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Abstract. Let G0 = SU(p, q) with q ≤ p , K0 = S(U(p)×U(q)) a maximal
compact subgroup, and let G,K be their complexifications. Finally, let B
be a Borel subgroup of G . We define a number of algebraic functions on
G/B × G/K and use them to describe the closures of codimension one K
orbits of the flag manifold G/B . We show how the underlying geometry of
the flag manifold interacts with these functions. In particular, we shall use
these functions to construct a Stein extension of the Riemannian symmetric
space G0/K0 , whose connected component turns out to be the space of
linear cycles in most cases.

1. Introduction

In this paper we define a number of functions called the determinant functions and
explain their relationship with the underlying geometry of the flag manifold. We
will concentrate on the special case of the Lie group G0 = SU(p, q) with q ≤ p. We
let K0 = S(U(p)×U(q)), a maximal compact subgroup, and G = SL(p + q,C),K
be the complexifications. The q + 1 determinant functions Dj(x, z) are defined
on the product X × Z , where X is the flag manifold associated to G and Z
the complex symmetric space G/K . Closely related to these q + 1 determinant
functions are the zero sets Dj( , z) = 0 for each fixed z ∈ Z . We call these
sets Oj(z) the determinant varieties. These determinant varieties contain very
interesting geometric information.

We would like to indicate briefly why the determinant functions and vari-
eties are interesting. First, consider the set O(z) = ∪kOk(z), called a configura-
tion. It turns out to be the complement of the unique open orbit of the stabilizer
Gz of the point z of the complex symmetric space G/K . Second, the determinant
functions are special functions associated to the flag variety. To give an idea why
they are important, we wold like to mention that we can write down Szegö kernels
for generalized flag manifolds. In principle, the more “degenerate” a generalized
flag manifold is, the less is the number of factors involved in the singularities of
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the kernels. As limiting cases, the Grassmanians G(p, p + q), G(q, p + q) involve
only two factors. They are exactly D0, Dq . The remaining q − 1 functions are
genuienely new. Third, the determinant functions pin down all the codimensional
one orbits of Gz . Indeed, we expect a suitable Gz invariant stratification of O(z)
would yield various higher codimension Gz orbits. Fourth, we know that G0 ad-
mits an Iwasawa decomposition K0A0N0 . When we complexify the decomposition,
it is no longer true that G = KAN , but the equations Dk = 0 encode the obstruc-
tion. Finally, as shown in [2] and alluded to just now, the functions Dk capture
the singularities when we try to extend meromorphically the Szegö kernels.

From a different direction, we can understand the geometric information
contained in the determinant functions as follows. From Matsuki’s work ([4])
we know that it is important to study the interaction between K orbits and G0

orbits of X . We have now a small variation of the same theme. We have two
families of subgroups. On one hand, we have the conjugacy class (in G) of K ,
and correspondingly the configurations O(z). On the other hand, we have the
conjugacy class of G0 , and correspondingly the G translates of X0 , the unique
closed G0 orbit on X . These two classes of objects interact as follows. For a set
C ⊆ Z , call its polar Ĉ to be {x ∈ X|(∀z ∈ C)x ∈ O(z)}. Likewise, for A ⊆ X ,
the polar Â is {z ∈ Z|(∀x ∈ A)x ∈ O(z)}. It turns out that X0 is its double

polar, i.e.,
̂̂
X0 = X0 .

From a third direction, we can appreciate the importance of the determinant
functions as follows. For various reasons people are interested in G0 invariant
Stein extensions of G0/K0 . Wolf and Zierau have found, in explicit terms, the
Stein extension as the space of linear cycles. We will show that the connected
component of X̂0 is the space of linear cycles. This suggests another, though
equivalent, manner of obtaining the Stein extension.

In [2] we explain the origin of the determinant functions as the singularties
of Szegö kernels. An immediate consequence of that paper is that the solutions
of Schmid equations on the Riemmanian symmetric space G0/K0 extend holor-
mophically to the space of linear cycles.

Here is a brief summary of the paper. In Section 2 we define the q + 1
determinant functions in order to describe the q + 1 codimensional one K orbits
of the flag manifold in Sections 3 and 4. In Section 5 we will explain how to find a
Stein extension for the Riemannian symmetric space G0/K0 using the determinant
functions. We relate this extension to the space of linear cycles, first studied by
R.O. Wells and J. Wolf, later also by R. Zierau (see the citations in Section 5),

in Section 6. In the same section, we also prove that X0 =
̂̂
X0 . Section 7 is the

appendix, in which we explain how to obtain some of our results by Lie-algebraic
method, and this should have some bearing on [7, Problem 9, p.740].

We would like to thank Devra Garfinkle, Joe Wolf, and Roger Zierau who
explained various aspects of their results to us while we were writing this paper.

2. Determinant Functions

In [2], a number of determinant functions are defined. We would like to repeat the
definition here for the reader’s convenience.
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The space X denotes the set of all sequences (Vi; 1 ≤ i ≤ n) of subspaces
of Cn , where dim Vi = i and Vi ⊆ Vj if i ≤ j . We can represent a point of X
by ω = (ωi, 1 ≤ i ≤ p+ q), where ωi ∈ ΛiCp+q . Strictly speaking, we should look
at the n−tuple (ω̃i) ∈ Πn

i=1P(ΛiCn), where ω̃i is the projective point in P(ΛiCn)
represented by ωi . The space Z consists of pairs (Lp, L

′
q) of disjoint subspaces of

dimensions p and q . We can likewise think of Lp, L
′
q as two elements in Λ•Cn .

Sometimes we use an ordered basis (vi, 1 ≤ i ≤ n) to represent a flag, by putting
ωi = v1 ∧ . . . ∧ vi .

For the sake of simplicity, we find the following notation
.
= useful. It means

that the two sides are equal up to a non-zero scalar multiple.

We introduce two more pieces of notations, for convenience’s sake. On
Λ•Cp+q we have a “star” operator. Suppose we have an ordered basis (vi, 1 ≤
i ≤ p + q) for Cp+q , then ∗vk1 ∧ . . . ∧ vki := εvki+1

∧ . . . ∧ vkp+q . Here ε is
+1 or −1 according to whether (k1, . . . , kp+q) is an even or odd permutation of
(1, . . . , p+ q). Now suppose u ∈ ΛaCp+q, v ∈ ΛbCp+q , and suppose a+ b ≥ p+ q ,
define uuv := ι(∗u)v . Here ι( ) means the interior product. Geometrically, if u, v
represent vector subspaces then uu v 6= 0 iff the subspaces intersect transversally
and in that case u u v represents their intersection.

Next, for any forms ω, θ , define ωt θ := ω∧ θ . If ω, θ represent subspaces,
then ω t θ 6= 0 iff they do not intersect, and in that case ω t θ represents their
linear span.

We will take the convention that atbtc := (atb)tc, likewise for aubuc.

We will take (e1, . . . , ep+q) as the standard ordered basis of Cp+q .
Given any forms u of the top degree, we can identify it as a scalar [u],

provided we have made a choice of a “standard” top form, as we have already
done.

We define q + 1 determinant functions on X × Z as follows.

Definition 2.1. For 0 ≤ j ≤ q , define Dj = Dj(ω1, . . . , ωp+q;Lp, L
′
q) as

follows.

Dj =





[ωp t L′q] if j = 0,
[(ωp+q−j u Lp) t ωj t L′q] if 1 ≤ j ≤ q − 1,
[ωq t Lp] if j = q.

(1)

3. Codimension One Orbits

We take as base point lp := e1t . . .t ep and l′q := ep+1t . . .t ep+q . We then define
polynomial functions δj on X by

δj(ω) := Dj(ω; lp, l
′
q). (2)

We can now define q + 1 subsets O0
j ; 0 ≤ j ≤ q of X . They turn out to be

the codimensional one K orbits. For 1 ≤ j ≤ q − 1,

O0
j := {(ωi, 1 ≤ i ≤ p+ q)|δj(ω) = 0, δa(ω) 6= 0 if a 6= j}. (3)

For the case j = 0, we would like to imitate the definition in Equation 3 by
requiring δa(ω) = 0 iff a = 0. However, a moment’s thought reveals that this still
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consists of several orbits. We have to add more conditions. We define

O0
0 := {ω|δj(ω) 6= 0 if j > 0, ωp−1 t l′q 6= 0, δ0(ω) = 0}. (4)

Likewise, define

O0
q := {ω|δj(ω) 6= 0 if j < q, δq(ω) = 0, ωq−1 t lp 6= 0, ωq+1 u lp 6= 0}. (5)

There are obvious geometric descriptions for the orbits O0
j . When 1 ≤ j ≤

q−1, note that δ0, δq 6= 0 implies ωp+q−kulp 6= 0 and ωktl′q 6= 0 for 1 ≤ k ≤ p−1.
So δk 6= 0 iff the subspace ωp+q−k ∩ lp (viewing ωp+q−k as a subspace) is disjoint
from the subspace ω̃k spanned by ωk and l′q . Hence, ω ∈ Oj iff ωp (ωq ) is
disjoint from l′q (lp ) and that ωp+q−k ∩ lp is disjoint from ω̃k if 1 ≤ k ≤ q− 1 and
k 6= j . (Indeed, when k = j , we can even assume that the intersection of the two
subspaces is of dimension one.)

For the case j = 0, q , we can proceed likewise. For all 1 ≤ k ≤ q−1, ωp−1t
l′q 6= 0 implies ωk t l′q 6= 0, and δq 6= 0 means ωp+q−k u lp 6= 0. Hence ω ∈ O0

0 iff
ωp−1 is disjoint from l′q and ωq from lp , and that for all 1 ≤ k ≤ q− 1, ωp+q−k∩ lp
is disjoint from ω̃k . Likewise, ω ∈ O0

q iff ωp is disjoint from l′q , ωq−1 from lp , and
ωq+1 is transversal to lp , and for 1 ≤ k ≤ q − 1, ωp+q−k ∩ lp is disjoint from ω̃k .

The following results relate the functions δj with the geometry of the flag
manifold X . Notice that K has a natural action on X . It is well known that
there are only finitely many orbits and there is a unique open orbit ([4] and [8]).
It is trivial to check that the sets O0

j are K invariant.

Proposition 3.1. The set O := {(ω)|δj(ω) 6= 0 for all j} is the unique open
K orbit.

Proposition 3.2. There are exactly q + 1 codimensional one K orbits. They
are O0

j .

Lemma 3.3. The Zariski closure Oj of O0
j is the set {ω|δj(ω) = 0}.

We will prove these results in the next section.

4. Proofs of Results on the Orbits

For the sake of convenience, define K̃ to be the subgroup of GL(p + q) which

consists of matrices of the form

(
A 0
0 B

)
, as in the case of K ⊆ G. K̃ acts

naturally on X and Z .

First, we prove Proposition 3.1.

Proof. (Proposition 3.1). The set O is clearly K invariant and open, we only
have to show that K acts transitively on it. Let us pick a base point. Recall we
can represent a flag by an ordered basis. The following is a good base point ω0 to

pick: (e1 + ep+1, . . . , eq + ep+q,
︷ ︸︸ ︷
eq+1, . . . , ep, eq− ep+q, . . . , e1− ep+1) (the part under

the overbrace is absent if p = q ). It is trivial to verify that such a flag lies inside
O.
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Suppose we have any ω ∈ O, it suffices to find an element k ∈ K̃ such that
kω0 = ω . Now such an element k must be of the form

k =

(
u1 · · · up 0p · · · 0p
0q · · · 0q v1 · · · vq

)
, (6)

where ui ∈ Cp, vj ∈ Cq are column vectors, and 0p, 0q are the zero vectors. We
will show how to choose the vectors ui, vj .

First of all, pick any ordered basis (zi, 1 ≤ i ≤ p + q) that represents ω .

Suppose zi =

(
ui
vi

)
for 1 ≤ i ≤ q . The requirement that δq(ω) 6= 0 implies

that v1, . . . , vq form a basis for Cq . Hence we can assume that zi =

(
ui
0q

)
for

q + 1 ≤ i ≤ p (if p = q , there is nothing to do). The fact that δ0(ω) 6= 0 implies
that u1, . . . , up form a basis of Cp .

We would like to argue that we can assume that zi =

(
up+q−i+1

−vp+q−i+1

)
for

p + 1 ≤ i ≤ p + q . We can do this by an inductive argument. We will argue
carefully for i = p+ 1, the general inductive step involves a similar reasoning and
will be omitted.

We can assume that zp+1 =

(
up+1

0q

)
. The fact that δi 6= 0 for i = q−1 im-

plies that u1∧ . . . uq−1∧ (uq+1 . . . up∧)up+1 6= 0. So u1, . . . , uq−1, (uq+1, . . . up, )up+1

form a basis of Cp , as do u1, . . . up (in both cases, if p = q , the portions inside
the parentheses are absent). We can assume that up+1

.
= uq +

∑
1≤i≤p,i6=q aiui .

Now replace uq by uq +
∑

1≤i≤q−1 aiui and vq by vq +
∑

1≤i≤q−1 aivi . (This re-
placement does not change the flag represented!) Hence we can rewrite ωp+1 as
up+1

.
= uq +

∑p
i=q+1 aiui (if p = q , the summation from q + 1 to p is treated as

zero). Thus zp+1
.
= 1

2
(

(
uq
vq

)
+

(
uq
−vq

)
) +

∑p
i=q+1 ai

(
ui
0q

)
. Thus, without loss

of generality, we can redefine zp+1 =

(
uq
−vq

)
and we still represent the same flag.

By a similar argument, we know that we can choose zi =

(
up+q−i+1

−vp+q−i+1

)

when p+ 1 ≤ i ≤ p+ q . Thus the element k ∈ K̃ moves ω0 to ω . Hence, K̃ acts
transitively on O.

The following elementary observation can be proved by direct verification,
and we will omit the proof.

Lemma 4.1. The following ordered basis represents a base point ω0(j) of O0
j .

For 1 ≤ j ≤ q − 1, it is (e1 + ep+1, . . . , eq + ep+q,
︷ ︸︸ ︷
eq+1, . . . , ep, eq − ep+q, . . . , ej+2 −

ep+j+2, ej − ep+j, ej+1 − ep+j+1, ej−1 − ep+j−1, . . . , e1 − ep+1). For j = 0 it is

(e1 + ep+1, . . . ,
︷ ︸︸ ︷
eq + ep+q, eq+1, . . . , ep−1, ep+q, ep, eq−1 − ep+q−1, . . . , e1 − ep+1). For

j = q , it is (e1+ep+1, . . . , eq−1+ep+q−1, eq,
︷ ︸︸ ︷
eq+1 + ep+q, eq+2, . . . , ep, eq−ep+q, . . . , e1−

ep+1). (When p = q , the portions under the overbraces are skipped.)
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Lemma 4.2. The group K̃ acts transitively on O0
j .

Proof. We will constantly refer to the proof of Proposition 3.1. We will write
ω0 instead of ω0(j). We would like to find an element k ∈ K̃ that moves ω0 to
any given element ω ∈ O0 , where k is as in Equation 6.

First, we prove the case j = q . The case j = 0 is similarly proved and

thus omitted. Pick any ordered basis (zi) that represents ω . Suppose zi =

(
ui
vi

)

for 1 ≤ i ≤ q − 1. The fact that ωq−1 t lp 6= 0 implies that v1, . . . vq−1 is

linearly independent. As δq(ω) = 0, we can assume that zq =

(
uq
0q

)
. We also let

zq+1 =

(
uq+1

vq

)
(if p = q , let uq+1 = 0p and we may as well let zq+1 =

(
0p
−vq

)
).

The fact that ωq+1 u lp 6= 0 implies that v1, . . . , vq form a basis of Cq . We can

therefore assume that zi =

(
ui
0q

)
for q + 2 ≤ i ≤ p (there is nothing to do if

p = q or p = q + 1). The fact that δ0 6= 0 implies that u1, . . . up form a basis of
Cp .

At this point we can carry over the argument for the proof of Proposition 3.1

verbatim and conclude that we can choose zp+1 =

(
uq+1

−vq

)
(if p = q , this step

is redundant) and then let zi =

(
up+q−i+1

−vp+q−i+1

)
for p + 2 ≤ i ≤ p + q (if q ≥ 2,

otherwise there is nothing to do). The proof is complete at this point.

When 1 ≤ j ≤ q − 1, we pick any ordered basis representing ω . Let

zi =

(
ui
vi

)
for 1 ≤ i ≤ q . The fact that δq 6= 0 implies that v1, . . . vq form

a basis of Cq . Therefore we can choose zi =

(
ui
0q

)
for q + 1 ≤ i ≤ p.

Since δ0 6= 0, we know that u1, . . . , up form a basis of Cp . By the same sort

of argument as in Proposition 3.1, we can assume that zi =

(
up+q−i+1

−vp+q−i+1

)
for

p + 1 ≤ i ≤ p + q − (j + 2) + 1. Next, let zp+q−j =

(
up+q−j

0q

)
. The fact

that δj = 0 implies that up+q−j is a linear combination of u1, . . . , uj, uj+2, . . . , up .
However, δj−1 6= 0 implies that the coefficient of uj is non-zero. Therefore, without
loss of generality, we can assume that up+q−j

.
= uj +

∑j−1
m=1 amum +

∑p
k=j+2 bkuk .

Redefine uj to be uj +
∑j−1
m=1 amum and vj to be vj +

∑j−1
m=1 amvm . Hence we have

2

(
up+q−j

0q

)
=

(
uj
vj

)
+

(
uj
−vj

)
+
∑p
k=j+2 bk(

(
uk
vk

)
+

(
uk
−vk

)
). Therefore,

without loss of generality, we can choose zp+q−j =

(
uj
−vj

)
.

We can argue in a similar fashion that we can assume zp+q−j+1 =

(
uj+1

−vj+1

)
,

and zi =

(
up+q−i+1

−vp+q−i+1

)
for p+ q − j + 2 ≤ i ≤ p+ q .
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We can now prove Proposition 3.2.

Proof. of Proposition 3.2. To show that O0
j are orbits, it is enough to see that

K̃ acts transitively on them, which we have shown. The q+1 orbits O0
j are clearly

distinct and have codimension 1. So we know there are at least q + 1 orbits.

We need to see that the complement of ∪jO0
j is a union of orbits with

codimension other than 1. The complement is contained inside the union of O
with ∪jOj\O0

j . The orbit O is open (Proposition 3.1). It remains to check that
Oj\O0

j has higher codimension. Essentially, the only way for a point ω to be
contained in Oj\O0

j is to satisfy, apart from δj(ω) = 0, at least some additional
K invariant system of polynomial equations. For example, for j = q , it may be,
amongst others, δq−1 = 0 or the system ωq+1 u lp = 0. The proof is complete at
this point.

Proof. Proof of Lemma 3.3. We can view the flag manifold as a projective
subvariety of Pn−1 ×G(1, n− 1)× · · · ×G(n− 2, n− 1) in the standard way.

For any j , we can find homogeneous polynomials P0, P1, . . . , Pm (m de-
pends on j ), such that the set O0

j = {ω|P0(ω) = 0, Pj(ω) 6= 0 for i > 0}. For
example, when j = q , put P0 = δq, Pi = δi for 1 ≤ i ≤ q − 1, and Pq = δ0 . Note
that ωq−1 t lp and ωq+1 u lp have various components, and we let Pi , for i > q ,
be these components.

Since K is connected, the K -orbits O0
j are irreducible. Now the lemma

follows as a basic result of algebraic geometry.

5. Stein Extension and Determinant Functions

Let G0 be a general connected semisimple linear Lie group, K0 its maximal
compact subgroup, and let G and K be the complexifications. For various reasons,
we are interested in G0 invariant Stein extensions of G0/K0 ⊆ G/K . Work done
in this direction includes [1], [11], [9], [10]. Recently, J. Wolf and R. Zierau,
([12]) have shown that if G0/K0 admits a Hermitian symmetric structure, then
G0/K0×G0/K0 can be viewed as sitting inside G/K and this embedding is a G0

invariant Stein extension of G0/K0 ⊆ G/K ([12]). The motivation behind their
results is to find concrete realization of the space of linear cycles of a measurable
open G0 orbit of a generalized flag manifold associated to G. We will now show,
in the special case of G0 := SU(p, q) and K0 := S(U(p) × U(q)), another way of
obtaining the same Stein extension.

First of all, we identify G0/K0 as

Z0 := {Lp ∈ G(p, p+ q)|〈 , 〉 is positive definite on Lp}.

Here we define 〈z, z〉 :=
∑p
i=1 |zi|2 −

∑p+q
j=p+1 |zj|2 . We shall identify the

conjugate manifold G0/K0 as

Z0 := {L′q ∈ G(q, p+ q)|〈 , 〉 is negative definite on L′q}.
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Hence there is the obvious identification of Z0 × Z0 ⊆ Z = G/K . If p = q
we have also the following identification:

Z0 × Z0 = {(Lp, L′q) ∈ G(p, p+ q)×G(q, p+ q)|
〈 , 〉 is negative definite on Lp

and positive definite on L′q}.
We sometimes identify

Z0 = {(Lp, (Lp)⊥)|〈 , 〉 is positive definite on Lp} ⊆ Z0 × Z0.

Here ⊥ denotes the orthogonal complement with respect to 〈 , 〉. This identifi-
cation sets Z0 as the real form of Z .

It is well known that X has a unique closed G0 orbit X0 which is K0

homogeneous ([8]). It can be realized geometrically as follows. On Pn−1 are three
G0 orbits, two of them are open (those points on which 〈 , 〉 is positive, resp.
negative), the remaining one Σ is closed. A flag ω = (ωj, 1 ≤ j ≤ n) belongs to
X0 iff the following is true: ωq ⊆ Σ (here, we view ωq as a projective plane of
dimension q−1 and Σ a subset in Pn−1 ) and ωn−1 , when viewed as a hyperplane of
Pn−1 , is tangent to Σ at any point of ωq . Indeed, the family of flags just described
is G0 - invariant. On the other hand, it is easy to check that its diemnsion coincides
with the diemnsion of the closed orbit, X0 .

Now consider the set

Definition 5.1. Define X̂0 ⊆ Z as follows.

X̂0 := {(Lp, L′q)|Dj(ω;Lp, L
′
q) 6= 0 for all j and for all ω ∈ X0}.

If D := ΠjDj , then

X̂0 = {(Lp, L′q)|D(ω;Lp, L
′
q) 6= 0 for all ω ∈ X0}. (7)

Since X0 is Gnot-invariant, X̂0 is a G0 invariant subset of Z . We want
to show that X̂0 is an invariant Stein space containing Z0 . In [2], we give a
proof whose method we believe is capable of generalization. Here, instead, we will
compute X̂0 explicitly, and it will be manifest that the space is Stein.

Lemma 5.2. The set Z0×Z0 is contained in X̂0 . If p = q , then we also have
Z0 × Z0 ⊆ X̂0 . In particular, X̂0 ⊆ Z is non-empty.

Proof. While it is not strictly necessary, it is simpler to recall that X0 is
indeed a K0 orbit. In fact, if we let U(p, q) act on X and Z in the obvious
way, U(p) × U(q) preserves X0 . We use the ordered basis (e1 + ep+1, . . . , eq +

ep+q,
︷ ︸︸ ︷
eq+1, . . . , ep, eq − ep+q, . . . , e1 − ep+1) to represent a base point on X0 (for

p = q , omit the overbrace). Since X0 is a K0 -orbit, a point on X0 is of the form

k0(̇e1 + ep+1, . . . , eq + ep+q,
︷ ︸︸ ︷
eq+1, . . . , ep, eq− ep+q, . . . , e1− ep+1) with k0 ∈ K0 as in

(6). Thus, any point on X0 can be represented by
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(
u1

v1

)
, . . . ,

(
uq
vq

)
;

(
uq+1

0q

)
, . . . ,

(
up
0q

)
;

(
uq
−vq

)
, . . . ,

(
u1

−v1

)
,

(8)

where u1, . . . , up form an orthonormal basis of Cp (with respect to the standard
Hermitian inner product) and v1, . . . , vq form an orthonormal basis for Cq (for
p = q , omit the middle row).

Suppose (ωj) represents a point in X0 and (Lp, L
′
q) ∈ Z0 × Z0 . Since ωq

represents a totally null subspace (i.e., the restriction of 〈 , 〉 to ωq is identically
zero) and Lp a positive definite subspace, ωq ∩ Lp = 0, hence Dq = [ωq tLp] 6= 0.
Likewise, ωp is a positive semi-definite subspace whereas L′q is negative definite.
By similar reasoning D0 6= 0.

For 1 ≤ j ≤ q − 1, assume, for the moment, that ωp+q−j u Lp 6= 0. Under
this assumption, ωp+q−j uLp represents a positive definite subspace. However, ωj
is a totally null subspace, and L′q a negative definite subspace. Hence, these three
subspaces intersect trivially pairwisely, hence Dj = [(ωp+q−j u Lp) t ωj t L′q] 6= 0.

It remains to show that ωp+q−j u Lp 6= 0. In other words, we want to show
that the dimension of ωp+q−j ∩Lp is p− j . By general consideration, it is at least
p− j . On the other hand, the maximum possible dimension of a positive definite
subspace of ωp+q−j is p− j , as ωp+q−j represents a subspace containing the totally
null subspace ωq of dimension q . As Lp is positive definite, the dimension of
ωp+q−j ∩ Lp cannot be more than p− j .

The additional possibility when p = q is similarly proved and we omit it.

Proposition 5.3. If p 6= q , X̂0 = Z0×Z0 . If p = q , X̂0 = (Z0×Z0)∪(Z0×Z0).

Proof. In view of Lemma 5.2, it suffices to show that X̂0 ⊂ Z0 × Z0 if p 6= q
and X̂0 ⊂ (Z0 × Z0) ∪ (Z0 × Z0) if p = q .

Assume (Lp, L
′
q) ∈ X̂0 . We first show that both are definite subspaces. If

not, the one which is not must contain a null vector v . We can always find a flag in
X0 such that, if (ωj) represents the flag, v is a representative of ω1 . This means
either ωq t Lp = 0 or ωp t L′q = 0 and we have a contradiction.

Next, we show that Lp and L′q cannot have the same sign. We first consider
the case when q = 1. The case U(1, 1) is well understood. Thus, we can assume
that p > 1. If Lp and L′1 have the same sign, since we know that Lp is positive,
then L′1 is also positive. Pick a point a ∈ L′1 . We can choose a base point in X0

such that ωp contains a. (See Equation 8). At this base point D0 = 0 and we
have a contradiction.

If q > 1 and both Lp and L′q have the same sign, when p > q we know Lp
must be positive, and hence L′q is positive also; when p = q , since the signs are
symmetric, we can without loss of generality assume that both Lp, L

′
q are positive.
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Under this assumption, we have a ∈ Lp, b ∈ L′q such that the restriction of 〈 , 〉 on
the span of a, b has mixed signatures (or else, we can find a subspace of dimension
p + 1 on which 〈 , 〉 is positive definite). We can find an orthonormal basis for
this span, i.e., {u, v} such that 〈u, u〉 = 1, 〈v, v〉 = −1, 〈u, v〉 = 0. We can always
find a flag in X0 which can be represented by an ordered basis (zi, 1 ≤ i ≤ p+ q)
in which zq−1 = u+ v, zp+1 = u− v (see Equation 8).

In that case ωp+1 contains both a, b, hence ωp+1 ∩ Lp contains a. We may
as well assume that ωp+1 u Lp 6= 0, or else, Dq−1 = 0 and we already have a
contradiction. So the span of ωp+1 u Lp and L′q contains a, b and hence u + v ,
which is also contained in ωq−1 , hence (ωp+1 uLp)tL′q tωq−1 = 0, i.e., Dq−1 = 0,
and we have a contradiction.

In other words Lp, L
′
q must be definite of opposite signs, and we are done.

6. Linear Cycles

Next, we would like to relate our Stein extension X̂0 with the one obtained by
Wolf and Zierau. Their results can be briefly summarized as follows. Fix an open
G0 orbit D of the flag manifold. In D is a special maximally compact subvariety
Γ. In details, if we express D = G0/T0 , where T0 is a compact Cartan subgroup,
then Γ = K0/T0 . Now consider the set of all those G translates of Γ which stay
inside D , they are called linear cycles. It is known that the space of linear cycles
admits the structure of a Stein manifold ([9]). It is now known that if G0/K0

admits a Hermitian symmetric structure, and if D is not of Hermitian type (i.e.,
it does not fibrate holomorphically over G0/K0 if the latter is given either of the
two Hermitian symmetric structures), then the space of linear cycles is exactly
G0/K0 ×G0/K0 .

In the case of SU(p, q), we can describe the space of linear cycles explicitly
as follows. First of all, we need a way of parametrizing the flag domain D . It
turns out that we can parametrize them by a non-decreasing sequence of integers
0 ≤ a1 ≤ . . . ≤ aq ≤ p. We have a related sequence 1 ≤ b1 < . . . < bq ≤ (p+q), by
putting bi := ai + i. There are various ways to specify the orbit once a sequence
(ai) or (bi) is given. We can pin down the open orbit by specifying the signatures
of the restrictions of 〈 , 〉 to various subspaces in a flag belonging to an orbit.
Given (bi), let the orbit determined to be O(b), then ω ∈ O(b) iff for all j, ωj has

signature (

j−l︷ ︸︸ ︷
+, . . . ,+,

l︷ ︸︸ ︷
−, . . . ,−). Here we define l := maxi{i|bi ≤ j}.

A Gnot orbit ,S , and a K -orbit, Q, are dual to each other (in the sense of
Matsuki) if the intersection S∪Q consists of exactly one Knot-orbit. The K -orbit
dual to an open Gnot-orbit is closed. We can pin down the Matsuki dual (closed)
K orbit as follows. Recall the subspaces lp, l

′
q in Section 3. A flag ω lies in the K

orbit dual to O(b) iff dim(ωj ∩ lp) = j − l and dim(ωj ∩ l′q) = l , where l retains
the same meaning as just now. Finally, we can specify the orbit O(b) by picking
a “nice” base point. We can use the following ordered basis (vj) to pin down the
“nice” base point. Let σ be the permutation of {1, . . . , p+q} which sends p+ i to
bi for 1 ≤ i ≤ q and sends i to i + n(i) for 1 ≤ i ≤ p. Here n(i) := ]{j|aj < i}.
With this notation in hand, define vi = eσ−1(i) .
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Secondly, we view Z0 × Z0 = G0/K0 ×G0/K0 as the space:

{(Lp, L′q) ∈ G(p, p + q)×G(q, p + q)| 〈 , 〉 is positive
(negative) definite on Lp(L

′
q)}.

The space Z0×Z0 parametrizes the space of linear cycles associated to D .
Suppose D is pinned down by the sequence (ai). Suppose we choose (Lp, L

′
q) ∈

Z0 × Z0 , then the linear cycle thus parametrized consists of flags (ωj) where
dim(ωj ∩ Lp) = j − l, dim(ωj ∩ L′q) = l . (Keep the same notations as just now.)

For the sake of completeness, we consider the two flag domains of Hermitian
type. The flag domains are either (aj = p; 1 ≤ j ≤ q) or (aj = 0; 1 ≤ j ≤ q).
In the former case, the space of linear cycle is Z0 , and in the latter case Z0 . In
the former case, suppose we have Lp ∈ Z0 ⊆ G(p, p + q), the linear cycle thus
parametrized is given by ωj ⊂ Lp; 1 ≤ j ≤ p and Lp ⊆ ωj; p + 1 ≤ j ≤ p + q .
Interchange p and q and replace Z0 by Z0 in the previous sentence and we have
the latter case.

Finally, we would like to discuss briefly how the various minimal K orbits
sit in the boundaries of Oj . These minimal orbits are dual (via Matsuki duality) to
the flag domains, indeed, we have described them already. We have the following.

Proposition 6.1. Any minimal K orbit dual to a flag domain lies in Oj for
the following ranges of j . If it is not of Hermitian type, we have 0 ≤ j ≤ q . If it
is dual to the domain given by ak = p, 1 ≤ k ≤ q , it is 1 ≤ j ≤ q . If it is given by
ak = 0, 1 ≤ k ≤ q , then it is 0 ≤ j ≤ q − 1.

Proof. As all Oj are K invariant, it suffices to pick a nice base point of the
orbit and check which Oj it belongs to. To do that, we only have to consider
which equations Dj( ; lp, l

′
q) = 0 it satisfies. The base point chosen earlier in the

section suffices. We will only argue carefully that all minimal orbits lie in Oj for
1 ≤ j ≤ q − 1. The rest can be similarly argued.

Observe that for any 1 ≤ j ≤ q − 1, ωp+q−j , viewed as a linear subspace,
must contain e1 , so e1 ∈ ωp+q−1∩ lp . On the other hand, either ωjt l′q = 0, in that
case Dj(ω; lp, l

′
q) = 0, or ωj ⊆ lp (when viewed as a linear subspace) and e1 ∈ ωj ,

in that case, we are forced to conclude Dj = (ωp+q−j u lp) t (ωj t l′q) = 0 also.

We know that higher codimensional orbits occur as certain strata of a K in-
variant stratification of the boundary of the configuration ∪qj=0Oj . Proposition 6.1
implies that this stratification is more than mere intersections of the boundaries
of a subcollection of Oj .

Finally, we would like to prove a result which makes use of knowledge of
the orbit structure. Recall the notions of polar and double polar introduced in
Section 1.

Proposition 6.2. For any subset A ⊂ X , we have A ⊆ ̂̂
A . When A = X0 ,

we have
̂̂
X0 = X0 .
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Proof. The fact that A ⊆ ̂̂
A in general is basically a tautology. When A = X0 ,

since X0 is G0 invariant, so is
̂̂
X0 . So the latter is a G0 invariant subset, hence a

finite union of G0 orbits. According to Matsuki’s duality, a K orbit Γ and a G0

orbit S are dual iff Γ ∩ S consists of exactly one K0 orbit. Suppose
̂̂
X0 contains

the G0 orbit S . Let Γ be the K orbit dual to S . Now Γ ∩ S ⊂ S ⊂ ̂̂
X0 . As

(lp, l
′
q) ∈ X̂0 , we conclude that Γ ∩ S is in the open K orbit. In othe words Γ

intersects non-trivially with the open K orbit. Hence Γ is the open K orbit, and
therefore S = X0 .

7. Appendix

Propositions 3.1 and 3.2 can be proved by using the well known correspondence
between K orbits of X and the set of equivalence classes (under conjugation by

G0 ) of real data DR as defined in [7, p. 107]. In this appendix we explain briefly
this approach.

We recall that a set of real data for G0 consists of a pair (H0,∆
+(g, h))

where H0 ⊂ G0 is a Cartan subgroup, and ∆+ a choice of positive system for
h in g. To each equivalence class corresponds a unique K orbit O in X . Fix
O and denote by (H0,r,∆

+
r (g, h)) a choice of representative for the corresponding

equivalence class in DR . We may assume that H0,r is θ stable.

There is a formula which gives the dimension of O in terms of the number
of real, imaginary, and complex roots in ∆r . Real, imaginary, and complex roots
are defined in the obvious way. We denote by ∆r,R , ∆r,I , ∆r,C , and ∆r,CI the
set of real, imaginary, complex, and compact imaginary roots. If θr is the Cartan
involution on ∆r (chosen as in [6, pp. 147-148]), then set

D+(O) = {α ∈ ∆+
r |θrα ∈ ∆+

r , θrα 6= α}
and set d(O) = |D+(O)|. We have (see [6, Lemma 5.6]):

Lemma 7.1. Let O be a K orbit in X , then

dim O =
1

2
(|∆r,CI|+ |∆r,R|+ |∆r,C| − d(O)).

The dimension of the K orbits associated to H0,r lies between ([6])

1

2
(|∆r,CI |+ |∆r,R|+

1

2
|∆r,C|)

and
1

2
(|∆r,CI |+ |∆r,R|+ |∆r,C|).

The K orbit of maximal dimension associated to H0,r is called the Lang-
lands orbit attached to H0,r . The K orbit of minimal dimension associated to
H0,r is called the Zuckerman orbit attached to H0,r . It is well known that if X
is connected, then there exists a unique open K orbit and it is attached to the
maximally split Cartan. ([4])
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When G0 = SU(p, q), there is a convenient choice of representatives from

the equivalence classes of DR . Here we follow [3, §1.3]. Let t0 denote the maximally
compact Cartan subalgebra of g0 . Set α0

i = e0
i − e0

i+1, 1 ≤ i ≤ p+ q− 1. The fixed
choice of positive system for ∆(g, t) for which α0

i are simple roots will be denoted
by ∆+

0 . For 1 ≤ r ≤ q , set

β0
r = α0

p−r+1 + α0
p−r+2 + . . .+ α0

p+r−1 = e0
p−r+1 − e0

p+r.

Let cr be the Cayley transform through β0
r . Set h0 = t and for r > 0, set

inductively hr = cr(hr−1), and let H0,r be the Cartan subgroup corresponding
to hr ∩ g0 . Write Wr(g, hr) for the Weyl group of ∆(g, hr). Define ∆+

r , α
r
i , β

r
i

inductively.

Let sri ∈ Wr denote the simple reflection through αri . Any Cartan sub-
algebra h̃0 ⊂ g0 is G0 conjugated to one of the h0,r , so we assume that the

representatives of the equivalence classes in DR are of the form (H0,r,∆
+
r ).

Lemma 7.2. Let G0 = SU(p, q), with p ≥ q .

1. If p > q , then the codimension one K orbits in X (if any) are associated to
the maximally split Cartan H0,q .

2. If p = q , then the codimension one K orbits in X (if any ) are associated
either to the maximally split Cartan or to H0,q−1 ( The Cartan subgroup with
split rank q − 1).

Proof. We will only sketch the proof. Consider H0,q−1 , the Cartan subgroup
with split rank q − 1. It is not difficult to show that

|∆q−1,R| = |∆q,R| − 2
|∆q−1,CI | = |∆q,CI|+ 2(p− q)
|∆q−1,C| = |∆q,C| − 4(p− q).

By formula 7.1, the dimension of the Langlands orbit associated to H0,q−1

is equal to dim Oopen− (p− q)− 1. Thus, if p > q , then the dimensions of the K
orbits associated to H0,q−1 are always smaller than dim Oopen − 1. We can treat
the other Cartan subgroups H0,i in a similar way.

Next, we use Vogan’s parameter set S(p+ q, p, r), as explained in [3, §1.6],
to parametrize K -orbits. A parameter set consists of pairs (x, y) ∈ {1, . . . , p +
q}×{1, . . . , p+q} or (x, y) ∈ {1, . . . , p+q}×{+,−} satisfying certain conditions.
There exist bijections

|W (g, hr)|
|W (G0, H0,r)|

g1→ S(p+ q, p, r)
g2→ Dr = {(H0,r,∆

+)}.

In particular, S(p+ q, p, r) classifies the K orbits attached to H0,r .
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Lemma 7.3. The parameter set associated to the open K orbit in X is

Popen = (p,+)(p− 1,+) . . . (q + 1,+)(1, p+ q)(2, p+ q − 1) . . . (q, p+ 1). (9)

Proof. We will only sketch the proof. The bijection g1 associates to Popen

(as in Formula 9) an equivalence class in W (g,hq)
W (G0,H0,q)

. Let w ∈ W (g, hq) be a

representative of such an equivalence class. Consider w∆+(g, hq) and use the
dimension formula 7.1 to show that the corresponding K orbit is a Langlands
orbit.

There is a well defined action of the Weyl group elements si in Dr ([3,
§1.8]). We have

si × (Hr, w∆+
r) = (Hr, ws

r
i∆

+
r ).

On the other hand, there is a compatible definition for the action of si
on the parameter set ([3, §1.9]). Indeed, if P ∈ S(p + q, p, r) corresponds to
(Hr, w∆+

r), then si × P corresponds to (Hr, ws
r
i∆

+
r ).

Lemma 7.4. 1. If p > q , then the K orbit corresponding to

si × Popen

are codimension one orbits.

2. If p > q , then there are exactly q + 1 co-dimensional one K orbits of X .

3. If p = q , then the K orbits associated to

si × Popen

are codimensional one orbits. There are exactly q − 1 orbits of this type.

4. If p = q , then the Langlands orbits associated to H0,q−1 are codimensional
one orbits. There are two orbits of this type. If p = q , then the total number
of codimension one orbits is q + 1.

Proof. We will only sketch the proof. We use [3, §1.9] and the bijection between
K orbits in X and the parameter set to show that the K orbits attached to the
maximally split Cartan correspond to wPopen ∈ S(p+ q, p, q) with w ∈ 〈sqp; sqi , 1 ≤
i ≤ q〉 ⊂ W (g, hq) if p > q , and w ∈ 〈spi , 1 ≤ i ≤ q − 1〉 if p = q . Here, sri is the
reflection with respect to the root αri .

If (H0,q,∆
+
open) denotes the pair that corresponds to Popen in the parameter

set, then (Hq, s
r
i∆

+
open) corresponds to si × Popen . We observe that the new

positive system differs from ∆+
open by one complex root. Thus, by the dimension

formula 7.1, the K orbits associated to (H0,r, s
r
i∆

+
open) are co-dimensional one

orbits. Any other orbit is attached to a pair (H0,q, w∆+
open) with the length of w

bigger than 1 and thus its dimension is lower.

If p = q , then

P1 = (p,+)(p+ 1,−)(1, 2p) . . . (p− 1, p+ 2)
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and

P2 = (p+ 1,+)(p,−)(1, 2p) . . . (p− 1, p+ 2)

parametrize two Langlands orbits associated to H0,q−1 . All other orbits attached
to H0,q−1 are obtained by letting elements in W (g, hq−1) act on P1 and P2 . It
can be easily verified that, in this case, the same procedure will produce orbits of
lower dimensions.

Remark 7.5. The method described in this section selects the elements in the
parameter set that are associated to codimensional one orbits. Associated to that
element is an equivalence class in W (g, hr)/W (G0, H0,r). Let w be a representative
of the equivalence class. We can build the pair (Hr, w∆+

open) that is attached to
the K orbit. The corresponding Borel subalgebra is then a base point of the orbit.
This is an idea of Vogan that is explained in [3].
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