a matrix γ ∈ Γ0 , its eigenvalues can be written as

(7.3) x−1
1 , . . . , x−1

p , y1, . . . , yq,

where

(7.4) |x1| < 1, . . . , |xp| < 1, |y1| < 1, . . . , |yq| < 1

and

(7.5) x1 · · ·xp = y1 · · · yq.
Theorem 7.1. Let K(γ1, γ2) be the Cauchy-Szegö kernel for the Hardy space
H2 (SU(p, q)) ⊂ O(Γ0) , where Γ0 is the semigroup of strictly J -contractive
matrices in SL(n,C) , n = p + q . Let L(γ) = K(γ, e) be the corresponding
function in one variable γ ∈ Γ0 . Given a matrix γ ∈ Γ0 , write its eigenvalues
as above (see (7.3)–(7.5)) and put

(7.6) u = x1 · · ·xp = y1 · · · yq.
(i) The function L is given by the formula

(7.7)

L(γ) =
un∏

1≤i≤p(1− xi)n
∏

1≤j≤q(1− yj)n

·
p∑

r=1

(∏

k 6=r

xk
xk − xr

) (1− xr)n∏
1≤j≤q(1− xryj)

.

(ii) This expression also can be written as

(7.8)
un∏

i(1− xi)n
∏
j(1− yj)n

·
(

1− 1

2πi

∮

|ξ|=1

F (ξ;x, y)
dξ

ξ

)
,

where

(7.9) F (ξ;x, y) =
(ξ − 1)n

(ξ − x1) · · · (ξ − xp)(ξ − y−1
1 ) · · · (ξ − y−1

q )
.

(Recall that we have agreed to normalize the Haar measure of the group as in
Lemma 3.4.)

The proof is presented below, after Corollary 7.5. It is based on a
character identity (Lemma 7.4), which is an analogue of the identity of Lemma
5.2.

Remark 7.2. Since the groups SU(p, q) and SU(q, p) are isomorphic, the
function L(γ) must be invariant under the transformation

(x1, . . . , xp; y1, . . . , yq) 7−→ (y1, . . . , yq; x1, . . . , xp).

This invariance property is not evident from (7.7) but can be easily obtained
from the second claim of Theorem 7.1. Indeed, we remark that

F (ξ;x, y) = F (ξ−1; y, x)

(because of (7.5)) and replace ξ by ξ−1 in the integral (7.8).

The expression (7.7) simplifies when p = 1:



264 Olshanski

Corollary 7.3. Let K be the Cauchy-Szegö kernel for the group SU(1, q) ,
q = 1, 2, . . ., and let L(γ) = K(γ, e) . Write u−1, y1, . . . , yq for the eigenvalues
of a given matrix γ ∈ Γ0 (u = y1 · · · yq ). Then

(7.10) L(γ) =
uq+1

∏
1≤j≤q(1− yj)q+1(1− uyj)

.

Note that in the case q = 1 the group SU(1, q) = SU(1, 1) is isomorphic
to Sp(1,R)), and formula (7.10) agrees with formula (5.3) of Theorem 5.1.

Lemma 7.4. Let Λ = (Λ1 ≥ . . . ≥ Λp ≥ 0) and M = (M1 ≥ . . . ≥Mq ≥ 0) be
arbitrary partitions of length ≤ p and ≤ q , respectively; let sΛ(x1, . . . , xp) and
sΛ(y1, . . . , yq) be the corresponding Schur functions in p and q variables; let
VΛ,M be the irreducible finite-dimensional GL(n,C)-module (where n = p + q )
with highest weight

(7.11) (Λ1, . . . ,Λp,−Mq, . . . ,−M1),

and let gl(n)Λ,M(t1, . . . , tn) be the character of VΛ,M , viewed as a function on the
maximal torus of GL(n,C) formed by diagonal matrices diag(t1, . . . , tn) . Then

(7.12)

∑

Λ,M

gl(n)Λ,M(t1, . . . , tn)sΛ(x1, . . . , xp)sM(y1, . . . , yq)

=

∏p
i=1

∏q
j=1(1− xiyj)∏n

k=1

∏p
i=1(1− tkxi)

∏n
k=1

∏q
j=1(1− t−1

k yj)
.

Proof. This character identity can be verified by the same methods as the
identity of Lemma 5.2. In particular, one can derive (7.12) from the explicit
weight correspondence in Howe’s duality between the groups U(k) and U(p, q)
(for the special case k = p + q ), described in Kashiwara and Vergne [11]. In
section 8 we will prove the identity (7.12) by Ishikawa–Wakayama’s method.

Corollary 7.5. Let Λ,M and VΛ,M be as in Lemma 7.4, and let dimVΛ,M

denote the dimension of VΛ,M . Then

(7.13)

∑

Λ,M

dimVΛ,M · sΛ(x1, . . . , xp)sM (y1, . . . , yq)

=

∏p
i=1

∏q
j=1(1− xiyj)∏p

i=1(1− xi)n
∏q
j=1(1− yj)n

.

Proof. Take t1 = . . . = tn = 1 in (7.12).

Proof of Theorem 7.1. (i) As in the case of the group Sp(n,R) (see the
beginning of the first proof of Theorem 5.1), application of Lemma 2.1 allows
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one to assume that γ is a diagonal matrix contained in H+
C . Then we write γ

as
γ = diag(x−1

p , . . . , x−1
1 , y1, . . . , yq),

where
|x1| < 1, . . . , |xp| < 1, |y1| < 1, . . . , |yq| < 1.

By Corollary 3.5,

(7.14) L(γ) = θ(γ)
∑

µ∈P+

dimVµ · trπϕ(µ)(γ).

In the present situation

θ(γ) =

p∏

i=1

q∏

j=1

1

1− xiyj

and, by virtue of (7.2) and (7.6),

trπϕ(µ)(γ) = uns(µ1,...,µp)(x1, . . . , xp)s(−µn,...,−µp+1)(y1, . . . , yq).

Recall that each dominant weight µ = (µ1, . . . , µn) ∈ P+ is an element of the
quotient lattice Zn/Zε (not of the lattice Zn !). It will be convenient for us to
fix a representative of µ in Zn by putting µp = 0. Then µ will be indexed
by a couple (Λ,M) of partitions such that l(Λ) ≤ p − 1 (hence Λp = 0) and
l(M) ≤ q , i.e.,

µ = (Λ1, . . . ,Λp−1, 0,−Mq, . . . ,−M1).

Thus, (7.14) can be rewritten as follows:

(7.15)

L(γ) =un
( p∏

i=1

q∏

j=1

1

1− xiyj

)

·
∑

Λ,M
Λp=0

dimVΛ,MsΛ(x1, . . . , xp)sM (y1, . . . , yq).

The restriction Λp = 0 does not allow us to apply directly the character
identity of Corollary 7.5. However, this difficulty can be surmounted with help
of the following claim:

Lemma 7.6. Let

Φ(x1, . . . , xp) =
∑

Λ

c(Λ)sΛ(x1, . . . , xp)

be a series on Schur functions in p variables, and define

Φ0(x1, . . . , xp) :=
∑

Λ, Λp=0

c(Λ)sΛ(x1, . . . , xp).
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Then

(7.16) Φ0(x1, . . . , xp) =

p∑

r=1

(∏

k 6=r

xk
xk − xr

)(
Φ(x1, . . . , xp)

∣∣
xr=0

)
.

Proof of the Lemma. By linearity, it suffices to check (7.16) for Φ = sΛ .
That is to say, we must prove that

(7.17)

p∑

r=1

(∏

k 6=r

xk
xk − xr

)(
sΛ(x1, . . . , xp)

∣∣
xr=0

)

=

{
sΛ(x1, . . . , xp), if Λp = 0
0, otherwise.

Write

sΛ(x1, . . . , xp) =
AΛ(x)

V (x)
,

where

(7.18)

AΛ(x) = det
[
xΛi+p−i
j

]
1≤i,j≤p

=
∑

(j1,...,jp)

ε(j1, . . . , jp)x
Λ1+p−1
j1

xΛ2+p−2
j2

· · ·xΛp
jp
,

summed over all permutations (j1, . . . , jp) of (1, . . . , n) (here ε(j1, . . . , jp) stands
for the sign of the permutation (j1, . . . , jp)), and

(7.19) V (x) = A(0,...,0)(x) =
∏

1≤i<j≤p
(xi − xj)

is the Vandermonde determinant.

Assume first Λp > 0. Then (7.18) implies that sΛ(x1, . . . , xp) vanishes
as xr = 0 for a certain r , which confirms (7.16). So one may assume Λp = 0.
Then (7.18) implies

AΛ(x)
∣∣
xr=0

=
∑

(j1,...,jp)
jp=r

ε(j1, . . . , jp)x
Λ1+p−1
j1

xΛ2+p−2
j2

· · ·xΛp
jp
,

whence

(7.20)

p∑

r=1

(
AΛ

∣∣
xr=0

)
= AΛ(x).

Further,

V (x)
∣∣
xr=0

=
(∏

k 6=r

xk
xk − xr

)
V (x), r = 1, . . . , p.
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Along with (7.20) this yields

r∑

r=1

(∏

k 6=r

xk
xk − xr

)(
sΛ(x1, . . . , xp)

∣∣
xr=0

)
=

p∑

r=1

(∏

k 6=r

xk
xk − xr

)AΛ(x)
∣∣
xr=0

V (x)
∣∣
xr=0

=

∑p
r=1 AΛ(x)

∣∣
xr=0

V (x)

=
AΛ(x)

V (x)

= sΛ(x1, . . . , xp),

which completes the proof of the Lemma.

Let us return to the proof of the Theorem. By Corollary 7.5 and Lemma
7.6,

(7.21)

L(γ) =
un∏

i,j(1− xiyj)

p∑

r=1

(∏

k 6=r

xk

xk − xr

)

·
{ ∏

i,j(1− xiyj)∏
i(1− xi)n

∏
j(1− yj)n)

}

xr=0

.

Further,

{ ∏
i,j(1− xiyj)∏

i(1− xi)n
∏
j(1− yj)n)

}

xr=0

=
(1− xr)n∏
j(1− xryj)

·
∏
i,j(1− xiyj)∏

i(1− xi)n
∏
j(1− yj)n)

.

Substituting the latter expression into (7.21) we obtain the desired formula (7.7)
for L(γ). This completes proof of claim (i) of the Theorem.

(ii) Let us transform the sum in formula (7.7):

(7.22)

p∑

r=1

∏

k 6=r

xk
xk − xr

(1− xr)n∏
j(1− xryj)

= (−1)p−1

p∑

r=1

(1− xr)n
xr

· x1 . . . xp∏
j(1− xryj)

∏

k 6=r

1

xr − xk
.

By (7.5),

x1 . . . xp∏
j(1− xryj)

=
y1 . . . yq∏
j(1− xryj)

=
∏

j

yj
1− xryj

= (−1)q
∏

j

1

xr − y−1
j

.
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Therefore, the expression (7.22) is equal to

(−1)n−1

p∑

r=1

(1− xr)n
xr

∏

k 6=r

1

xr − xk
∏

j

1

xr − y−1
j

= −
p∑

r=1

(xr − 1)n

xr

∏

k 6=r

1

xr − xk
∏

j

1

xr − y−1
j

= −
p∑

r=1

Resξ=xr
(ξ − 1)n

ξ(ξ − x1) . . . (ξ − xp)(ξ − y−1
1 ) . . . (ξ − y−1

q )
,

where ‘Resξ=a ’ means ‘residue at the point ξ = a ’.

Remark that the poles of the function

ξ 7→ (ξ − 1)n

ξ(ξ − x1) . . . (ξ − xp)(ξ − y−1
1 ) . . . (ξ − y−1

q )

in the unit disk |ξ| < 1 occur at the points 0, x1, . . . , xp , because |y−1
j | > 1,

1 ≤ j ≤ q . Next, remark that the residue at ξ = 0 equals 1, because

(−1)n

(−x1) . . . (−xp)(−y−1
1 ) . . . (−y−1

q )
=

1

x1 . . . xpy
−1
1 . . . y−1

q

= 1.

Therefore, (7.22) equals

(7.23) 1− 1

2πi

∮

|ξ|=1

F (ξ;x, y)
dξ

ξ
,

where F (ξ;x, y) is defined by (7.9). By substituting (7.23) into (7.7) (instead of
the sum) we obtain the desired formula (7.8). This completes the proof of the
Theorem.

8. Proof of character identities

In this section we prove Lemma 5.2 and Lemma 7.4 using an elegant method due
to M. Ishikawa and M. Wakayama.

Proof of Lemma 5.2. Recall the identity that has to be proved:

(8.1)
∑

M

sp(n)M (t±1
1 , . . . , t±1

n )sM (x1, . . . , xn) =

∏
i<j(1− xixj)∏

k

∏
i(1− tkxi)(1− t−1

k xi)
,

where M ranges over the set of partitions of length ≤ n , sp(n)M stands for the
character of Sp(n,C), indexed by M , and sM is the Schur function.

Also recall that by Weyl’s ‘first character formula’ (see [25], Theorem
VII.8.C),

(8.2) sp(n)M(t±1
1 , . . . , t±1

n ) =

det

[
t
li
k
−t−li
k

tk−t−1
k

]

1≤k,i≤n
V (t1 + t−1

1 , . . . , tn + t−1
n )

,
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where

(8.3) (l1, . . . , ln) = (M1 + n, . . . ,Mn + 1)

and V (a1, . . . , an) stands for the Vandermonde determinant,

V (a1, . . . , an) =
∏

r<s

(ar − as).

Consider two matrices, T and S , with n rows and countably many
columns that are labelled by the positive integers, written in reverse order
. . . , 2, 1,

T =




. . .
t31−t−3

1

t1−t−1
1

. . .
t21−t−2

1

t1−t−1
1

. . .
t11−t−1

1

t1−t−1
1

...
...

...
...

...
...

. . .
t3n−t−3

n

tn−t−1
n

. . .
t2n−t−2

n

tn−t−1
n

. . .
t1n−t−1

n

tn−t−1
n




S =



. . . x2

1 x1 1
...

...
...

...
. . . x2

n xn 1


 .

Denoting by S′ the transposed matrix we will compute the n×n deter-
minant detTS′ in two ways.

On the one hand, we have

(TS′)ki =

∞∑

r=1

trk − t−rk
tk − t−1

k

xr−1
i

=
1

tk − t−1
k

(
tk

1− tkxi
− t−1

k

1− t−1
k xi

)

= (1− tkxi)−1(1− t−1
k xi)

−1.

It follows

(8.4)

detTS′ = det[(1− tkxi)−1(1− t−1
k xi)

−1]1≤k,i≤n

=
V (t1 + t−1

1 , . . . , tn + t−1
n )V (x1, . . . , xn)

∏
i<j(1− xixj)∏

i

∏
k(1− tkxi)(1− t−1

k xi)

(see (5.11)).

On the other hand, given arbitrary integers l1 > . . . > ln ≥ 1, let
us denote by detTl1...ln and detSl1...ln the n -th order minors formed by the
columns l1, . . . , ln of the matrix T and S , respectively. Then we have

(8.5) detTS′ =
∑

l1>...>ln≥1

detTl1...ln detSl1...ln .

Let M = (M1, . . . ,Mn) be related with l = (l1, . . . , ln) by (8.3). Then
M is a partition and, by Weyl’s character formula (8.2),

detTl1...ln = sp(n)M (t±1
1 , . . . , t±1

n )V (t1 + t−1
1 , . . . , tn + t−1

n ),
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and we also have

detSl1...ln = sM (x1, . . . , xn)V (x1, . . . , xn).

Therefore,

(8.6)

detTS′ =V (t1 + t−1
1 , . . . , tn + t−1

n )V (x1, . . . , xn)

·
∑

M

sp(n)M (t±1
1 , . . . , t±1

n )sM (x1, . . . , xn).

By comparing both expressions for detTS ′ , (8.4) and (8.6), we arrive to
the desired formula (8.1).

Now we will apply a similar argument to prove the second character
identity.

Proof of Lemma 7.4. Recall the identity in question:

(8.7)

∑

Λ,M

glΛ,M(t1, . . . , tn)sΛ(x1, . . . , xp)sM (y1, . . . , yq)

=

∏p
i=1

∏q
j=1(1− xiyj)∏n

k=1

∏p
i=1(1− tkxi)

∏n
k=1

∏q
j=1(1− t−1

k yj)
,

where n = p + q ; Λ and M are arbitrary partitions of length ≤ p and ≤
q , respectively; gl(n)Λ,M is the character of GL(n,C) corresponding to the
dominant weight

(Λ1, . . . ,Λp,−Mq, . . . ,−M1);

sΛ and sM are Schur functions indexed by Λ and M .

Consider two matrices, T and S , whose rows are labelled by 1, . . . , n
(n = p+ q ) and columns are labelled by all the integers written in reverse order
. . . , 2, 1, 0, −1,−2, . . .,

T =



. . . t21 t1 1, t−1

1 t−2
1 . . .

...
...

...
...

...
...

...
. . . t2n tn 1, t−1

n t−2
n . . .




S =




. . . x2
1 x1 1, 0 0 0 . . .

...
...

...
...

...
...

...
...

. . . x2
p xp 1, 0 0 0 . . .

. . . 0 0 0, 1 y1 y2
1 . . .

...
...

...
...

...
...

...
...

. . . 0 0 0, 1 yq y2
q . . .




where commas in the matrices were used to separate the 0-th and (-1)-th columns.

Let us again compute detTS ′ in two ways.
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On the one hand, we have for 1 ≤ k ≤ n , 1 ≤ i ≤ p , 1 ≤ j ≤ q ,

(TS′)ki = (1− tkxi)−1 = −x−1
i (tk − x−1

i ),

(TS′)k,p+j = (tk − yj)−1,

whence

(8.8) detTS′ = (−1)p(x1 . . . xp)
−1 det[(tk − zr)−1]1≤k,r≤n,

where

(z1, . . . , zn) = (x−1
1 , . . . , x−1

p , y1, . . . , yq).

The determinant in (8.8) is readily reduced to Cauchy’s determinant,
and after simple transformations we obtain

(8.9)

detTS′ =(−1)q(q−1)/2(t1 . . . tn)−q

·
V (t1, . . . , tn)V (x1, . . . , xp)V (y1, . . . , yq)

∏
i

∏
j(1− xiyj)∏

k

∏
i(1− tkxi)

∏
k

∏
j(1− t−1

k yj)
.

On the other hand,

(8.10) detTS′ =
∑

+∞>l1>...>ln>−∞
detTl1...ln detSl1...ln .

¿From the form of the matrix S it is clear that detSl1...ln vanishes unless lp ≥ 0
and lp+1 ≤ −1, so that we may assume

(l1, . . . , ln) = (Λ1, . . . ,Λp,−Mq, . . . ,−M1)

+ (p− 1, . . . , 0,−1, . . . ,−q),

where Λ and M are partitions. Further, we have

detTl1...ln = gl(n)Λ,M(t1 . . . tn)V (t1, . . . , tn)(t1, . . . , tn)−q,

detSl1...ln =sΛ(x1, . . . , xp)sM (y1, . . . , yq)

· V (x1, . . . , xp)V (y1, . . . , yq)(−1)q(q−1)/2,

whence

(8.11)

detTS′ = (−1)q(q−1)/2(t1 . . . tn)−qV (t1, . . . , tn)V (x1, . . . , xp)

· V (y1, . . . , yq)
∑

Λ,M

glΛ,M(t1, . . . , tn)sΛ(x1, . . . , xp)sM (y1, . . . , yq).

By comparing (8.9) and (8.11) we obtain the desired identity (8.7).
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Birkhäuser, Boston, 1983, 97–143.

[2] Faraut, J., “Hardy spaces in non–commutative harmonic analysis,” Notes
of a course in Summer School on Harmonic Analysis and Geometry,
Tuczno, 1994.
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