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Abstract

In this paper we give a classification of the elliptic non-discrete series rep-
resentations of G = SLN (F ), F p-adic and N prime, by the method of types,
that is by restriction to compact open subgroups. We give an explicit construction
of certain types and determine their Hecke algebras. We then prove that an irre-
ducible smooth non-discrete series representation of G is elliptic if and only if it
‘contains’ one of our types.

1. Introduction

We recall that for any algebraically connected (group of F -rational points of
a) reductive p-adic group, the Langlands quotient theorem (extended to p-adic
groups by Silberger) gives a classification of irreducible smooth (hence admissible)
representations in terms of the irreducible tempered representations [20]. These
include the discrete series and consist in general of irreducible constituents of
representations unitarily parabolically induced from discrete series. An element of
the group is called elliptic if it is contained in a Cartan subgroup which is compact
modulo the center. One says that an irreducible tempered representation is elliptic
if its character has support (in the sense of distributions) on the subset of regular
elliptic elements. The subset of elliptic representations also include the discrete
series. It is known that for the groups SL, unlike the groups GL, this inclusion is
strict. D. Goldberg has given in [12] criteria for the constituents of parabolically
induced representations of SLk(F ), where k is arbitrary, to be elliptic. This is
based on the theory of the Knapp-Stein R-group and a result of J. Arthur in [1]
(which are both valid for general p-adic groups). To be more precise we introduce
some notations below.

Let χ denote a continuous character of the multiplicative group of the field
F whose restriction to the group of integral units has order N . It determines
canonically a character σ of the subgroup D of diagonal matrices in SLN(F ); σ
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extends trivially across the subgroup U of upper unipotent matrices, to a character
of the Borel subgroup B = DU of upper triangular matrices (still denoted σ ).
It is a well known result of Howe and Silberger [16] that the unitarily induced
representation Ind(B,G, σ) decomposes simply. It follows from [12] that its N
inequivalent constituents are elliptic, furthermore any non-discrete series elliptic
representation of SLN(F ) is a constituent of such an induced representation, since
N is prime. We then construct a type (J, λ) which depends on χ. Our main
Theorem is as follows:

Main Theorem. An irreducible smooth representation π of SLN(F ) is an
irreducible constituent of the induced representation Ind(B,G, σ) if and only if it
contains (J, λ) upon restriction to J .

Our methods are inspired from A. Borel [5] and W. Casselman [9], [10].
They require a quite explicit knowledge of the structure of the Hecke algebras
associated to our types. To determine the support of these algebras we rely on orbit
theory in the spirit of Howe and Moy [15]. This enables us to describe the Hecke
algebras explicitly by generators and relations. In [10] Casselman uses the ‘Iwahori’
Hecke algebra to classify the irreducible smooth representations with an Iwahori
fixed vector, the so called unramified principal series (see also Borel [5]). This
algebra is known to have the nice structure of an affine Hecke algebra. In [15] Howe
and Moy showed (in the tame and prime cases) that much of the representation
theory of a given GLk(F ) is controlled by the Iwahori Hecke algebras of (usually)
smaller GL′ s. This observation was later confirmed by Bushnell and Kutzko in [6],
with no restriction on k and the residual characteristic. The situation for other
groups proved to be more complicated. Indeed the works of A. Moy [18] and L.
Morris [17] provide us with examples of some ‘degenerate’ Hecke algebras.

For the group SLN (F ) with N prime, we show that for each of our types,
the Hecke algebra is isomorphic to the group algebra of some special subgroup in
the affine Weyl group. We proceed by restriction from GLN(F ), and as a conse-
quence we construct a series of types for GLN(F ) as well. We show that these
are isomorphic to a tensor product of affine Hecke algebras. It is a conjecture of
Bushnell and Kutzko that this should be true of any GL-type in ‘general position’.

Numerous papers have been devoted to the representation theory of the
groups SLk(F ). Let us just mention the two most recent ones which we know of.
In [8] Bushnell and Kutzko classify the supercuspidals by types. They proceed by
restriction from GLk(F ) exploiting their own earlier work [6] on GLN(F ). There
they constructed the so called simple types and gave another proof after L. Cor-
win [11] that the supercuspidals were induced from open and compact mod center
subgroups. They extend this result to SLk(F ) also. Marco Tadic gives in [21] a
description of the tempered representations of SLk(F ) by certain GL-parameters.
His method is based on the Bernstein and Zelevinsky classification [3] of these rep-
resentations for GLk(F ).

We now discuss the organization of this paper. We introduce notations
and review some general facts in the second section. The third section discusses
Goldberg’s theorem on elliptic representations. In the fourth section we give a
construction of types and we state the main result (Theorem 1). We determine
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the structure of the Hecke algebra of a given type in section five. Section six
deals with a discussion of ‘closely related’ types for GLN(F ). The structure of the
Hecke algebras of our types is determined in section seven. We prove our main
theorem in section eight. In the last section, as a consequence of the methods used
here, we describe the smooth representations of GLN (F ) which contain the types
constructed in section six.

Acknowledgements: These results are contained in the author’s Ph.D. Thesis
[19]. Professor Philip Kutzko suggested this problem, I want to thank him for his
guidance during our preliminary investigations with GL2(F ) and SL2(F ). I thank
Professor David Keys for some helpful discussions. I also want to thank Professors
Simon Gindikin, Roe Goodman and Siddhartha Sahi for their help in improving
this document. I am grateful and honored for the encouragements received from
Professors Joseph Bernstein, Amy-Cohen Corwin, Israel M. Gelfand, Roger Howe,
Jim Lepowsky, Allen Moy, Paul Sally and Robert Wilson.

2. General background

Notation. We fix a p-adic field F . OF is the ring of integers in F . PF is
the maximal ideal in OF with generator $ . F+ the additive group of the field is
filtered by the ideals

PmF = 〈$m〉, m ∈ Z.
UF is the group of units in OF . UF is filtered by the groups

U (i)
F = 1 + P iF , i ≥ 1.

We let kF = OF/PF denote the residue field with cardinality q = pr , where
r is some positive integer and p is the residual characteristic. N denotes a fixed
arbitrary prime number. MN (F ) stands for the ring of N by N matrices with
entries in F .

In this paper we let G̃= GLN (F ) be the group of units in MN (F ), the
invertible N by N matrices with entries in F . We let G = SLN (F ), the subgroup
of G̃ consisting of matrices with determinant equal to 1, except otherwise noted.

We let B̃ = D̃Ũ denote the standard Borel subgroup of upper triangular
matrices with Levi component the subgroup D̃ of diagonal matrices and unipotent
radical the subgroup Ũ of upper unipotent matrices. If H̃ is a subgroup of G̃ then
we let H = H̃ ∩G. In particular we get the standard Borel subgroup B = DU of
G, where D and U have the obvious meaning. Observe that Ũ = U .

Particularly important for us are the parahoric subgroups of G̃ and G. Let
G̃0 = GLN(OF ); this is a maximal compact open subgroup of G̃. We note in
passing the Iwasawa decomposition

G̃ = B̃G̃0.

G̃0 is filtered by the compact open subgroups

C̃i = 1 +$i
FMN (OF ), i ≥ 1.
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These form a fundamental system of neighborhoods of the identity in G̃ . We see
that the reduction mod PF homomorphism

G̃0 → GLN (kF )

yields an isomorphism:
G̃0/C̃1

∼= GLN(kF ).

The inverse image in G̃0 of a parabolic subgroup of GLN(kF ) is a parahoric
subgroup of G̃. Among these is the standard Iwahori subgroup which is the inverse
image of the standard Borel subgroup of GLN(kF ). Restricting to SLN (F ) we
obtain the parahoric subgroups of G.

The following realization of parahoric subgroups will be quite useful.

By a lattice in FN , we mean a free OF -submodule of FN of rank N . A periodic
lattice flag L of period e is a sequence of lattices {Li | i ∈ Z} such that

Li+1 ⊆ Li and Li+e = $Li .

For a fixed lattice flag L let

Am = AmL = {a ∈MN (F ) | aLi ⊆ Li+m, all i}, m ∈ Z.

Then A = A0 is a subring of MN (F ) (in fact an hereditary OF -order in MN (F ))
and A1 is an ideal in A (in fact the Jacobson radical of A). For a useful account
(in this context) on the theory of hereditary orders we refer to [6]. The group
K̃ = K̃L of units of A is a parahoric subgroup of GLN(F ). The correspondence
L → K̃L gives a parametrization of the parahoric subgroups of G̃ . In fact more is
true, index shifting determines an equivalence relation on the set of periodic lattice
flags; and the correspondence above carries in a one to one fashion, an equivalence
class to a G-conjugacy class of parahoric subgroups. Again the restriction to G
yields the parahoric subgroups of G. Now we set

K̃i = 1 + Ai, i ≥ 1.

The K̃i are compact open subgroups of GLN (F ) and normal in K̃ .

Abelian characters and duality in MN(F ). F+ is a locally compact abelian
group. OF and the PmF are compact open subgroups of F+ . We fix once and for
all a continuous character ψ of F+ with conductor PF , that is ψ is trivial on PF
but not on OF (such objects exist [22]). F+ is self-dual, that is isomorphic to its
group of characters (F+)

∧
(the Pontryagin dual) under the map a→ ψa where

ψa(y) = ψ(ay).

In particular the Pontryagin dual of the finite abelian group PnF/Pn+1
F is given by

(PnF/Pn+1
F )∧ ∼= P−nF /P1−n

F . (1)

Similar facts hold for MN (F ) which is also a locally compact abelian group
under addition. With ψ as above we define ψX , X ∈MN(F ) by

ψX(Y ) = ψ(Tr(XY )), Y ∈MN (F )
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where Tr denotes the usual trace function on MN (F ). Then ψX is a character of
MN(F ) and the map X → ψX yields an isomorphism between MN(F ) and its
Pontryagin dual MN(F )∧ .

We note below some useful consequences of these duality results. We let
K̃ = K̃L be a parahoric subgroup of G̃ as in the previous section, with its natural
filtration subgroups K̃i , then we have an isomorphism of finite abelian groups

K̃j/K̃i+1 ' Aj/Ai+1 where 2j ≥ i+ 1 ≥ j.

Thus the self duality of MN (F ) yields an isomorphism

(K̃j/K̃i+1)∧ ' A−i/A1−j where 2j ≥ i+ 1 ≥ j. (2)

If we set Ki = K̃i ∩ SLN (F ) then we (now) have

(Kj/Ki+1)∧ ' A−i/
(
F ∩ A−i + A1−j

)
(3)

where we view F (abusing notation) as the scalar matrices in MN(F ). This is
Proposition 1.1 of [7].

Smooth representations. In this section we will state some standard results
on smooth representations which hold for an arbitrary (group of F -rational points
of a) reductive algebraic group G defined over F .

By a representation of G we mean a pair (π, V ) where V is a complex
vector space and π a homomorphism G→ EndC(V ). We will often simply write
π or V depending on context. If H is a subgroup of G we let Hg = gHg−1 and if
π is a representation of H we write πg for the representation of Hg defined by

πg(x) = π(g−1xg), x ∈ Hg.

We say that a representation of G is smooth if for any vector v ∈ V its
G−stabilizer

{g ∈ G | π(g)v = v}
is open.

We will call a one dimensional smooth representation of G a character of
G. Examples of characters include the continuous homomorphisms from G to
C× , where C× is given its usual topology. For GLN (F ) a standard construction is
to form the composite γ◦ det, where γ is a continuous character of F× [22] and
det denotes the usual determinant homomorphism on GLN (F ). A character θ of
F× is called unramified if it is trivial on UF . An unramified character of G is a
character of the form θ ◦ η where η : G→ F× is a rational character of G (in the
sense of algebraic groups) and θ is an unramified character of F× .

We say that (π, V ) is admissible if it is smooth and if for each compact
open subgroup K ⊆ G, the subspace

V K = {v ∈ V | π(k)v = v, all k ∈ K}
is finite dimensional. We say that (π, V ) is irreducible if the only G−invariant
subspaces are {0} and V . It is a basic fact that
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Theorem A. An irreducible smooth representation of G is admissible [9].

If P = LU denotes a parabolic subgroup of G with unipotent radical U
then a (smooth) representation (σ,W ) of the Levi factor L extends (trivially
across U ) to a (smooth) representation of P also denoted (σ,W ). G acts on the
space W (σ) of all functions f : G→ W such that

f(hug) = σ(h)f(g), ∀h ∈ L, u ∈ U, g ∈ G.

by the formula
(π(g)f)(y) = f(yg), y, g ∈ G.

One usually refers to this as the action of π by right translations. The subspace
of smooth vectors in W (σ), which one may refer to as smooth functions is G-
invariant so it affords a smooth representation, this is the parabolically induced
representation denoted IndGPσ .

Let δP denote the modular character of P , it is well known that if σ is
unitarizable then IndGP (δ

1/2
P ⊗ σ) is itself unitarizable. We will refer to it as the

representation unitarily induced from σ . We will denote it indGPσ .

We will also need the notion of compactly-induced representation denoted
c-IndGHσ for which G acts by right translations on the subspace of W (σ) consist-
ing of compactly supported smooth functions. Clearly if G/H is compact then
the two notions of induction coincide (this is the case for parabolic subgroups).

In this context, Frobenius reciprocity holds, that is

HomH(π|H , σ) ∼= HomG(π, c− IndGHσ). (4)

We now state the following important property of induced representations

Theorem B. [9] A smooth representation of G induced from an irreducible
smooth representation of a proper parabolic subgroup has finite composition length.

By constituents of such a representation we mean the irreducible compo-
sition factors (or subquotients). The so called supercuspidal representations are
those smooth representations which do not occur as constituents of these ‘parabol-
ically’ induced representations.

We now review the construction of Jacquet modules.

Let P = LU be a parabolic subgroup of G. The Jacquet module of a
representation (π, V ) of G with respect to P , denoted (πU , VU) is a representation
of L on the quotient space

VU = V/V (U)

where
V (U) = span{π(u)v − v | v ∈ V, u ∈ U}.

Write v̄ = v + V (U) then L acts by

πU (h)v̄ = π(h)v, h ∈ L, v ∈ V.
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The subspace V (U) is also characterized as the subspace

{v ∈ V | for some compact open subgroup U ′ ⊆ U,
∫

U ′
π(u′)vdu′ = 0},

where u′ ∈ U ′ and du′ is a Haar measure on U ′ . It is a useful technical fact (see
[9]) that for any compact open subgroups U1 ⊆ U2 ,

if
∫

U1

π(u)vdu = 0 then
∫

U2

π(u)vdu = 0 . (5)

The correspondence π → πU defines an exact functor from smooth G-
modules to smooth L-modules. Assuming now that π and σ (as above) are
admissible; then the following second version of Frobenius reciprocity holds:

HomL(πU , δ
1/2
P ⊗ σ) ∼= HomG(π, IndGPσ). (6)

Finally we state the following important result of Jacquet and Harish-
Chandra [9]:

Theorem C. If π is an admissible representation of G then πU is admissible.

3. On elliptic representations

Let P = LU be a (not necessarily proper) parabolic subgroup of G. Let L̃ ∼=∏k
j=1GLNj (for some Nj ’s) be the Levi subgroup of G̃ such that L = L̃∩G. Now

we have the following results of David Goldberg.

Lemma 1. [12] If for some i and j , Ni 6= Nj , then a representation of the
form mboxindGPσ can never have an elliptic constituent.

We now specialize to the case that N is prime and P = B . We then have
the following criteria:

Proposition 1. [12] Suppose that all the Nj are equal (in fact they will then
equal one, since N is prime). Let σ be a unitary character of D , then the following
are equivalent:
a) indGBσ has an elliptic constituent,
b) Every constituent of indGBσ is elliptic,
c) σ is of the form ⊗N−1

j=1 χ̄
j where χ̄ is a character of F× that has order N .

The condition c) is formulated differently in [12]. The statement there is
that the R-group is isomorphic to the cyclic group ZN . In particular indGBσ de-
composes into N inequivalent subrepresentations with multiplicity one. A simple
verification shows that this condition is equivalent to the statement in c) above.
This result motivates the construction given in the next section.

4. Construction of types

We consider a character χ of F× (the multiplicative group of F ) whose restriction
χ on UF is nontrivial and satisfies χN = 1. Now we have:
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Lemma 2. a) If p 6= N then the powers χj , j ∈ {1, · · · , N − 1}, all have

conductor PF (that is, they are trivial on U (1)
F = 1 + PF but not on UF ).

b) If p = N then the χj all have the same conductor Pn+1
F for some integer

n ≥ 1.

Proof. a) If χ does not have conductor PF then it has conductor Pn+1
F with

n ≥ 1, thus χ may be identified with a character of the group

U (n)
F /U (n+1)

F
∼= k+

F

which has order q = pr . Hence N = p.
b) If N = p then χ must have conductor Pn+1

F , n ≥ 1; otherwise χ would identify
with a character of the group

UF/U (1)
F
∼= k×F

which has order q− 1 = pr− 1. Since p does not divide pr − 1, this is impossible.

We now appeal to the self-duality of F+ . Composing the isomorphism (1)
with the following isomorphism

U (n)
F /U (n+1)

F ' PnF/Pn+1
F

1 + y → y

we see that as a character of U (n)
F /U (n+1)

F , χ is given by

χ(1 + y) = ψa(y) where a ∈ P−nF /P1−n
F .

It follows that

χj = ψja.

Now each j ∈ {1, · · · , N −1} is a unit in OF (since p = N ); hence the ja all have
the same valuation and the result follows.

Our goal is to construct the type corresponding to the pair (D, σ ) where σ
is a character of D determined by the χj , j ∈ {1, · · · , N − 1}; σ is defined by:

σ




d1

. 0
.
.

0 dN−1 ∏N−1
i=1 d−1

i




=
N−1∏

j=1

χj(dj).

The construction which follows goes by cases.

Case N 6= p:
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Here the χj , j ∈ {1, · · · , N − 1} have conductor PF . We get a well defined
character λ of the Iwahori subgroup as follows:

J =




UF
. OF

.
PF .

UF



∩ SLN(F )

(OF , UF , PF indicate where the entries belong)

λ




u1

. ?
.

? .
uN




=
N−1∏

j=1

χj(uj),

(by ? we mean some given entries which we do not need to show). We now state
our main result:

Theorem 1. An irreducible smooth representation (π, V ) of G contains λ
upon restriction to J if and only if there are unramified characters ηj, j ∈ {1, · · · , N−
1} such that π embeds into IndGB(

⊗N−1
j=1 χ̄jηj) where

⊗N−1
j=1 χ̄jηj is a character of

D defined by:

N−1⊗

j=1

χ̄jηj




d1

. 0
.
.

0 dN−1 ∏N−1
i=1 d−1

i




=
N−1∏

j=1

χ̄jηj(dj).

Case N = p:

Here the χj have conductor Pn+1
F , n ≥ 1. We define a compact open subgroup J

as follows: if n = 2m then we let

J =




UF
. PmF

.
Pm+1
F .

UF



∩ SLN(F ),

but if n = 2m− 1 then we let

J =




UF
. PmF

.
PmF .

UF



∩ SLN(F ) .
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Again by setting

λ




u1

. ?
.

? .
uN




=
N−1∏

j=1

χj(uj),

we get a well defined character λ of J . Again we need to prove Theorem 1 for
this choice of J .

5. Support of the Hecke algebra of a type

Recall that given a pair (J, λ) where J is a compact open subgroup of G and
λ is a character of J , the convolution Hecke algebra H(G‖J, λ) consists of all
compactly supported functions f : G→ C such that

f(hgk) = λ−1(h)f(g)λ−1(k), g ∈ G, h, k ∈ J.
Note that this definition still makes sense when J is not open in G, but in that
case many of the nice properties of Hecke algebras will no longer hold.

It is convenient to (and we will always) normalize Haar measure on G so
that vol(J) = 1, when J is fixed.

Recall that the support of H(G‖J, λ) is the set

{g ∈ G | JgJ supports a nonzero function in H(G‖J, λ)}.
Since J is open it follows that there are only finitely many double cosets which
support a given function in H(G‖J, λ). We will often denote fg the unique function
in H(G‖J, λ) (if any) such that fg(g) = 1. An easy verification shows that the
support of H(G‖J, λ) is the same as the G-intertwining of λ which is the set
denoted IG(λ) defined by

IG(λ) = {g ∈ G | λg = λ, when restricted to J ∩ Jg}.
(Recall our notations Jg = gJg−1 and λg(x) = λ(g−1xg) ).

It is also clear, that

g ∈ IG(λ) if and only if JgJ ⊆ IG(λ).

We now recall some standard facts on the structure of G which we shall need. If
J is the Iwahori subgroup then we have the Bruhat decomposition:

G = JWJ =
∐

w∈W
JwJ (disjoint union), (7)

where W is the affine Weyl group of G. Recall that if M is the normalizer of D
in G and M0 = M ∩ SLN(OF ) then W = M/M0 and the Bruhat decomposition
amounts to:

G = JMJ,
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and if w1, w2 ∈M then

Jw1J = Jw2J if and only if w1 = w2 (mod M0).

We take for generators of W the following (standard) representatives in M :

s1 =




0 1
−1 0

IN−2


 , s2 =




1
0 1
−1 0

IN−3


 , · · ·

sN−1 =



IN−2

0 1
−1 0


 and sN =




$−1

IN−2

−$


 .

There is defined on W a ‘length’ function l with respect to J . The length
of w ∈ W is the integer l(w) such that:

[J : J ∩ w−1Jw] = ql(w).

In case J is the Iwahori subgroup (i.e N 6= p) l(w) is equal to the minimum
number of the si needed to express w . We have l(si) = 1 where i ∈ {1, ..., N}.
We also note that

[J : J ∩ w−1Jw] = vol(JwJ)/vol(J).

We list some standard properties:

Jw1w2J = Jw1Jw2J if l(w1w2) = l(w1) + l(w2)

JsiJsiJ = J ∪ JsiJ, where i ∈ {1, · · · , N}.

We will denote [d1, · · · , dN ] the diagonal matrix




d1

. 0
.
.

0
dN




We introduce the Weyl element w0 = sN−1sN−2 · · · s2s1 . We have

w0 =




0 1
0 1 0

. .
0 . .

0 1
(−1)N+1 0




= (−1)N+1eN1 +
N−1∑

i=1

ei,i+1
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where eij denotes the usual (δij) matrix (δij is the kronecker symbol). W acts by
conjugation on the diagonal entries of elements in MN (F ), as the symmetric group
SN . For this action the diagonal matrices in W act trivially and w0 generates a
subgroup of SN consisiting of of cyclic permutations. We have wN

0 = (−1)N+1IN ,
where IN denotes the N by N identity matrix. We also see by direct calculation
that

w0[d1, · · · , dN ]w−1
0 = [d2, d3, · · · , dN , d1];

the action of wk
0 , k ∈ N is clear from this. We form the semi-direct product:

W0 = 〈w0〉nD

We state:

Proposition 2. IG(λ) = JW0J , where in case p 6= N, J is the Iwahori
subgroup and in case p = N , J is the compact open subgroup defined in Section 4.

Proof. The cases p 6= N and p = N require different techniques.

• Case p 6= N :
We first show that JW0J ⊆ IG(λ) or equivalently W0 ⊆ IG(λ). It is enough to
show that 〈w0〉 ⊆ IG(λ) (since the conjugation action of the diagonal matrices
is trivial on diagonal entries). We show that w0 ∈ IG(λ). We first observe the
following simple fact. For u = (uij) in J , det(u)= 1 so we have:

N∏

j=1

uii = 1−
∑

s∈SN−{1}
sgn(s)u1s(1) · · ·uNs(N),

where sgn(s) denotes the sign of the permutation s in the symmetric group SN .
We clearly have ∑

s∈SN−{1}
sgn(s)u1s(1) · · ·uNs(N) ∈ PF .

This implies that χ(us(N)) = χ−1(us(1) · · ·us(N−1)) for any s ∈ SN . Now we have

λw0




u1

. ?
.

? .
uN




= λ(w−1
0 [u1, · · · , uN ]w0),

= χ(uN)χ2(u1) · · ·χN−1(uN−2)
= χ(u1) · · ·χN−2(uN−2)χ−1(uN).

But χ−1 = χN−1 , so that

λw0 = λ when restricted to J ∩ Jw0.

We show in the same way that:

N−1∏

j=1

χj(uwk+1
0 (j)) =

N−1∏

j=1

χj(uwk0 (j)), k ∈ Z,
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where we abuse notation by letting wj
0 , j ∈ Z denote the permutation in SN

which implements the conjugation action of wj
0 on diagonal entries. So we have

shown that JW0J ⊆ IG(λ).

To prove the converse we use again the fact that for w ∈ W , and any
d ∈ D, wd ∈ IG(λ) if and only if w ∈ IG(λ). Now appealing to the Bruhat
decomposition (7) we see that it is enough to show that if w is not in W0 then
w is not in IG(λ). Now let w ∈ W − W0 then (up to multiplication by an
appropriate power of w0 ) we may assume that w conjugates [u1, u2, · · · , uN ] into
[u′1, u

′
2, · · · , u′N ], where u′1 = u1 and u′k = u2 for some k ∈ {1, 3, · · · , N} (the point

here is that k 6= 2).

Now we set u2 = u−1
1 and uj = 1, for j ∈ {3, · · · , N}. An easy calculation

shows that λw and λ do not agree on [u1, u
−1
1 , 1, · · · , 1]. This completes the proof

in case p 6= N .

• Case p = N :
We see as above that JW0J ⊆ IG(λ). To prove the converse we can no longer
invoke the Bruhat decomposition. We shall rely instead, on orbit theory in MN(F )
as developed by R. Howe (and exploited by Howe-Moy, Bushnell-Kutzko and
others).

We consider the following standard lattice flags L0 = {L0
j}, and L1 = {L1

j}
of period respectively 1 and N defined as follows, let ej denote the standard basis
of FN then set:

L0
j =

N⊕

i=1

PjFei , j ∈ Z.

L1
0 = OFe1 ⊕OF e2 ⊕ ...⊕OF eN−1 ⊕ PFeN ,

L1
1 = OFe1 ⊕ ...⊕OF eN−2 ⊕ PF eN−1 ⊕ PFeN ,

...

L1
N−1 = OFe1 ⊕ PF e2 ⊕ ...⊕ PF eN−1 ⊕ PFeN

We will denote Aj
0 , Aj1 , K

(j)
0 and K

(j)
1 , the corresponding filtrations of

(compact open) ideals and subgroups, as in section 2.

In order to state a technical result on the geometry of conjugacy classes in
A, we consider cases:

• Subcase n is odd: We let n = 2m− 1 and we set:

K0 = K
(m)
0 ∩G,

and
H0 = K

(n+1)
0 ∩G.

Clearly λ determines a character λ of K0/H0 . It follows that λ = ψa0 , where

a0 ∈ A−n0 /
(
A1−m

0 + F ∩ A−n0

)
.

• Subcase n is even: Here we set n = 2m and we let

K1 = K
(Nm+1)
1 ∩G
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and
H1 = K

(Nn+1)
1 ∩G.

Again we see that λ determines a character λ = ψa1 of K1/H1 where now

a1 ∈ A−Nn1 /
(
A−Nm1 + F ∩ A−Nn1

)
.

In any case, we are in the ‘separated’ situation of Howe-Moy (see [15]). A
direct adaptation of the proof of [15, Lemma 3.2], now yields:

Lemma 3. i) For any b ∈ A1−m
0 , K0 conjugates a0 + b to a diagonal matrix.

ii) For any b ∈ A−Nm1 , K
(Nm)
1 ∩G conjugates a1 + b to a diagonal matrix.

Remark 1. i) We note that K0 and K
(Nm)
1 ∩G are subgroups of J .

ii) Observe that a0 and a1 have the form: [α, 2α, . . . , (N−1)α, 0], where vF (α) =
−n.

We now proceed with the proof of Proposition 2, as follows: We assume n
is odd (the proof goes the same - with easy modifications - in case n is even).

It is enough to prove that IG(ψa0) ⊆ JW0J . Calculations which are now
standard (thanks to R. Howe [13]) show that

IG(ψa0) = {x ∈ G | x(a0 + A1−m
0 + F ∩ A−n0 )x−1 ∩ (a0 + A1−m

0 ) 6= Ø}. (8)

If x ∈ IG(ψa0) then there exists y, y′ ∈ A1−m
0 , and c ∈ F ∩ A−n0 such that

x(a + y)x−1 = a+ c+ y′. (9)

By Lemma 3, there exists z1, z2 ∈ K0 , such that

z1(a + y)z−1
1 = d and z2(a+ y′)z−1

2 = d′,

for some diagonal matrices d and d′ . Noting also that K0 normalizes Am
0 and

A1−m
0 , and K0 conjugates a0 to itself (mod A1−m

0 ), it follows that d and d′ are
congruent to a0 (mod A1−m

0 ). In particular the entries of d (resp. d′ ) are all
distinct. Set x0 = z2xz

−1
1 ; then

x0dx
−1
0 = d′ + c.

This shows that there exists w ∈ W such that

d′ + c = wdw−1.

In particular

c ∈ {α, 2α, . . . , (N − 1)α, 0} (mod A1−m
0 ) (α is taken as in Remark 1).

(We trust the reader will distinguish between our use of c either as a scalar matrix
or an element of the field). We also derive from this that

x−1
0 wdw−1x0 = d,
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hence w−1x0 must be diagonal.

We claim that in fact w ∈ W0 . Indeed, if w is not in W0 , then (as noted
before) we may assume that w−1 conjugates d = [d11, . . . , dNN ] to [d′11, . . . , d

′
NN ],

where d′11 = d11 but d′1k = d12 for some k 6= 2.

Now writing d′ = [d21, . . . , d2N ], we see that on one hand d21 + c = d11 and
hence c ∈ P1−n

F .

On the other hand we see that

c = d1k − d12 ≡ (k − 2)α (mod P1−n
F ).

This is a contradiction. The proof is now complete in case p = N also.

6. Types for GLN(F )

Implicit in our approach is the fact that our types may be constructed by restriction
from similar types in G̃ = GLN (F ). We now discuss this explicitly and will later
exploit the structure of two related GLN (F )-algebras. In case N 6= p we let J̃
denote the Iwahori subgroup of G̃ . But in case N = p we define it to be the
following compact open subgroup:

J̃ =




UF
. PmF

.
Pm+1
F .

UF




if n = 2m;

J̃ =




UF
. PmF

.
PmF .

UF




if n = 2m− 1.

(Recall that n + 1 is the conductoral exponent of our fixed character χ̄ of F × ).
Clearly J = J̃∩G. We define a character λ̃ of J̃ in a manner completely analogous
to the definition of λ (see section 4). It is then clear that λ is just the restriction
of λ̃ to J . We review some basic facts about the affine Weyl group and the Bruhat
decomposition for G̃ . For this account we refer to the excellent survey [14] and
the bibliography there.

The Weyl group W̃ of G̃ is isomorphic to the symmetric group SN and
may be realized as the subgroup of permutation matrices. W̃ normalizes D̃ . We
denote by D̃($) the subgroup consisting of diagonal matrices of the form

di = [$i1, . . . , $iN ],

for i = (i1, . . . , iN ) ∈ ZN . Clearly if
∑N
k=1 ik = 0 then di ∈ G. We will always

assume this condition whenever we view di as an element of G. The affine Weyl
group W̃ a may be realized as the semi-direct product

W̃ a = W̃ n D̃($).



116 Sanje Mpacko

In case N 6= p the group J̃ yields the Bruhat decomposition

G̃ = J̃W̃ aJ̃ .

The length function l on W̃ a with respect to J̃ is defined as before by the
formula

vol(J̃wJ̃) = ql(w)vol(J̃), for w ∈ W̃ a.

Again in case N 6= p, l coincides with the ‘Coxeter’ length function. In any case
a simple calculation gives

li = l(di) =
∑

1≤k<j≤N
|ik − ij|.

We next describe the structure of two algebras which we will need, namely H̃ =
H(G̃‖J̃ , λ̃) and H = H(G̃‖J, λ). We note however that J is not open in G̃ so
that H is not an Hecke algebra in the usual sense. Next we prove the following

Proposition 3. The support of H(G̃‖J̃ , λ̃) is equal to J̃D̃J̃ = J̃D̃($)J̃ .

Proof. The technique of the proof is similar to that of Proposition 2. We will
freely use some of the notations there. We indicate here only the changes that
apply in this case. Again we consider cases.

Case N 6= p: One shows directly that D̃ (hence J̃D̃J̃ ) is in the support of H̃ .
We prove the converse. By the decomposition of W a as a semi-direct product
and the Bruhat decomposition we see as before that it suffices to prove that no
w ∈ H̃ (except the identity) intertwines λ̃. For any w ∈ H̃ − {1} there exists
j ∈ {1, . . . , N} such that w(j) 6= j . Write k = w(j); then there exists u ∈ UF
such that

χj(u) 6= χk(u).

But this means that λw and λ do not agree on the diagonal matrix uejj+
∑
i 6=j eii .

This proves the result in this case.

Case N = p: We proceed as in the proof of Proposition 2. The important
modification is that by (2) and (8), the scalar matrix c there is now zero. We
complete the argument below.

We consider the same lattice flags L0 and L1 as before. These yield
compact open subgroups K

(j)
0 and K

(j)
1 , j ≥ 1. Assuming that the conductoral

exponent n+1 of χ is even (argument is the same otherwise), we set n+1 = 2m;
then λ determines a character ψa0 of

K
(m)
0 /K

(n+1)
0 .

Now Lemma 3 and Remark 1 apply. As a consequence there exists z2 , z1 ∈ J̃ and
w ∈ W̃ such that

w−1x0 is diagonal

where x0 = z2xz1 . Now the fact that c is zero forces w to be the identity. The
proof is now clear.
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For i ∈ ZN we let f̃i denote the unique function in H̃ that takes value 1
on di . To state our version of the Hecke algebra isomorphism of Howe-Moy [15]
we need another Hecke algebra, namely

H′ = H(D̃‖D̃ ∩ J̃ , λ̃|D̃∩J̃).

We let f
′
i denote the unique function in H′ that takes value 1 on di . Set

J
′
= D̃ ∩ J̃ . We now have:

Theorem 2. Normalize Haar measures on G̃ and D̃ so that J̃ and J
′

have
volume 1. The map Φ : H′ → H̃ , given by Φ(f

′
i ) = q−li/2f̃i, is an algebra

isomorphism.

Proof. See [15, Theorem 2.1]. Note also that under our normalizations of Haar
measures we have vol(J

′
diJ

′
) = 1 and vol(J̃diJ̃) = qli .

Corollary 1. H̃ is a commutative algebra and the following relation holds:
For i, j ∈ ZN , f̃i ∗ f̃j = q1/2(li+lj−li+j )f̃i+j .

Proof. H′ is clearly abelian (since D̃ is). As a consequence we have f
′
i ∗f

′
j = f

′
i+j .

Now apply Φ to get the desired relation.

Corollary 2. H̃ is isomorphic to the N -fold tensor product of the ‘one-dimens-
ional’ affine Hecke algebras H(F×‖UF , χj), j ∈ {1, . . . , N} .
Proof. This result holds for H′ . Indeed we verify that the isomorphism is
explicitly given by the map f

′
i → φi1⊗ . . .⊗φiN , where φij is the unique function

in H(F×‖UF , χj) such that φij (1) = 1.

In order to determine some useful relations in H we now introduce the following
Weyl element

t̃ =




0 1 0
0 1

. . .
. . .

0 0 1
$ 0



.

We let W = 〈t̃〉n D̃ . Then a calculation as in Proposition 2 shows that t̃ as well
as the diagonals in G̃ intertwine λ so that we obtain following:

Proposition 4. JWJ is contained in the support of H .

Let Ik denote the k by k identity matrix. Every x ∈ G̃ decomposes uniquely as
zg where

z =

(
det(x) 0

0 IN−1

)

and g ∈ G. If we let Z be the subgroup consisting of diagonal matrices of the
form (

α 0
0 IN−1

)
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where α ∈ F× ; then we have the decompositions

G̃ = Z nG

and

J̃ = (Z ∩ J̃)n J .

We note that Z ∼= F× . Furthermore the first decomposition allows for a decom-
position of a Haar measure dx on G̃ as

dx = dzdg

where dz (resp. dg ) is Haar measure on Z (resp. G).

The following simple result will be useful:

Lemma 4. a) For any d ∈ D we have J̃dJ̃ ∩G = JdJ . In particular the
restriction of f̃d to G is equal to fd .
b) Normalize Haar measures on G̃ , Z, and G such that J̃ , Z ∩ J̃ and J all
have volume 1. Then for d, d′ ∈ D , the restriction of f̃d ∗ f̃d′ to G is equal to
fd ∗ fd′ .
Proof. Let g ∈ J̃dJ̃ ∩G; then g = xdy for some x, y ∈ J̃ such that det(xy )=1.
Now decomposing x = z1g1 and y = z2g2 as above we see that g = g1dg2 . This
proves a). To prove b) we compute

(f̃d ∗ f̃d′)(g) =
∫

G̃
f̃d(gx

−1)f̃d′(x)dx

=
∫

ZnG
f̃d(gy

−1z−1)f̃d′(zy)dzdy.

The integrand is nonzero only if gy−1z−1 ∈ J̃dJ̃ and zy ∈ J̃d′J̃ . In particular
det(z) ∈ UF hence z ∈ Z ∩ J̃ . This implies that

f̃d(gy
−1z−1)f̃d′(zy) = f̃d(gy

−1)λ̃(z−1)λ̃(z)f̃d′(y)

= f̃d(gy
−1)f̃d′(y)

= fd(gy
−1)fd′(y).

This shows that the integral is equal to (fd ∗ fd′)(g), the result is now clear.

We observe that t̃ normalizes J . In particular l(t̃) = 0. Let ēλ denote the
identity in H . Let f̄i (resp. f̄t̃ ) denote the unique function in H that takes value
1 on di (resp. t̃).

Remark 2. We note that H(G‖J, λ) embeds into H , by extending functions to
G̃ as zero off G. We will use the same notation for a function and its extension.
Furthermore the restriction of f̃d to G may be regarded as an element of H by
Lemma 4.

Next we will prove



Sanje Mpacko 119

Proposition 5. a) For i, j ∈ ZN , f̄i ∗ f̄j = q1/2(li+lj−li+j)f̄i+j .
b) f̄t̃ is invertible and for any d ∈ D̃ , f̄−1

t̃
∗ f̄d ∗ f̄t̃ = f̄t̃−1dt̃ .

c) f̄k
t̃

= f̄t̃k .

Proof. The relation in a) follows from Corollary 1, Lemma 4 and Remark 1. We
prove the statements in b). We clearly have

Jt̃Jt̃−1J = J.

This implies that

f̄t̃ ∗ f̄t̃−1 = β1ēλ.

Evaluating f̄t̃ ∗ f̄t̃−1 at 1 we get β1 = 1. This means that f̄t̃−1 is the inverse of
ft̃ . For any w ∈ W we have

Jt̃−1JwJ = Jt̃−1wJ .

This shows that

f̄t̃−1 ∗ f̄w = β2f̄t̃−1w.

Fix Haar measures on G and J normalized by the condition that vol(J )=1. We
compute

β2 = (f̄t̃−1 ∗ f̄w)(t̃−1w)

=
∫

G
f̄t̃−1(t̃−1wg−1)f̄w(g)dg

= vol(JwJ)
∫

J×J
f̄t̃−1(t̃−1wk−1w−1h−1)f̄w(hwk)dhdk

= vol(JwJ)
∫

J
f̄t̃−1(t̃−1wk−1w−1)λ(k)dk.

The integrand is nonzero only if k ∈ w−1Jw . Under this condition we have

f̄t̃−1(t̃−1wk−1w−1) = λ(wk−1w−1)

= λ(k−1) (since w intertwines λ).

It follows that the integral is equal to vol(JwJ)vol(J ∩ w−1Jw) = 1. This shows
the relation

f̄t̃−1 ∗ f̄w = f̄t̃−1w.

We prove similarly that

f̄w ∗ f̄t̃ = f̄wt̃.

Combining these two facts we get the desired relation. The proof of c) follows from
the simple fact that the k -fold coset Jt̃Jt̃ . . . t̃J is equal to Jt̃kJ , and an obvious
inductive argument.

This proposition clearly establishes the following

Theorem 3. The subalgebra of H generated by the f̄i , (i ∈ ZN) and f̄t̃ is
isomorphic to the group algebra C[W ].
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7. Structure of the Hecke Algebra

We now take up the task of proving the following:

Theorem 4. As a C-algebra H(G‖J, λ) is isomorphic to the group algebra
C[W0].

First we make some remarks. By Proposition 2, we know that the support of
H(G‖J, λ) is JW0J . So the functions fw , w ∈ W0 , generate H(G‖J, λ) as a
C-vector space. We now make use of the results of the previous section. We will
freely use the notations there.

To determine relations in H(G‖J, λ) we may - by Remark 1 - compute
inside H . We may also restrict relations from H̃ by restricting functions to G.

The Theorem will follow clearly from

Proposition 6. a) For any i, j ∈ ZN we have fi ∗ fj = q1/2(li+lj−li+j )fi+j.
b) fw0 is invertible and f−1

w0
∗ fd ∗ fw0 = fw−1

0 dw0
, d ∈ D .

c) f kw0
= q

k(k−1)
2 fw0

k , where k ∈ N. In particular fNw0
= q

N(N−1)
2 χ((−1)N+1)eλ .

Proof. The relation in a) follows from Corollary 1 and Lemma 4. To prove the
relations in b) and c) we consider the following diagonal matrix

γk =

(
(−1)N+1$−1Ik 0

0 IN−k

)
, k ∈ Z.

A calculation shows that
wk0 = t̃kγk.

In particular l(wk
0) = l(γk) = k(N − k). We now compute in H .

Computing directly as in the proof of Proposition 5 we get the following decom-
positions:

fw0 = f̄t̃ ∗ f̄γ1 and fw−1
0

= f̄γ−1
1
∗ f̄−1

t̃
.

Hence

fw−1
0
∗ fw0 = f̄γ−1

1
∗ f̄γ1

= ql(γ1)ēλ (by Proposition 5 a))

= qN−1ēλ.

This shows in particular that fw0 is invertible.

We make use of Proposition 5 and the simple fact that the conjugation action of
t̃ does not change the length of a Weyl element; we compute:

fw−1
0
∗ fi ∗ fw0 = f̄γ−1

1
∗ f̄−1

t̃
∗ fi ∗ f̄t̃ ∗ f̄γ1

= f̄γ−1
1
∗ f̄t̃−1dt̃ ∗ f̄γ1

= q1/2(li+l(γ1)−l(t̃−1di t̃γ1))f̄t̃−1di t̃γ1

= q1/2(li+l(γ1)−l(t̃−1di t̃γ1))q1/2(l(γ1)+l(t̃−1di t̃γ1)−li)f̄γ−1
1 t̃−1di t̃γ1

= qN−1fw−1
0 diw0

.
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We have thus shown the required relation in b), recalling also from above that

fw−1
0

= qN−1f−1
w0
.

To prove the relations in c), we proceed by induction.

Using again the decomposition fw0 = f̄t̃ ∗ f̄γ1 we see that f 2
w0

= qfw2
0
. We

now proceed with the induction as follows

fk+1
w0

= f kw0
∗ fw0

= q
k(k−1)

2 fw0
k ∗ fw0

= q
k(k−1)

2 f̄t̃k ∗ f̄γk ∗ f̄t̃ ∗ f̄γ1

= q
k(k−1)

2 f̄t̃k+1 ∗ f̄t̃−1γk t̃
∗ f̄γ1

= q
k(k−1)

2 q
l(γk)+l(γ1)−l(wk+1

0
)

2 fwk+1
0

= q
(k+1)k

2 fw0
k+1

This proves the first relation in c). The second relation is an obvious
consequence of this relation.

8. Classification

Our goal here is to prove Theorem 1 (see section 4). We let F :V → VU denote
the canonical Jacquet map with respect to the Borel subgroup B = DU . For
simplicity of notations we will write v̄ = F(v) where v ∈ V . We note that J
admits an Iwahori decomposition with respect to B :

J = (J ∩ U)(J ∩D)(J ∩ U−),

a product which can be taken in any order. We let λD denote the restriction of λ
on J ∩D and λDU− the restriction of λ to (J ∩D)(J ∩ U−). We then prove the
following result (known as Casselman’s lemma):

Theorem 5. The canonical map F :V → VU determines an isomorphism (of
C-vector spaces)

V λ ∼= (VU)λD .

To prove this theorem we need the following results:

Proposition 7. (Casselman [9]) Let G be a reductive connected p-adic group.
If P = LU is a proper parabolic subgroup and if U1 , U2 are two compact open
subgroups of U then there exists a ∈ T , where T is the maximal split torus in the
center of L, such that a−1U2a ⊆ U1 .

Remark 3. For G = SLN(F ) we let P = B = DU then T = L = D ∼=
(F×)N−1 .
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Lemma 5. For any smooth representation (π, V ) of G and any d ∈ D the
operator π(eλ) ◦ π(d) ◦ π(eλ) is an automorphism of V λ .

Lemma 6. V λ and V λDU− have the same image in VU .

We will give the proofs of these Lemmas later; now we use them to prove Theorem
5.
Proof of Injectivity:
The canonical map F :V → VU yields by restriction the map V λ → VU whose
kernel is V λ ∩ V (U). By way of contradiction, let v ∈ V λ ∩ V (U), v 6= 0; there
exists a compact open subgroup U1 such that

∫

U1

π(u)vdu = 0.

Proposition 7 implies that there exists d ∈ D such that d−1U1d ⊆ J ∩ U . Now
Lemma 5 says that: (π(eλ) ◦ π(d) ◦ π(eλ))(v) = π(eλ)π(d)v is a non-zero vector in
V λ . Observe that for any nonzero vector w in V λ we have:

∫

J∩U
π(u)wdu 6= 0,

since λ is trivial on J ∩ U ; but we have that
∫

J∩U
π(u) ◦ π(eλ) ◦ π(d)vdu = π(eλ)

∫

J∩U
π(u)π(d)vdu

= π(eλ) ◦ π(d)
∫

J∩U
π(d−1ud)vdu

= π(eλ) ◦ π(d)
∫

d(J∩U)d−1
π(u)vdu

= 0 (since U1 ⊆ d(J ∩ U)d−1, see (1.6)).

This is a contradiction.
Proof of Surjectivity:
We note that (by Theorem C) (πU , VU) is admissible since (π, V ) is; hence (VU)λD

is finite dimensional. We also note the following facts:

• (f1) There exists a finite dimensional subspace E ⊆ V λD mapping onto
(VU)λD under the canonical map F :V → VU .

• (f2) There exists a compact open subgroup U−0 ⊆ U− that fixes E .

• (f3) For any d ∈ D , πU(d) is an automorphism of (VU)λD .

Proof of (f1):
Define an operator P on V by:

P (v) =
∫

J∩D
(π ⊗ λ−1

D )(x)vdx

where dx is normalized by the condition vol(J ∩D) = 1. Choose a basis f̄1, . . . , f̄r
of (VU)λD ; then set

ei = P (fi) ,
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where fi is any representative in f̄i . We show that ēi = f̄i . If K is a compact
open subgroup of G that fixes fi then:

ei = vol(J ∩D ∩K)×
∑

x∈J∩D/J∩D∩K
(π ⊗ λ−1

D )(x)fi,

therefore

ei = vol(J ∩D ∩K)×
∑

x∈J∩D/J∩D∩K
λ−1
D (x)πU(x)f̄i = f̄i.

Also a direct computation shows that P (v) ∈ V λD for any v ∈ V , in particular
ei ∈ V λD . Now we define E = span{e1, . . . , er}. 2

Proof of (f2):
Let E = span{e1, . . . , er} as above, let U−i ⊆ U− be a compact open subgroup
that fixes ei , now set U−0 =

⋂r
i=1 Ui . 2

Proof of (f3):
It is enough to show that for all d ∈ D , πU (d)(VU)λD ⊆ (VU)λD . Take v ∈
(VU)λD , d′ ∈ D then:

πU(d′)πU (d)v = πU(d)πU(d′)v

= πU(d)λD(d′)v

= λD(d′)πU(d)v.

We now proceed with the proof of surjectivity. We choose d ∈ D such that

d−1(J ∩ U)d ⊆ U−0

then we claim that π(d)E ⊆ V λDU− . To see this let v ∈ E, d′ ∈ J∩D, u ∈ J∩U− ;
then

π(d′u)π(d)v = π(d′)π(d)π(d−1ud)v

= π(d′)π(d)v

= π(d)π(d′)v

= π(d)λ(d′)v

= λ(d′)π(d)v.

We have

πU (d)(VU)λD = F(π(d)E) ⊆ F(V λDU− ) = F(V λ)

(the last equality follows from Lemma 6). We also have

(VU)λD = πU(d)(VU)λD ⊆ F(V λ)

(the first equality follows from (f3)). This proves surjectivity. 2
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Proof of Lemma 5:
We define, for ϕ ∈ H(G, λ) and x ∈ G, xϕ by

xϕ(y) = ϕ(x−1y).

A direct computation shows that

deλ = δd ∗ eλ,

where δd is the Dirac function at d. We also have:

π(d) ◦ π(eλ) = π(deλ),

hence

π(eλ) ◦ π(d) ◦ π(eλ) = π(eλ ∗ deλ).
It is then enough to show that eλ ∗ deλ is an invertible element of the algebra
eλ ∗ H(G) ∗ eλ . Clearly

eλ ∗ deλ = eλ ∗ δd ∗ eλ
thus we see that eλ ∗ deλ has support JdJ . We have JdJ = JdiJ for some i ∈ ZN .
It follows that eλ ∗ deλ is a nonzero multiple of fi , hence (by Proposition 4) it is
invertible as required. 2

Proof of Lemma 6:
It is enough to show that F(V λDU− ) ⊆ F(V λ) (since V λ ⊆ V λDU− ). We need to
show that given v ∈ V λDU− there exists v′ ∈ V λ such that v′ − v ∈ V (U). We let
dx be the Haar measure on J normalized by the condition vol(J) = 1. We define

v′ =
∫

J
(π ⊗ λ−1)(x)vdx

then v′ ∈ V λ . A direct calculation and the fact that v ∈ V λDU− show that
v′ − v ∈ V (U). 2

Proof of Theorem 1:
For convenience we write σ =

⊗N−1
j=1 χjηj , and π = IndGBσ . The restriction of π

to J decomposes (by Mackey’s Theorem) as

⊕

x∈(J |G|B)

c-IndJJ∩Bxσ
x,

where (J |G|B) denotes the set of all J − B double cosets in G. The restrictions
of λ and σ to J ∩ B coincide, therefore by Frobenius reciprocity (4) c-IndJJ∩B σ
contains λ, hence π contains λ.

We prove the converse. By assumption we have V λ 6= 0, Theorem 5 then
implies that (VU)λD 6= 0. But (VU)λD is finite dimensional (by Theorem C, see
section 2). Thus

VU = (VU)λD ⊕ Ṽ
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as J ∩D -spaces but also as D -spaces, where Ṽ is some subspace in VU , since D
centralises J∩D . D is abelian hence there exists a one dimensional D -quotient in
(VU)λD . It follows by Frobenius reciprocity (6) that π embeds into IndGBγ where
γ is a character of D . We consider the restriction of IndGBγ to J . It follows (by
Mackey’s theorem and Frobenius reciprocity again) that for some x ∈ (J |G|B),
the restrictions of λ and γx on J ∩ Dx coincide. We deduce from this that γ
is of the form

⊗N−1
j=1 χjηj , where the ηj are unramified characters of F× . This

concludes the proof of Theorem 1. 2

9. Concluding remarks

The analogue of Theorem 1 for G̃ is stated below. We denote ⊗Nj=1χ
jηj the

character of D̃ defined by

⊗Nj=1χ
jηj([d1, . . . , dN ]) =

N∏

j=1

χjηj(dj).

We then introduce the (Bernstein-Zelevinsky) notation

×Nj=1χ
jηj

for the induced representation

IndG̃B̃(⊗Nj=1χ
jηj) .

The Hecke algebras corresponding to the GLN(F )-types introduced in sec-
tion 6, are described by Corollary 2. The same methods used here to prove Theo-
rem 1 yield now the following

Theorem 6. An irreducible smooth representation (π, V ) of G̃ contains λ̃
upon restriction to J̃ if and only if there are unramified characters ηj, j ∈
{1, · · · , N} such that π is equivalent to ×Nj=1χ

jηj .

Observe that by results of Bernstein and Zelevinsky [3], ×Nj=1χ
jηj is irre-

ducible.
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