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Abstract. We determine the causal transformations of a class of causal

symmetric spaces (Th. 2.4.1). As a basic tool we use causal imbeddings of

these spaces as open orbits in the conformal compactification of Euclidean
Jordan algebras. In the first chapter we give elementary constructions of

such imbeddings for the classical matrix-algebras. In the second chapter
we generalize these constructions for arbitrary semi-simple Jordan algebras:

we introduce Makarevič spaces which are open symmetric orbits in the

conformal compactification of a semi-simple Jordan algebra. We describe
examples and some general properties of these spaces which are the starting

point of an algebraic and geometric theory we are going to develop in

subsequent work [Be96b].

0. Introduction

0.1 The classical theorems of LIOUVILLE and LIE. A conformal transfor-
mation of the Euclidean space V = Rn is a locally defined diffeomorphism
φ : V ⊃ V1 → V2 ⊂ V such that for all x ∈ V1 , the differential Dφ(x) of φ
at x is a similarity (multiple of an orthogonal transformation), that is, Dφ(x)
belongs to the linear group G = O(n)× R+ generated by the orthogonal group
and the multiples of the identity. The translations by vectors of V and the el-
ements of G are trivial examples of such transformations. One can check that
the inversion x 7→ x

||x||2 is conformal. A classical theorem of LIOUVILLE (1850)

states that every conformal transformation of R3 (of class C4 ) is in fact rational
and is a composition of the previously described ones. S. LIE has generalized this
theorem for general n > 2 and general non-degenerate quadratic forms replacing
the Euclidean norm; the inversion is still defined by the same formula. We would
like to emphasize that the theorem contains a “local - global” statement: from a
local property and C4 -regularity we can deduce rationality and a global extension.

The case n = 4, with the LORENTZ pseudo-metric of signature (3, 1),
leads to the causal group of the MINKOWSKI-space: let Ω be the associated
forward light-cone and G = G(Ω) = {g ∈ Gl(V )|g · Ω = Ω} be the group
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of linear automorphisms of Ω. The condition Dφ(x) ∈ G (for all x in some
domain of V ) is equivalent to Dφ(x) · Ω = Ω, and we then say that φ is a
local automorphism of the flat causal structure defined on V by Ω . Knowing
that G(Ω) = O(3, 1)+ × R+ , we can apply a version of LIE’s theorem in order
to conclude that such local automorphisms are in fact rational and given by a
composition of the trivial ones (G(Ω) and the translations) and the negative
of the inversion, x 7→ − x

〈x,x〉 . In [Be96a] we have generalized these results in

the framework of Jordan algebras. Before discussing this general context, let us
mention one other important and very typical example.

0.2 Causal transformations of the space of Hermitian matrices. Let
V be the space Herm(r,C) of Hermitian r × r -matrices, Ω ⊂ V the open
cone of positive definite Hermitian matrices and G := G(Ω) the group of all
linear invertible maps of V which map Ω onto itself. Then we define, as above,
a (local) causal automorphism of the flat causal structure defined on V by Ω
to be a locally defined diffeomorphism φ such that Dφ(x) · Ω = Ω (this is
equivalent to Dφ(x) ∈ G) for all x where φ is defined. It is a special case of our
generalized LIOUVILLE-theorem for Jordan algebras [Be96a, Th.2.3.1] that every
such transformation is in fact rational and is a composition of a translation,
of elements of G and of −j , where j is the matrix-inversion j(X) = X−1 ,
and these transformations form a group of birational transformations of V the
identity component of which is isomorphic to SU(r, r). Now, it is known that
the group U(r) is, via the CAYLEY-transform, locally causally isomorphic to V .
Because our LIOUVILLE-theorem is of local nature, we can conclude that the causal
group of U(r) is also isomorphic to SU(r, r), thus giving a positive answer to a
conjecture by Segal [Se76, p.35]. Moreover, the groups U(p, q) (p+q = r ) can be
causally imbedded into the group U(r) by the Potapov-Ginzburg transformation
(see [AI89]) which assigns to a graph Γg of g ∈ U(p, q) the graph P ·Γg , where P
is the endomorphism of (Cp×Cq)2 defined by P (x1, x2, y1, y2) = (y1, x2, x1, y2);
one easily checks that P · Γg is in fact a graph belonging to an element P (g) of
U(r). There is a causal structure on U(p, q) for which the transformation P is a
causal map, and we may conclude that the “causal pseudogroup” of U(p, q) (see
below for a precise definition) is also isomorphic to SU(r, r).

The general problem we are interested in is the following: given a space
having a conformal or causal structure (as U(p, q) in the example), we would like
to determine all transformations of this space (even those which are only locally
defined) preserving the causal or conformal structure. As the last example shows,
this problem may in some cases be devided into two sub-problems: first determine
whether the given causal or conformal space locally looks like a matrix space
(or, more generally, a Jordan algebra) with a “constant” causal or conformal
structure, then use the “local-global” statement of our LIOUVILLE-theorem in
order to completely describe the conformal (or causal) transformations of the
given space. The first problem is of geometrical, and the second one of analytical
nature. Since the analytical problem is entirely resolved by our LIOUVILLE-
problem, it is the geometrical problem we are interested in now. Generalizing
the example of the group U(p, q), we will find and describe a fairly large class
of spaces having a conformal or causal structure which is locally equivalent to
a Jordan algebra with its flat (i.e. “constant”) structure. It remains an open
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problem to give an intrinsic criterion permitting to decide when, in general, a
conformal or causal structure is actually flat in this sense. In fact, it even is not
obvious what the suitable general definition of “conformal structure” should be.
We will briefly discuss this problem at the end of the introduction.

0.3 Causal symmetric spaces and their causal groups. The notion of
“causal structure” is less problematic than the general notion of “conformal
structure”: it is given by a field of cones (Cx)x∈M on a manifold M , where
Cx is a regular (i.e. open, convex and pointed) cone in the tangent space TxM .
A local causal diffeomorphism between two manifolds M and N with causal
structures (Cx)x∈M , (C ′y)y∈N is a locally defined diffeomorphsm φ such that
Txφ ·Cx = C ′φ(x) for all x where φ is defined. If M = N , then these maps form
an object called the causal pseudogroup of M ; it is not a group because the maps
are in general not defined everywhere.

We now describe some spaces X having a causal structure which is locally
equivalent to the flat causal structure given by the symmetric cone Ω of some
Euclidean Jordan algebra V (the cone Ω of positive definite Hermitian matrices
introduced above is such a cone; for the general notion cf. [FK94].) The spaces
X we are interested in are actually symmetric spaces, i.e. homogeneous spaces
X = G/H under the action of some Lie group G such that H is open in the
fixed point group Gσ of some involution σ of G , and they are furthermore causal
symmetric spaces in the sense that G preserves the given causal structure. The
following table shows that the whole causal pseudogroup of X is actually much
bigger than G . The table should be read as follows: the spaces X = L/H ,
respectively X = L′/H are locally causally isomorphic to the Euclidean Jordan
algebra V given to the right in the corresponding line; then, by the generalized
LIOUVILLE-theorem, the corresponding causal pseudogroup can be identified with
the group Co(V )0 given for each of the five types. The precise statement can be
found in Theorem 2.4.1. (In the following p+ q = n .)

0.3.1 Table of causal pseudogroups.

I. Vn = Herm(n,C), n > 1.

Causal groups: Co(Vn)0 = SU(n, n), Co(Vn × Vn)0 = SU(n, n)× SU(n, n).

L L′ H V
SU(n, n) SU(n, n) Sl(n,C)× R+ Vn × Vn
U(p, q)× U(p, q) Gl(n,C) U(p, q) Vn
SO∗(2n) SO(n, n) SO(n,C) Vn
Sp(2n,R) Sp(n, n) Sp(n,C) V2n

II. Vn = Sym(n,R), n > 1.

Causal groups: Co(Vn)0 = Sp(n,R), Co(Vn × Vn)0 = Sp(n,R)× Sp(n,R)

Sp(n,R) Sp(n,R) Sl(n,R)× R+ Vn × Vn
U(p, q) Gl(n,R) O(p, q) Vn
Sp(n,R)× Sp(n,R) Sp(n,C) Sp(n,R) V2n

III. Vn = Herm(n,H),

Causal groups: Co(Vn)0 = SO∗(4n), Co(Vn × Vn)0 = SO∗(4n)× SO∗(4n)
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SO∗(4n) SO∗(4n) SO∗(2n)× R+ Vn × Vn
U(2p, 2q) U∗(2n) Sp(p, q) Vn
SO∗(2n)× SO∗(2n) SO(2n,C) SO∗(2n) V2n

IV. Vn = R× Rn−1 , n > 2.

Causal groups: Co(Vn)0 = SO(2, n), Co(Vn × Vn)0 = SO(2, n)× SO(2, n).

SO(2, n) SO(2, n) SO(1, n− 1)× R+ Vn × Vn
SO(n)× S1 SO(1, n− 1)× R+ SO(n− 1) Vn
SO(2, n− 1) SO(1, n) SO(1, n− 1) Vn

V. V3 = Herm(3,O),

Causal groups: Co(V3)0 = E7(−25) , Co(V3 × V3)0 = E7(−25) × E7(−25)

E7(−25) E7(−25) E6(−25) × R∗ V3 × V3

SU(6, 2) SU∗(8) Sp(3, 1) V3

E6(−14) × R+ E6(−14) × U(1) F4(−20) V3

Let us make a few comments on this table: the example of the group
U := U(p, q) mentioned above appears in the second line for type I, where the
group U is considered as symmetric space U × U/ dia(U × U). Furthermore, in
each of the cases I - V there appears exactly one compact symmetric space and
one Riemannian symmetric space of non-compact type (in cases I-III it appears
for p = n , q = 0; we assume p + q = n); the latter is actually isomorphic to
the symmetric cone associated to the Jordan algebra V . These spaces are c-dual
to each other in the sense of duality of symmetric spaces. More generally, the
spaces L/H and L′/H are c-dual to each other, the spaces L/H being compactly
causal and the spaces L′/H non-compactly causal. The spaces appearing in the
first line for each type are self-dual; they are known as causal symmetric spaces
of Cayley type.

The irreducible causal symmetric spaces have been classified by G. Ólafs-
son (see [FÓ95]); “most” of them appear in our list. Those which do not appear
here fall into two classes: first, the semi-simple parts of the reductive spaces
appearing in our list - for example, the group U(p, q) is reductive, and its semi-
simple part SU(p, q) is included in the classification by Ólafsson. Such spaces are
hypersurfaces in a space appearing in our list. We conjecture that they are not
“causally flat” and that their causal pseudogroups are small, possibly reduced to
the affine group of the affine connection belonging to the underlying symmetric
space. Secondly, there are two other series of causal symmetric spaces (the groups
SO(n, 2) and the spaces SO(2, p + q)/ SO(p, 1) × SO(q, 1) with min(p, q) > 1)
as well as four exceptional spaces which do not appear in our list; it remains an
intriguing question whether these spaces can be related to Jordan algebras or
not.

In [Be96b] we will show that the “flat” realization of the spaces given in
the table is very useful to study problems related to their geometry and harmonic
analysis.

0.4. Makarevič spaces. The Jordan algebras V corresponding to types I, II
and III in table 0.3.1 are spaces of symmetric, resp. Hermitian matrices. For
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these types, the local equivalence of the spaces L/H and L′/H with V can
be established by very elementary methods. We do this in Chapter one. This
chapter could be read by an undergraduate student having no knowledge in
Jordan theory but a good understanding of linear algebra. The basic idea is to
analyze a linear transformation by its graph, and in particular to understand the
notion of adjoint operator in this way. This permits to interprete the realizations
for the types I, II and III as natural analogues of the classical SIEGEL-space
(Theorem 1.7.1).

However, for a deeper understanding one needs the general context of
Jordan algebras which we introduce in Chapter two. The fact that a homoge-
neous space X = G/H is locally conformally or causally equivalent to such an
algebra V will be made precise in the following way: let Co(V ) be the conformal
or Kantor-Koecher-Tits group associated to V and V c be the conformal com-
pactification of V ; this is an open dense and Co(V )-equivariant imbedding of V
into a compact space V c . If G is a subgroup of Co(V ) and x ∈ V c such that
the orbit G/H ∼= G · x is open in V c , then the homogeneous space X := G/H
inherits by restriction from V a flat G -invariant conformal structure, and our
generalized LIOUVILLE-theorem implies that Co(V ) can be identified with the
corresponding pseudogroup of conformal transformations.

Without loss of generality we can assume that the base point x is the
origin 0 of V ⊂ V c . If now we restrict our attention to symmetric spaces
X = G/H , then work of A.A. Rivillis [Ri70] and B.O. Makarevič [Ma73] has
shown that the space X can be realized in the form

X = X(α) := Co(V )
(jα)∗
0 · 0,

where j(x) = x−1 is the inverse in the Jordan algebra V , α is an invertible linear
map of V having the property that (jα)2 = idV and (jα)∗ is the involution of
Co(V ) given by conjugation with jα . An automorphism as upper index of a
group denotes as usual the fixed point group, and lower index 0 denotes the
identity component. Clearly j2 = idV and (−j)2 = idV , hence we can choose
α = idV or α = − idV , but we can also take any involutive automorphism of
V or its negative. We will call the space X (α) a Makarevič space since such
spaces have been classified by B.O. Makarevič in [Ma73]. However, since the
main interest of [Ma73] lay in the classification problem, the simplicity of the
construction of the spaces X(α) by the above formula is rather hidden there. The
formula indeed defines an open symmetric orbit in V c ; we will give the simple
proof in Proposition 2.2.1. Examples of Makarevič spaces, besides the causal
symmetric spaces listed in table 0.3.1, are given by orthogonal groups, general
linear groups, symmetric cones and their non-convex analogues, Hermitian and
pseudo-Hermitian symmetric spaces. It seems very interesting that methods well-
known from one of these classes can be adapted to others of these classes where
they are less obvious. In particular, we will generalize the algebraic methods
developed by Koecher and Loos for Hermitian symmetric spaces (see [Lo77]) in
subsequent work [Be96b].

In this work we will only describe some basic features of Makarevič
spaces. The first one gives a particularly nice description of c-duality: the
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spaces X(α) and X(−α) are c-duals of each other (Prop.2.3.2); we have observed
this duality already at the example of table 0.3.1. Another basic feature is the
existence of Cayley-transformed realizations in the case where α is an involution
of V . It will carry the space X(α) onto a generalized tube domain (Example
2.2.6). Furthermore, it seems remarkable that all Makarevič spaces appear as
real forms of pseudo-Hermitian symmetric spaces (2.3.3). Finally, we prove
that the classification by Makarevič is indeed complete in the Euclidean case,
given by table 0.3.1; the general classification in [Ma73] is given without proof
of completeness (actually one class of pseudo-Hermitian spaces of tube type is
missing in [Ma73].)

0.5 The conformal group of a Makarevič space. Our main theorem on
causal groups (Theorem 2.4.1) generalizes to the case of general Makarevič spaces:
the group Co(V ) can be characterized as the conformal pseudo-group of the space
X(α) . But as mentioned in Section 0.2, already the definition of “conformal
structure” is not obvious in this general case. There are different possibilities to
define it:

a) in [Be96a] we used the notion of a field of groups to define a very
general kind of conformal structure, closely related to the so called G-structures.
When the field of groups is “constant”, given by the structure group of a semi-
simple Jordan algebra, we obtain the “flat conformal structure of a semi-simple
Jordan algebra”. This notion is not very geometrical but convenient for proving
the LIOUVILLE-theorem.

b) We can make the previously mentioned notion more geometric by
using the following characterization of the structure group of a semi-simple
Jordan algebra: if ∆ is the norm-polynomial of V (in the case of matrix algebras
this is the usual determinant, in the case of the Lorentz cone this is the Lorentz
quadric), then Str(V ) is the group of invertible linear mappings preserving ∆
up to a factor (see [FK94, p.161]). If we define a conformal structure to be a
field of polynomials, up to equivalence by nowhere vanishing functions, then the
structure given by ∆ turns V and V c into a conformal space having Co(V ) as its
conformal group. This notion is very close to the classical notion of the conformal
structure of a Riemannian manifold: the metric tensor field is just replaced by a
symmetric tensor field of a higher degree, and our LIOUVILLE theorem generalizes
exactly the classical one.

c) In [GK95] Gindikin and Kaneyuki propose a definition which has the
advantage to apply also to some Jordan triple systems and the disadvantage not
to cover the classical case of Riemannian conformal structure: they essentially
define a conformal structure to be a distribution of conical subvarieties. In the
Jordan algebra case, this is the set of zeros of the norm-polynomial ∆.

d) In the case of the classical matrix spaces we consider the “generalized
line structure” of a Grassmann manifold given by incidence relations of sub-
spaces (Section 1.8). This can be seen as a “global” version of the conformal
structure introduced by Gindikin and Kaneyuki. The conformal group can then
be characterized as the group preserving this “generalized line structure” (The-
orem 1.8.1). In this context, our LIOUVILLE theorem thus shows a remarkable
similarity with the fundamental theorem of projective geometry characterizing the
projective group as the group preserving the line-structure of projective space.
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See [Wey23] for an interesting discussion of this theorem, seeing it in the same
context as the classical LIOUVILLE theorem.

e) It is in fact possible, following the viewpoint of WEYL, to prove the
fundamental theorem of projective geometry by Jordan-methods. However, none
of the previously mentioned notions of conformal structure does apply to this
case.

Let us remark that in [Gi92] some special cases of conformal structures
are studied, and the author adds that ‘it would be interesting to develop a general
theory of such structures’ - we hope that this work might be a step in this
direction.

Acknowledgements: It is a pleasure to express my thanks to Jacques
Faraut who initiated my work on this domain and pointed out to me the im-
portant paper [Ma73], and to Joachim Hilgert and Gestur ’Olafsson for helpful
comments. I also thank the Royal Swedish Academy of Sciences, the staff of the
Mittag-Leffler Institute and the organizers of the program “Harmonic Analysis
on Lie groups” during which this work was finished.

1. Elementary construction of causal and conformal imbeddings

1.0 Basic notions related to Jordan algebras.— In this chapter we will be
concerned with special Jordan algebras; these are subspaces of some associative
endomorphism-algebra End(E) of a vector space E which are stable under the
Jordan-product AB := 1

2 (A ◦ B + B ◦ A). Thus V := End(E) becomes a
commutative algebra which is not associative, but satisfies the so-called Jordan
identity: A(A2B) = A2(AB). We will always assume that a Jordan algebra V
contains a unit element e ∈ V ; if V = End(E), then e is the identity operator
I . There is a notion of inverse in a Jordan algebra. We will write j(x) = x−1 for
the inverse of x ∈ V ; then j is a birational map of V . If V = End(E), then j is
just the ordinary inverse which is clearly rational. For any birational map φ of
V we denote by j∗(φ) the birational map j ◦ φ ◦ j . The structure group Str(V )
of V is defined as the group of invertible linear transformations g of V for which
j∗(g) is again linear. Then j∗ defines an involution (an automorphism of order
2) of Str(V ). The orbit Ω := Str(V )0 ·e (the subscript zero denoting the identity
component) is then open in V and is a symmetric space, Ω ∼= Str(V )0/ Str(V )j∗0 .

The conformal or Kantor-Koecher-Tits group of the (semi-simple) Jordan
algebra V is the group Co(V ) of birational transformations generated by the
translations τv , v ∈ V (where τv(x) = x + v ), the elements of Str(V ) and j .
We identify V with the subgroup of translations τv , v ∈ V , and let P be the
subgroup of Co(V ) generated by Str(V ) and jV j . Then the map

V 7→ V c := Co(V )/P, v 7→ τvP

is an open dense imbedding into a compact space, cf. [Be96a, Th.2.4.1]; we
call it the conformal compactification of V . It is clear from the definition that
the conformal group acts on V c ; in particular, addition by vectors of V and
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multiplication by scalars is defined on V c , and maps like − idV will always be
understood as defined on V c in this sense.

Besides Jordan algebras we will also use (implicitly) some special cases of
Jordan triple systems, namely spaces of skew-Hermitian matrices. These spaces
are usually considered as Lie algebras (of the corresponding unitary groups),
but it will be rather important to keep in mind that they are considered here
as Jordan triple systems and not as Lie algebras. Let us explain briefly what
we mean by this: the Jordan triple product of a Jordan algebra V is given by
the formula {a, b, c} := a(bc) − b(ac) + (ab)c ; it is symmetric in a and c and
satisfies an additional identity which is used to define abstract Jordan triple-
systems (see [Sa80], [Lo77]). If α is an automorphism of a Jordan algebra, then
the +1-eigenspace V α is a Jordan subalgebra of V and the −1-eigenspace V −α

is stable for the triple product and is thus a sub-triple system of V . The triple
product in a space of skew-Hermitian matrices arises in this way from the space
of all matrices. (We conjecture that in fact all Jordan triple systems arise as −1-
eigenspaces of a Jordan algebra-involution; see [Be96b].) There is also a notion
of a conformal group related to an abstract triple system (see [Sa80], [Lo77]),
but its description is more difficult than for Jordan algebras because there is no
notion of inverse in a triple system.

1.1 The matrix-algebras M(n,F) . Let F be the field of real or complex
numbers or the skew-field of quaternions and E be an n -dimensional vector
space over F (acting from the left on E ). The space V := EndF(E) of F -
linear endomorphisms of E is a semi-simple Jordan algebra with Jordan-product
A ·B = 1

2
(AB +BA). (If F = H , then this is just an R -algebra.) Using a basis

of E , we can identify E with Fn and End(E) with the matrix-algebra M(n,F).
(The matrix of A ∈ End(Fn) is defined by Aei =

∑
j Ajiej , and two matrices

are multiplied by the rule (Aij) · (Bjl) = (Cil), Cil =
∑
j BjlAij .)

The (identity component of the) structure group of V is given by the
action of the group Gl(E)×Gl(E) on V by (g, h)·A = g◦A◦h−1 . The involution
j∗ is given by j∗(g, h) = (h, g), where j(X) = X−1 is the Jordan inverse. The
open orbit Ω = Str(V )0 · e (here e = idE ) is the group Gl(E) ⊂ End(E) (or,
if one prefers, Gl(n,F) ⊂ M(n,F)), viewed as symmetric space with geodesic
symmetry j at the origin I .

The graph-imbedding, and the conformal group. The conformal compact-
ification V c of V = End(E) is the Grassmannian G2n,n(F) of n -dimensional
subspaces of E ⊕ E , where the imbedding Γ : V → V c is given by identifying
A ∈ End(E) with its graph ΓA := {(x,Ax)|x ∈ E} ∈ G2n,n . The image of
this imbedding is dense in G2n,n because W ∈ G2n,n is a graph if and only if
the projection prW1 : W 7→ E × 0 onto the first factor is a bijection; the set of
“non-graphs” is hence an algebraic subvariety of G2n,n of strictly lower dimen-
sion, defined by Det(prW1 ) = 0. (The determinant may be defined by choosing
an auxiliary Euclidean metric on E ⊕E .)

The group Gl(2n,F) = Gl(E ⊕ E) acts on the Grassmannian G2n,n

in the natural way, and one easily verifies that
(
a
c
b
d

)
ΓA = Γ(aA+b)(cA+d)−1 for(

a
c
b
d

)
∈ Gl(2n,F) and A ∈ M(n,F). Thus the rational action of Gl(2n,F) on
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V ⊂ V c is given by the formula

(
a b
c d

)
·X = (aX + b)(cX + d)−1.

The effective group of this action is PGl(2n,F). It is clear that the translations
are given by the matrices of the form

(
I
0
X
I

)
(where I = In denotes the n × n -

identity matrix), the elements of (the identity component of) the structure group
by the invertible matrices of the form

(
g
0

0
h

)
, and the inversion j ∈ Co(V )

is induced by
(

0
I
I
0

)
. These matrices generate PGl(2n,F), which is thus the

identity component of the conformal group Co(V ). Remark that − idV ∈ Co(V )
is induced by the matrix

(−I
0

0
I

)
, which is conjugated to the matrix of j by the

real Cayley transform (“rotation of angle π
2 ”) R =

(
I
I
−I
I

)
.

1.2. The matrix spaces Sym(A,F) and Herm(A,F) , the orthogonal and
unitary groups. Notation being as above, let 〈·, ·〉 be a non-degenerate bi-
linear or sesquilinear form on E . We recall that sesquilinear forms are de-
fined by bi-additivity and the property 〈λx, µy〉 = λ〈x, y〉ε(µ), where ε de-
notes an anti-automorphism of the field F . The field R has no non-trivial anti-
automorphism, and C has only one, complex conjugation. The field H has many
anti-automorphisms, but there is one among them which is canonical, namely the
conjugation which equals one on the center Z(H) = R and minus one on the pure
quaternions =(H). Usually, sesquilinearity is defined with respect to this conju-
gation, and if we use another anti-automorphism ε , we will call the form more
precisely ε-sesquilinear. Non-trivial bilinear forms exist if and only if ε = idF is
an anti-automorphism, i.e. if F is commutative.

On E = Fn the standard R-bilinear form is given by (x|y) = xty =∑
i xiyi . Then any ε -sesquilinear form can be written as 〈x, y〉 = (x|Aε(y)) =

xtAε(y) with A ∈M(n,F) and (ε(y))i := ε((y)i). With respect to the standard
basis of Fn , A is given by the matrix (Aij) = (〈ei, ej〉). The form is non-
degenerate if and only if the associated matrix is non-singular. The adjoint
operator X∗ of X ∈ End(E) (with respect to the given form) is then defined by
the relation

(∗) ∀u, v ∈ E : 〈Xu, v〉 = 〈u,X∗v〉

and is given in matrix representation by the formula

X∗ = ε−1A−1XtAε,

where Y t is the transpose of a matrix Y , and the matrix ε(Y ) := εY ε−1 is
obtained by applying ε to every coefficient of the matrix Y (if ε is complex
conjugation, this matrix is usually denoted by Y .) We write

Herm(A, ε,F) := {X ∈M(n,F)|A−1XtA = εXε−1},

Aherm(A, ε,F) := {X ∈M(n,F)|A−1XtA = −εXε−1},
for the spaces of Hermitian, resp. skew-Hermitian operators (with respect to
to the ε -sesquilinear form given by the matrix A .) If the form is bilinear (i.e.
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ε = id), then we denote these spaces also by Sym(A,F), resp. Asym(A,F). If we
just write Herm(A,C) or Herm(A,H), we always assume that ε is the canonical
conjugation of the base field introduced above.

It should be remarked that in general there are two possibilities to define
the adjoint operator, but they coincide if the given form satisfies one of the
symmetry conditions 〈u, v〉 = ε(〈v, u〉) or 〈u, v〉 = −ε(〈v, u〉) for all u, v ∈ E .

1.2.1 Some special isomorphisms. If F = C , then it is easily seen that
multiplication by i defines an R -isomorphism Herm(A,C)→ Aherm(A,C). For
F = H , a similar statement is true: for any invertible element u ∈ H let u∗
be the conjugation by u in H ; then for any anti-automorphism ε of H , u∗ ◦ ε
is again an anti-automorphism of H . The right multiplication by u is defined
by ru : Hn → Hn, (xi) 7→ (xi · u); this is a H -linear map (recall that H acts
from the left) and is represented by the matrix (uδij) = uI . For X ∈M(n,H),
the H -linear map X ◦ ru is represented by the matrix (X · uI)ij = (u · Xij).
Let us now fix u ∈ H , an anti-automorphism ε of H such that ε(u) = −u and
A ∈M(n,H) such that A · uI = uI ·A , then

Herm(A, ε,H)→ Aherm(A, u∗ ◦ ε,H), X 7→ X · uI

is an R -isomorphism. (Using the assumptions, one verifies the following equiva-
lence: (A−1XA)ij = ε(Xji) ⇔ (A−1 ·X · uI ·A)ij = −uε(Xji)u

−1 .) The above
conditions are satisfied, for example if u = j (defined by H = C ⊕ jC), ε the
canonical involution of H or its composition with j∗ and A any matrix with real
coefficients.

1.2.2 The structure group, the orthogonal and unitary groups. Keeping
notation, let us write a(X) := X∗ . Then the map a “adjoint operator” is an anti-
automorphism of the associative algebra End(E) and hence an automorphism
of the Jordan algebra V = End(E). Its fixed point set (i.e. Herm(A)) is a
Jordan sub-algebra, and its −1-eigenspace (i.e. Aherm(A)) is a Jordan sub-
triple-system of V (see Section 1.0). We remark that a is an involution if the
given form is Hermitian or skew-Hermitian (i.e. ε(A) = ±At ); we will mainly
be interested in this case. The (identity component of) the structure group of
Herm(A, ε,F) is obtained from the action of the elements of Gl(n,F)×Gl(n,F)
acting on M(n,F) and commuting with a ; it is given by

Gl(n,F)× Herm(A, ε,F)→ Herm(A, ε,F), (g,X) 7→ gXg∗.

It is clear from this formula that the orbit of I under this action is the open set
{gg∗|g ∈ Gl(n,F)} ⊂ Herm(A, ε,F) which can be considered as the symmetric
space Gl(n,F)/U(A, ε,F). Here we use the notation

O(A,F) = {g ∈ Gl(n,F)|A−1gtA = g−1}

and
U(A, ε,F) := {g ∈ Gl(n,F)|A−1gtA = εg−1ε−1}

for the orthogonal, resp. ε -unitary groups of the form given by A . We will
just write U(A,C) or U(A,H) if ε is the canonical conjugation of the base field,
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and we will just write U(A) and O(A) if the specification of the base field is
not important. The symbol P denotes the quotient with respect to the central
subgroup of multiples of the identity matrix.

1.2.3 Classical notation and special isomorphisms. In the classical no-
tation, for F = R or C we have O(Ip,q,R) = O(p, q) (where Ip,q =

(
Ip
0

0
−Iq
)

),

O(
(

0
−In

In
0

)
,R) = Sp(n,R), etc. For F = H , let us recall that the identification

H = C⊕C ·j induces an inclusion of M(n,H) in M(2n,C) as the set of matrices
X such that FXF−1 = X , where F =

(
0
−I

I
0

)
. Under this identification, the

canonical conjugation ε of H induces the conjugation X 7→ X
t

of M(n,H), and
the conjugation ϕ := j∗ ◦ ε induces the conjugation X 7→ X t of M(n,H). Then
we get from the definition of the unitary groups

SU(In, ε,H) = {g ∈ Sl(2n,C)| FgF−1 = g, gt = g−1}
= SU(2n) ∩M(n,H) =: Sp(n),

SU(In, ϕ,H) = {g ∈ Sl(2n,C)| FgF−1 = g, gt = g−1}
= SO(2n,C) ∩M(n,H) =: SO∗(2n).

Furthermore, we can replace the system of two conditions defining the above
groups by an equivalent system and thus obtain

SU(In, ε,H) = SO(F,C) ∩M(n,H) = SO(F,C) ∩ SU(2n),

SU(In, ϕ,H) = SU(F,C) ∩M(n,H) = SU(F,C) ∩ SO(2n,C).

We remark that similar notation and isomorphisms have already been introduced
in [KN64], but the notation introduced here indicates in addition the imbedding
of the corresponding orthogonal or unitary groups into the general linear group;
this will be important in the next section.

1.3 Conformal compactification and conformal groups of the algebras
Sym(A,F) and Herm(A,F) . The conformal compactification of the algebra
V = M(n,F) has been constructed by the graph-imbedding into G2n,n . We
will now show that the automorphism a “adjoint operator” is transformed by
this imbedding into an automorphism p “orthocomplement”, and the conformal
compactification of V a will then be a connected component of the fixed point
set of p . For this purpose, given a form 〈·, ·〉 on E = Fn (with associated matrix
A), we equip E ⊕ E with four non-degenerate bi- or sesquilinear forms:

(1) 〈(x1, x2), (y1, y2)〉1 := 〈x1, y1〉+〈x2, y2〉 , given by the matrix
(
A
0

0
A

)
,

(2) 〈(x1, x2), (y1, y2)〉2 := 〈x1, y1〉 − 〈x2, y2〉 , given by
(
A
0

0
−A
)

,

(3) 〈(x1, x2), (y1, y2)〉3 := 〈x1, y2〉 − 〈x2, y1〉 , given by
(

0
−A

A
0

)
,

(4) 〈(x1, x2), (y1, y2)〉4 := 〈x1, y2〉+ 〈x2, y1〉 , given by
(

0
A
A
0

)
,

and we will write W⊥j := {v ∈ F2n| 〈W, v〉j = 0} for the orthocomplement of
W ∈ G2n,n with respect to the form (j), j = 1, ..., 4. By the usual dimension
formulas, W⊥j is again an element of G2n,n ; hence we have maps (for j =
1, ..., 4)

p = pj : G2n,n → G2n,n, W 7→W⊥j .

Remark, as for the definition of the adjoint operator, that there are in general
two possibilities to define “orthocomplement”, and that they coincide if (and
only if) the map “orthocomplement” is an involution.
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Lemma 1.3.1. The graph of the adjoint g∗ of g ∈ End(E) is given by the
formulas

(i) Γg∗ =
(

0
−I

I
0

)
Γ⊥1
g , Γ−(g−1)∗ = Γ⊥1

g ,

(ii) Γg∗ =
(

0
I
I
0

)
Γ⊥2
g , Γ(g−1)∗ = Γ⊥2

g ,

(iii) Γg∗ = Γ⊥3
g ,

(iv) Γg∗ = Γ⊥4
−g =

(
I
0

0
−I
)
Γ⊥4
g ,

where the second identity in (i) resp. (ii) holds for all invertible g . These identities
can also be written

(i) − aj = p1, (ii) aj = p2, (iii) a = p3, (iv) − a = p4,

with the maps a “adjoint” and pk , k = 1, ..., 4 “orthocomplement” defined
above.

Proof. Writing the defining relation 1.1 (∗) of the adjoint operator in the
form

∀v, w ∈ E : 0 = 〈gv, w〉 − 〈v, g∗w〉 = −〈(v, gv), (w, g∗w)〉3,
we get (iii). The other relations are obtained similarly.

Proposition 1.3.2. Let the notation be as above. By the graph-imbedding we
get the following inclusions as open and dense subsets:

Herm(A, ε,F) ↪→ {W ∈ G2n,n(F)|W = W⊥3}0,

Aherm(A, ε,F) ↪→ {W ∈ G2n,n(F)|W = W⊥4}0,
where the subscript 0 denotes “connected component of Γ0 ”. If A is Hermitian
or anti-Hermitian, these inclusions describe the conformal compactification of
the corresponding matrix spaces, considered as Jordan algebras, resp. - triple
systems. The natural action of the corresponding unitary group on the right-
hand side spaces gives the action of the corresponding conformal groups; i.e.

Co(Sym(A,F))0 = PO(

(
0 A
−A 0

)
,F)0 ⊂ PGl(2n,F),

Co(Herm(A, ε,F))0 = PU(

(
0 A
−A 0

)
, ε,F)0 ⊂ PGl(2n,F),

Co(Asym(A,F))0 = PO(

(
0 A
A 0

)
,F)0 ⊂ PGl(2n,F),

Co(Aherm(A, ε,F))0 = PU(

(
0 A
A 0

)
, ε,F)0 ⊂ PGl(2n,F).

Proof. a) Let us show that the first imbedding is well-defined: the condition
that g belongs to Herm(A) can be written as a(g) = g where a is the map
“adjoint w.r.t A”. By Lemma 1.3.1, case (iii), a = p3 , hence Γg = Γ⊥3

g , which
was to be shown. Similarly for −a .
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b) We will now show that the first imbedding has open and dense im-
age. It is clear that an element of the right-hand side set is in the image of the
imbedding if and only if it is a graph, because then the above reasoning can be
reversed, showing that the graph necessarily belongs to a Hermitian endomor-
phism. Recall that the set of graphs in G2n,n is dense, its complement being
given by the “non-graphs” N := {W ∈ G2n,n| det(prW1 ) = 0} (see 1.1). Hence
the image of the imbedding is the set {W ∈ G2n,n|W = W⊥3}0 \ N which is
open and dense in {W ∈ G2n,n|W = W⊥3}0 (otherwise it would be empty,
leading to a contradiction). Similar for the second imbedding.

c) The unitary group of a form acts naturally on the space of Lagrangian
subspaces corresponding to this form. By the graph-imbedding just described,
we have hence a rational action of the group U(

(
0
−A

A
0

)
)0 on the space Herm(A).

We want to show that this is the action of the conformal group, Co(Herm(A))0 =
U(
(

0
−A

A
0

)
)0 .

The map a “adjoint”, being an automorphism of the Jordan algebra
V = M(n,F), belongs to the conformal group Co(V ) of V . Recall that for any
φ ∈ Co(V ) we denote by φ∗(g) = φ◦g◦φ−1 the conjugation by φ . The following
lemma describes a∗ :

Lemma 1.3.3. For all g ∈ Gl(2n,F) ,

(1) (−ja)∗g = (g∗)−1,

(2) (ja)∗g = (g∗)−1,

(3) a∗g = (g∗)−1,

(4) (−a)∗g = (g∗)−1,

where the adjoint g∗ ∈ Gl(2n,F) in formula (k) is taken with respect to the form
(k) on E ⊕ E defined at the beginning of this section.

Proof. It is an immediate consequence of the definition of the adjoint operator
that

g ·W⊥ = ((g∗)−1 ·W )⊥

for all W ∈ G2n,n . This can be written as p∗(g) = (g∗)−1 , where p is the map
“orthocomplement”. The relations between p and a given by 1.3.1 now imply
the lemma.

Equation (3) of the lemma shows that Co(V )a∗ = U(
(

0
−A

A
0

)
). In

order to prove the claim we now only have to show that Co(V a) = Co(V )a∗ .
But this is easily verified since the translations by elements of V a , the group
Str(V a)0 = Str(V )a∗0 and j are in Co(V )a∗ and they generate its identity

component. In a similar way, we have Co(V −a)0 = Co(V )
(−a)∗
0 = U(

(
0
A
A
0

)
)0 ;

but as we will not use in this work the formal definition of the conformal group
of a Jordan triple-system, one may take this equality here simply as definition of
Co(V −a).

d) It remains to show that the imbedding of V a into the corresponding
set of Lagrangian subspaces is a conformal compactificaton as defined in [Be96a,
Th.2.4.1]. Because we already know that the conformal group acts on it by
continuing the corresponding rational action on V a , it is now enough to show
that this action is transitive. This is the contents of Witt’s Theorem, see [Bou59,
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4, no.3, Cor 2], the hypothesis of which are verified under our assumption on A .

Remarks. 1. When A is neither Hermitian nor anti-Hermitian, the Witt
theorem cannot always be applied. Furthermore, Herm(A) will then in general
not be semi-simple.

2. The whole set of Lagrangian subspaces is in general not connected.
as shows the example F = R , A = I2n+1 .

1.4. Normal forms of the algebras Sym(A,F) and Herm(A,F) and of
their conformal groups. We specialize Proposition 1.3.2 to the matrices of
some standard bilinear forms. In some cases we obtain block-matrices which
can be diagonalized: let the following endomorphisms of E ⊕ E be defined by
2n× 2n block-matrices: R =

(
I
I
−I
I

)
(the real Cayley transform), C =

(−I
iI
−iI
I

)

(the Cayley transform). We then have for all A ∈M(n,F),

(1) R
(

0
A
A
0

)
R−1 =

(−A
0

0
A

)
, R2 = −2

(
0
I
I
0

)
, 2R−1 = Rt ,

(2) R
(

0
−A

A
0

)
R−1 =

(
0
−A

A
0

)
,

(3) C
(

0
A
A
0

)
C−1 =

(
0
−A
−A
0

)
, C2 = 2I , C

t
= C , 2C−1 = C

t
.

(4) C
(

0
−A

A
0

)
C−1 =

(−A
0

0
A

)
.

The conformal group then also takes a simpler form: we apply the relations

O(gtAg) = g−1O(A)g, U(gtAg−1) = g−1U(A)g,

which follow easily from the definitions (the last identity should, more conceptu-
ally but less familiar, be written U(gtAε(g)−1, ε) = g−1U(A, ε)g .) Now Propo-
sition 1.3.2 gives the following table:

F = R : Co(Sym(In,R))0 = PO(

(
0 I
−I 0

)
,R) = Sp(n,R)

Co(Asym(In,R))0 = PO(

(
0 I
I 0

)
,R)

= RPO(

(
I 0
0 −I

)
,R)R−1 = R SO(n, n)R−1

F = C : Co(Sym(In,C))0 = PO(

(
0 I
−I 0

)
,C) = Sp(n,C)

Co(Asym(In,C))0 = PO(

(
0 I
I 0

)
,C)

= RPO(

(
I 0
0 −I

)
,C)R−1 = R SO(n, n;C)R−1

Co(Herm(In,C))0 = PU(

(
0 I
−I 0

)
,C) = C SU(n, n)C−1

Co(Aherm(In,C))0 = PU(

(
0 I
I 0

)
,C)

= RPU(

(
I 0
0 −I

)
,C)R−1 = R SU(n, n)R−1
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F = H : Co(Herm(In,H))0 = PU(

(
0 I
−I 0

)
,H)

= rjC PU(I2n, ε ◦ j∗,H)C−1r−1
j
∼= SO∗(4n)

Co(Aherm(In,H))0 = PU(

(
0 I
I 0

)
,H)

= RPU(

(
I 0
0 −I

)
,H)R−1 = R Sp(n, n)R−1

(Here j is the element of the canonical basis of H and rj is right multiplication
by j .) By the following lemmas we reduce the description of the conformal
groups of the spaces Herm(

(
0
I
−I
0

)
) and Herm(Ip,q) to the above listed spaces.

Lemma 1.4.1. Let F := Fm :=
(

0
−Im

Im
0

)
and lF : M(n,F) → M(n,F) ,

X 7→ FX . The following restrictions of lF :

Herm(I2m, ε,F)→ Aherm(F, ε,F), X 7→ FX

Aherm(I2m, ε,F)→ Herm(F, ε,F), X 7→ FX

are bijections which induce isomorphisms of the corresponding conformal groups,
given by conjugation with

(
F
0

0
I

)
.

Proof. The condition Xt = X is equivalent to F−1(FX)tF = −FX ,
which implies that the maps are well-defined. They are bijective, the inverse
given by X 7→ −FX . More conceptually: define involutions α(X) := X t

and β(X) := F−1XtF of V = M(2m,F); then α and −β are conjugate:
−β = lF ◦ α ◦ l−1

F . Therefore lF · V α = V −β and

Co(V −β) = Co(V )(−β)∗ = (lF )∗Co(V )α∗ = (lF )∗Co(V α),

where (lF )∗ is nothing but conjugation with
(
F
0

0
I

)
in Co(V ) = PGl(4m), thus

proving the statement about the conformal groups for the first case; similar for
the other.

Lemma 1.4.2. The map

lIp,q : Herm(Ip,q, ε,F)→ Herm(In, ε,F), X 7→ Ip,qX

(where n = p + q ) is a bijection, and (lIp,q)∗ (= conjugation by
(
Ip,q

0
0
I

)
in

PGl(2n)) defines an isomorphism of the corresponding conformal groups. A
similar statement holds for Aherm(A, ε,F) .

Proof. Remark that the condition X = X t is equivalent to (Ip,qX)tIp,q =
Ip,qIp,qX ; thus the map is well-defined. It is clear now how to adapt the proof
of the previous lemma to the given situation.
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Remark. We used in 1.4.1 and 1.4.2 implicitly a notion of “conformal iso-
morphism” as an isomorphism inducing an isomorphism of conformal groups.
It is therefore not very important that lF and lIp,q are actually linear. There
are other conformal isomorphisms not having this property. For example, the
Potapov-Ginzburg transformation (see Section 0.2) can be used; it is given by a
rational conformal map which is not linear when restricted to a matrix space. The
isomorphisms introduced here hence preserve some additional structure (which
we do not need at this stage); namely they are isomorphisms of Jordan triple-
systems: we equip all matrix spaces in question with a Jordan triple product
given by {X,Y, Z} = 1

2
(XY tZ + ZY tX). Then, for all matrices A and B ,

F (ABtA) = FA(FB)tFA , which implies that lF is a homomorphism of triple
systems; similarly for lIp,q .

Open orbits in the conformal compactification of Herm(A, ε,F) . We now
come to the main topic of this chapter: find subgroups G ⊂ Co(Herm(A)) such
that there exists an open orbit G · x ⊂ Herm(A)c for some x ∈ Herm(A)c .
Remark that we have two distinguished base points: x = 0 and x = I . These
two base points are related by the real Cayley-transform R =

(
I
I
−I
I

)
.

A. Open orbits of type Gl(n,F)/O(A,F) or Gl(n,F)/U(A,F) . The open
cone Ω = Str(Herm(A))0 · I ⊂ Herm(A) is isomorphic to Gl(n,F)/U(A,F), see
Section 1.2.2. There is also a Cayley-transformed realization having 0 as base
point, cf. Example 2.2.5.

B. Open orbits of group type. The second type of open orbits is of the
form G × G/ dia(G × G) which is nothing but the group G considered as a
homogeneous space under the action (G × G) × G → G , ((g, h), x) 7→ gxh−1 .
Let us consider G = U(A) = U(A, ε,F). Using Lemma 1.3.1 in the same way as
in the proof of Proposition 1.3.2 we get the following graph-imbedding:

U(A)0
Γ
↪→{W ∈ G2n,n|W = W⊥2}I .

Composing with the real Cayley-transform R and using R
(
A
0

0
−A
)
R−1 =

(
0
A
A
0

)
,

we obtain:

U(A)0
Γ
↪→{W ∈ G2n,n|W = W⊥2}I R→{W ∈ G2n,n|W = W⊥4}0 = Aherm(A)c.

We will write this shorter as

R ·U(A)0 ⊂ Aherm(A)c,

which can be interpreted as a rational relation: if g ∈ U(A)0 , then (g − I)(g +
I)−1 ∈ Aherm(A) whenever g + I is invertible. Conversely, whenever X ∈
Aherm(A) and X−I and X+I are invertible, then R−1X = (X+I)(X−I)−1 ∈
U(A). This implies that the intersection of R ·U(A) with Aherm(A)c is dense in
Aherm(A)c and described by the condition Det(X2− I) 6= 0. (In [Wey39, II.10]
this realization is called “CAYLEY’s rational parametrization of the orthogonal
group”.) The example of O(2n+ 1,R) shows that R ·U(A) may be bigger than
Aherm(A)c . We will now see that R · U(A)0 ⊂ Aherm(A)c is actually an orbit
of the form we are looking for.
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Proposition 1.5.1. For all non-singular matrices A ,

R ·U(A, ε,F)0 = Co(Aherm(A, ε,F))j∗0 · 0 ⊂ Aherm(A, ε,F)c

are open and symmetric orbits.

Proof. Only the stated equality remains to be shown. First,

U(

(
A 0
0 −A

)
)
(− id)∗
0 · I =

(
U(

(
A 0
0 −A

)
) ∩
(

Gl(n) 0
0 Gl(n)

))

0

· I

= {gh−1| g, h ∈ U(A)0} = U(A)0.

The last equality just describes the usual realization of U = U(A)0 as a sym-
metric space U × U/ dia(U × U) with base point I . Transforming by R ,

R(U(A)0) = R(U(

(
A 0
0 −A

)
)
(− id)∗
0 · I)

= U(

(
0 A
A 0

)
)
(R(− id)R−1)∗
0 · 0 = Co(Aherm(A))j∗0 · 0.

We can now use the isomorphisms 1.4.1 and 1.4.2 in order to get an
imbedding of some of the groups U(A) into spaces of Hermitian matrices (which
thus appear less natural, but have the advantage that the latter spaces are
Jordan-algebras, not only triple-systems). We get the following table (where
p + q is even in the first line and n even in the third line, and the notation for
the quaternionic case has been introduced in Section 1.2):

F = R : O(p, q) = O(Ip,q,R)
R
↪→Asym(Ip,q,R)c

(
Ip,qF

0
0
I

)
−−−−−→Sym(F,R)c

Sp(n,R) = O(F,R)
R
↪→Asym(F,R)c

(
F
0

0
I

)
−−−−−→Sym(I2n,R)c

F = C : O(I,C)
R
↪→Asym(I,C)c

(
F
0

0
I

)
−−−−−→Sym(F,C)c

Sp(n,C) = O(F,C)
R
↪→Asym(F,C)c

(
F
0

0
I

)
−−−−−→Sym(I2n,C)c

U(p, q) = U(Ip,q,C)
R
↪→Aherm(Ip,q,C)c

(
iIp,q

0
0
I

)
−−−−−→Herm(In,C)c

C U(n, n)C−1 = U(F,C)
R
↪→Aherm(F,C)c

(
F
0

0
I

)
−−−−−→Herm(I2n,C)c

F = H : Sp(p, q) = U(Ip,q,H)
R
↪→Aherm(Ip,q,H)c

(
Ip,qrj

0

0
I

)
−−−−−→Herm(I, j∗ ◦ ε,H)c

SO∗(4n) ∼= U(F,H)
R
↪→Aherm(F,H)c

(
F
0

0
I

)
−−−−−→Herm(I2n,H)c

SO∗(2n) = U(I, j∗ ◦ ε,H)
R
↪→Aherm(I, j∗ ◦ ε,H)c

(
rj
0

0
I

)
−−−−−→Herm(I,H)c
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(The list [Ma73, p.415] contains an error: the image of the fourth imbedding
for F = C described above is there denoted by U ∗(2m); but U(F,C) is not
isomorphic to this group.) We can keep track of the group Co(Aherm(A))j∗ ∼=
U(A) × U(A) acting on U(A) as described in Prop.1.5.1 by conjugating it by
the isomorphisms given above. For the case of the Euclidean Jordan algebras we
write down the result:

Sp(n,R)× Sp(n,R) = Co(Sym(I2n,R))(αj)∗ ; α(X) = −FXF−1.

U(p, q)× U(p, q) = Co(Herm(In,C))(αj)∗; α(X) = −Ip,qXIp,q.

SO∗(2n)× SO∗(2n) = Co(Herm(In,H))(αj)∗ ; α(X) = −ϕXϕ−1,

where in the last case ϕ is the conjugation of Hn defined in Section 1.2 (we re-
marked there that α(X) = Xt under the usual imbedding M(n,H) ⊂M(2n,C).)

C. Orbits of type Co(V )/ Str(V ) . The homogeneous space Co(V )/ Str(V )
can be imbedded as open orbit into the conformal compactification V c × V c of
V × V . This is best described in the general context of Jordan algebras, see
Example 2.2.10. In the cases of Hermitian matrices we get imbeddings

SU(

(
0 A
−A 0

)
,F)/(Sl(n,F)× R∗) ↪→ Herm(A,F)c × Herm(A,F)c.

D. Orbits of other type. In Section 2.4 we will see that open imbeddings of
symmetric spaces into compactifications of Euclidean Jordan algebras are related
to involutions of these algebras. It is known that the Euclidean matrix algebra
Herm(I,C) has “more” involutions than the other Euclidean matrix algebras; for
this reason we still have to discuss two classes of orbits related to this algebra:

Proposition 1.5.2. (i) Let α(Z) = Zt , Z ∈ Herm(In,C) . Then the orbits

X(±α) := Co(Herm(In,C))
(±αj)∗
0 · 0 ⊂ Herm(In,C)c

are open. For −α , the orbit is isomorphic to SO∗(2n)/ SO(n,C) , and for +α it
is isomorphic to SO(n, n)/ SO(n,C) as a symmetric space.

(ii) Let β(Z) = FZtF−1 , Z ∈ Herm(I2n,C) with F =
(

0
−I

I
0

)
. Then

the orbits

X(±β) := Co(Herm(I2n,C))
(±βj)∗
0 · 0 ⊂ Herm(I2n,C)c

are open. For −β , the orbit is isomorphic to Sp(2n,R)/ Sp(n,C) , and for +β
it is isomorphic to Sp(n, n)/ Sp(n,C) as a symmetric space.

Proof. The orbits in question are of the form Co(Herm(A))(±bj)∗ · 0, where
b is the involution defined by b(Z) = BZtB−1 with some symmetric or anti-
symmetric matrix B commuting with A . A simple computation in the Lie
algebra of Co(Herm(A)) (see Prop.2.2.1) shows that such orbits are open. The
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involution (±bj)∗ of Gl(2n) is given by taking the adjoint with respect to the
form given by

(
B
0

0
∓B
)

, see 1.3.1. Hence

Co(Herm(A))(±bj)∗ = P(U(

(
0 A
−A 0

)
) ∩O(

(
B 0
0 ∓B

)
)).

A matrix of this form fixes the base point 0 if it is in the the group
(

Gl(n)
0

0
Gl(n)

)

fixed by (− idV )∗ . One easily verifies that these are the matrices of the form(
a
0

0
A−1atA

)
with a ∈ O(B); hence the stabilizer of the base point is isomorphic

to O(B). We now specialize to the cases (i) and (ii) given above:

In case (i), A = In , B = In . For −α , note that SU(
(

0
−I

I
0

)
) ∩

SO(2n,C) equals SO∗(2n) (see Section 1.2). For +α , the Cayley transform
maps SU(

(
0
−I

I
0

)
) ∩ SO(n, n;C) onto SO(n, n;R).

In case (ii), A = I2n , B = F . For −β , observe that SU(
(

0
−I

I
0

)
) ∩

SO(
(
F
0

0
F

)
,C) is mapped by the real Cayley transform R onto the group Sp(n, n)

(see Section 1.2). For +β , one uses that SU(
(

0
−I

I
0

)
)∩SO(

(
F
0

0
−F
)
,C) is mapped

by the complex Cayley transform C onto the group Sp(2n,R).

1.6 Open orbits in the conformal compactification of V = M(n,F) . As
the constructions in these cases are similar to the preceding ones and because
these algebras are never Euclidean, we will give less details than in the preceding
section.

A. Orbits of type Gl(n,F) . For V = M(n,F) the open cone Ω = Str(V )0 · I
coincides with the group-type orbits and is isomorphic to Gl(n,F) ⊂ M(n,F),
see Section 1.1. There is also a Cayley-transformed realization having 0 as base
point.

B. Orbits of type U(
(
A
0

0
±A
)
,F)/U(A) × U(A) . Let A be a non-degenerate

Hermitian or skew-Hermitian matrix and define an involution of V = M(n,F)

by α(X) = A−1X
t
A . Then the orbits X(±α) := Co(V )

(±αj)∗
0 · 0 are open in

V c (Prop.2.2.1), and a calculation similar to the one given in 1.5 D shows that
X(±α) ∼= U(

(
A
0

0
∓A
)
,F)/U(A)× U(A).

C. Orbits related to complex conjugation. This is a special type of orbits
having no analogue for Hermitian matrices because no unitary groups will be
involved: for V = M(n,C), τ(X) = X defines a conjugation with respect to

the real form M(n,R) of V . The orbits X(±τ) := Co(V )
(±τj)∗
0 · 0 are open

in V c (Prop. 2.2.1), and C(X(τ)) = Co(V )τ∗ · ie ∼= Gl(2n,R)/Gl(n,C). We
have Co(V )(−τj)∗ = {g ∈ Gl(2n,C)|FgF−1 = g} = Gl(n,H), hence X(−τ) ∼=
Gl(n,H)/Gl(n,C).

1.7 A generalization of the SIEGEL-space. We will give now a geometric
description of the orbits constructed in Section 1.5. Generalizing the arguments
used in the proof of Proposition 1.5.2, we obtain

Theorem 1.7.1. Let A and B be non-singular n × n- F-matrices and ε1 ,
ε2 involutions of F , canonically extended to E := Fn , such that ε1A ◦ ε2B =
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ε2B ◦ ε1A . Assume that A is ε1 -Hermitian or -skew-Hermitian and B is ε2 -
Hermitian or -skew-Hermitian. Then β(Z) = B−1ε2(Z)tB defines an involution
of V = Herm(A, ε1,F) , and the orbits

X(±β) := Co(V )
(±jβ)∗
0 · 0

= (U
(( 0 A
−A 0

)
, ε1,F

)
∩ U

((B 0
0 ∓B

)
, ε2,F

)
)0 · 0

are open in the conformal compactification V c of V . The stabilizer of the base
point 0 ∈ V is isomorphic to U(B, ε2,F) . The orbit X(±β) is a connected
component of the set of n-dimensional subspaces W of E ⊕ E = Fn ⊕ Fn such
that

(i): W = W⊥ w.r.t. the ε1 -sesquilinear form
(

0
−A

A
0

)
,

(ii): the ε2 -sesquilinear form
(
B
0

0
∓B
)

is non-degenerate on W .

The intersection X(±β) ∩ V is a union of connected components of the set of
matrices

{Z ∈ V | Det(B ∓ ε2(Z)tBZ) 6= 0}.
Similar statements hold for the spaces V = M(n,F) and V = Aherm(A, ε1,F) .
In the latter case, the choice B = I and ε2 = idF yields orbits of group type.

Proof. The compatibility conditions imply that V = Herm(A) is stable
under the involution β . We are going to show in Prop.2.2.1 that the orbit

X(±β) = Co(V )
(±βj)∗
0 · 0 is open in V c . Lemma 1.3.3 gives the description of

Co(V )(±βj)∗ in terms of unitary groups, and the stabilizer of the base point is
calculated as in 1.5.2.

The condition (i) in the description of X(±β) is nothing but the descrip-
tion of V c , see 1.3.2. For the second condition, recall that the base point 0
is identyfied with its graph Γ0 = E ⊕ 0 ∈ G2n,n . The restriction of the form(
B
0

0
±B
)

to this space is given simply by B which is non-degenerate by assump-

tion. But then the whole U(
(
B
0

0
±B
)
)-orbit of Γ0 consists of spaces on which

this form is non-degenerate. If W = ΓX is a graph of X ∈ V = Herm(A),
then the non-degeneracy condition is seen to be equivalent to the condition
that det(B ∓ ε2(X)tBX) 6= 0. All that remains to show in order to conclude
that the connected component of Γ0 of the set of graphs satisfying the non-
degenerate condition coincides with the orbit X (±β) , is: if the form

(
B
0

0
±B
)

is non-degenerate on some n-dimensional subspace W , then the orbit of W is
open. In [Be96b] we will give a general algebraic and very natural proof of this
fact using the Jordan-theoretic idea of “mutation”. In the more special situation
here one may use the following arguments: first consider the case F = C and
ε1 = ε2 = idC . If the restriction of the C -bilinear form

(
B
0

0
∓B
)

to W is non-
degenerate, then this restriction has normal form B . The stabilizer of W can
thus be considered as a subgroup of O(B); but then the dimension of the orbit of
W is bigger or equal than the dimension of the orbit of Γ0 . Because the latter is
of maximal dimension, we must have equality, and the orbit of W is open in V c

(and one sees also that in the complex case there is just one open orbit). To prove
the desired statement in the general “real” set-up of the theorem, we complexify
first all the structures involved, use than the special case just discussed and then
restrict again to the real form we are interested in.
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An example: the classical SIEGELspace. Let F = C , ε1 = idC , ε2 is
complex conjugation, and A = B = In . Then B is positive definite on the base
point, and

X(β) ∩ V = {Z ∈ Sym(n,C)| I − ZtZ >> 0}.
Since this set is bounded and open in Sym(n,C), we may conclude from the last
condition stated in the theorem that X(β) is isomorphic to this space; in this
case our theorem describes thus the classical SIEGEL-space, see [Sa80, chap. II.7].
Similarly, the condition of the theorem implies that X (−β) ∩ V = V because the
Hermitian form

(
I
0

0
I

)
is non-degenerate on any subspace. We will see in chapter

2 that actually X(−β) = V c ; this is a compact Hermitian symmetric space.

Let us also mention that the preceding theorem permits to get hold of
the Co(V )(±βj)∗ -orbit structure of V c . In fact, orbits are characterized by the
rank (and other invariants, such as signature) of the resctriction of

(
B
0

0
±B
)

to
subspaces W . An orbit is in the closure of another only if the rank corresponding
to this orbit is strictly lower than the rank corresponding to the other. In
particular, there is one orbit (or finite union of orbits) lying in the closure of
every other orbit, namely the set of n -dimensional subspaces W such that the
forms

(
0
−A

A
0

)
and

(
B
0

0
±B
)

vanish simultaneously on W ×W . When the orbit
is a bounded symmetric domain (as the SIEGEL-space), then this space is known
to be the Shilov-boundary of the orbit.

1.8 The LIOUVILLE-theorem for the matrix algebras. We will specialize our
LIOUVILLE-theorem [Be96a, Th.2.3.1] to the case of the special Jordan algebras
M(n,F) and Herm(A,F). As explained in the introduction, the case of a Eu-
clidean Jordan algebra is related to causal groups. In the general non-Euclidean
situation, the result will show strong analogies with the fundamental theorem of
projective geometry stating that every transformation of projective space PCn+1

(whith n > 1) preserving collinearity is induced by an element of the group
generated by PGl(n+ 1,C) and complex conjugation (see [L85, p.158]).

Let us define for the Grassmannian G2n,n(F) a notion similar to collinear-
ity in projective space: let F ⊂ F2n be a subspace of dimension n + k ,
−n ≤ k ≤ n . If k ≥ 0, we will call the set

[F ] := {W ∈ G2n,n|W ⊂ F}

the k-pencil in G2n,n defined by F . In other terms, elements W1, ...,Wm of
G2n,n lie on the same k -pencil iff the subspace < W1, . . . ,Wm > generated by
them is of dimension less or equal than n + k . If k ≤ 0, then the k-pencil in
G2n,n defined by F is by definition the set

[F ] := {W ∈ G2n,n|F ⊂W}.

In other terms, elements W1, . . . ,Wm of G2n,n lie in this case on the same
k -pencil iff their intersection is of dimension greater or equal than n + k . It
is clear from the usual dimension formulas that k -pencils and −k -pencils are
in bijection by the map W 7→ W⊥ where the orthocomplement is taken with
respect to some non-degenerate form on F2n ; hence k -pencils and −k -pencils
are the same objects. In contrast to the situation of lines in projective space,
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there is in general no k -pencil joining two different points, and already 1-pencils
are higher dimensional objects. A k-pencil in Herm(A,F)c is by definition the
intersection of a k -pencil in G2n,n(F) with Herm(A,F)c . The following theorem
is a translation of our LIOUVILLE-theorem to this geometrical setting:

Theorem 1.8.1. Let V be the Jordan algebra M(n,F) (n > 1) or one
of its subalgebras Herm(A,F) (assumed to be non-isomorphic with R or C)
with conformal compactification V c given by G2n,n(F) , resp. by the set of
Lagrangian subspaces described in Proposition 1.3.1. Then Co(V ) is the group of
transformations preserving k -pencils. More precisely, if φ : V c ⊃ V1 → V2 ⊂ V c
is a locally defined (on some domain V1 of V c ) diffeomorphism of class C4

such that pieces of k -pencils contained in V1 are transformed into pieces of k -
pencils contained in V2 (k = 1, . . . , n− 1) , then φ is rational and has a rational
continuation onto V c , given by an element of Co(V ) .

Proof. We first check that Co(V ) does indeed preserve k -pencils: this is clear
for the action of Gl(2n,F), for the maps induced by conjugations of the base field
(i.e. complex conjugation if F = C) and for maps of the form W 7→ W⊥ (due
to fact that k -pencils and −k -pencils are the same objects as explained above).
As these elements generate Co(V ), this group preserves k -pencils.

Conversely, let φ as in the theorem be given. We may assume that
V1, V2 ⊂ V . In order to conclude using [Be96a, Th.2.3.1] we have to show
that for all x ∈ V1 , Dφ(x) ∈ Str(V ). For this purpose, let us describe the
affine picture of k -pencils: two points X,Y ∈ V = End(Fn) lie on the same
k -pencil iff dim(ΓX ∩ ΓY ) ≥ k , that is iff rk(X − Y ) ≤ n − k . Any k -pencil
through X is obtained by forming the sum of X with a k -pencil through 0.
The set {X|rk(X) ≤ k} is the union of k -pencils through 0, and the set
{X|Det(X) = 0} is the union of n − 1-pencils through 0. Let [V ] be a k -
pencil through 0 defined by F with dimF = n+ k > n . We write Fi , i = 1, 2
for the projections of F onto the first, resp. second factor of Fn ⊕ Fn . Because
Γ0 = Fn ⊕ 0 ⊂ F , we have dimF1 = n , hence dimF2 = k . The condition
ΓX ⊂ [F ] is now seen to be equivalent to im(X) ⊂ F2 . This description shows
that sums and scalar multiples of elements of [F ] still lie on [F ] ; i.e. the affine
picture [F ] ∩ V of [F ] is a linear subspace of V . By translation, the affine
picture [F ] ∩ V of a k -pencil through X is an affine subspace [F0] + X of V
where [F0] = [F ] − X is a k -pencil through 0. Coming back to our k -pencil
preserving transformation φ , it is now clear from the very definition of Dφ(x)
being the linearization of φ at x that Dφ(x) preserves k -pencils passing through
the origin. In formulas,

Dφ(X) · [F ] = (φ([F ] +X)− φ(X))

for all k -pencils [F ] passing through the origin.

Now it remains to show that Str(V ) is the group of linear transformations
of V preserving k -pencils passing through the origin. In particular, such a
transformation g stabilizes the set {X ∈ V |Det(X) = 0} which is the union
of n − 1-pencils passing through the origin. But the polynomial Det being
irreducible, we may conclude that Det ◦g is a multiple of the polynomial Det,
which in turn implies that g ∈ Str(V ) ([FK94, p.161]).
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The Jordan-theoretic construction

In this chapter we construct open and symmetric orbits in the conformal com-
pactification of general semi-simple Jordan algebras (Prop. 2.2.1); we call them
Makarevič spaces since they have been classified by B.O. Makarevič [Ma73]. We
first recall some basic properties of the conformal group of a Jordan algebra.

2.1 The three canonical involutions of the conformal group. We have
defined in Section 1.0 the conformal or Kantor-Koecher-Tits group of a (semi-
simple) Jordan algebra V as the group of birational mappings of V generated
by the translations τv , v ∈ V (τv(x) = x+ v ), the structure group Str(V ) and
the Jordan inversion j(x) = x−1 . The Lie algebra co(V ) of Co(V ) is the graded
Lie algebra of polynomial vector fields ξ on V which we write as

ξ(x) = v +H(x) + P (x)w, v, w ∈ V,H ∈ str(V ) = Lie(Str(V )),

where P (x)w = 2x2w − x(xw) is the quadratic representation of V . We write

co(V ) = V ⊕ str(V )⊕W,
for the decomposition of co(V ) in spaces of homogeneous polynomial vector fields
of degree 0, 1 and 2.

Consider the following three involutive conformal mappings of V : − idV ,
j and −j = (− id) ◦ j = j ◦ (− id). The conjugation in Co(V ) by each of
these elements defines an involutive automorphism of Co(V ). Let us describe
these involutions. We will, for any φ ∈ Co(V ), denote by φ∗ the induced
automorphism on the group level (i.e. the conjugation) as well as on the Lie
algebra level (i.e. the adjoint representation). The latter is described by the
formula for the action of diffeomorphisms on vector fields living on a vector
space,

(φ∗ξ)(x) = ((Dφ)(φ−1(x))) · ξ(φ−1(x)).

For φ = − idV , ((− id)∗ξ)(x) = −ξ(−x), and we get the decomposition of co(V )
in ±1-eigenspaces of the involution (− id)∗ :

co(V ) = str(V )⊕ (V ⊕W ).

We know that (Dj)(x) = −P (x)−1 (see [FK94, Prop.II.3.3]); hence (j∗ξ)(x) =
−P (x) · ξ(x−1), in particular (j∗v)(x) = −P (x)v for constant vector fields v .
The decomposition of str(V ) in ±1-eigenspaces of j∗ is given by

str(V ) = Der(V )⊕ L(V ),

where Der(V ) is the Lie algebra of derivations of the Jordan algebra V and
L(V ) = {L(v)|v ∈ V } where L(v)x = vx . We thus obtain the following
decompositions of co(V ):

w.r.t. j∗ : co(V ) = (Der(V )⊕ q(+))⊕ (q(−) ⊕ L(V )),

w.r.t.(−j)∗ : co(V ) = (Der(V )⊕ q(−))⊕ (q(+) ⊕ L(V )),

where q(±) := {v ± j∗v| v ∈ V } .
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Lemma 2.1.1. (i) The conformal mappings − idV and j are conjugate in
Co(V ) , namely

R(x) := (x− e)(x+ e)−1

defines an element (the “real Cayley transform”) of Co(V ) such that R◦j◦R−1 =
− idV and R−1 ◦ j ◦R = − idV . The inverse of R is given by

R−1(x) = −(x+ e)(x− e)−1 = R ◦ (−j)(x) = (−j) ◦R(x).

(ii) If V is in addition a complex Jordan algebra, then also − idV and
−j are conjugate in Co(V ) , namely C ◦ (−j) ◦C−1 = − idV with C := i ◦R ◦ i
(“the Cayley transform”), where i is the multiplication by i =

√
−1 in V . The

inverse of C is C .

Proof. (i) Writing R(x) = e − 2(x + e)−1 = τe ◦ 2 idV ◦(−j) ◦ τe(x), we
see that R ∈ Co(V ). Using that V is power-associative, we easily verify that
(e+ x−1)−1 = e− (e+ x)−1 . ¿From this we obtain

R ◦ j(x) = (x−1 − e)(x−1 + e)−1 = (x−1 − e)(e− (e+ x)−1)

= (x−1 − e)x(e+ x)−1 = (e− x)(e+ x)−1 = (− idV ) ◦R(x).

For the second relation we have similarly

j(R(x)) = ((x− e)(x+ e)−1)−1 = (x+ e)(x− e)−1 = R(−x).

From this we get R ◦ (−j) = j ◦R ◦ j = (−j) ◦R , and one now verifies by similar
calculations the formula for the inverse of R .

(ii) C−1(− idV )C = i−1R−1(− idV )Ri = −j using (i) and j ◦ i = −i ◦ j .
Furthermore, C2 = iR(− idV )Ri = ijR2i = ij(−j)i = idV .

Remark 2.1.2. If α is an automorphism of V , then α((x − e)(x + e)−1) =
(α(x) − e)(α(x) + e)−1 , i.e. αR = Rα . From this we get R(jα)R−1 = −α.
(This is a generalization of 1.4 (1).) If V is complex and α a C -conjugate linear
(iαi−1 = −α) automorphism, C(jα)C−1 = α .

2.2 Makarevič spaces: definition and examples. Consider α ∈ Gl(V ) with
the property that (jα)2 = idV —by this we mean that (α(αx)−1)−1 = x for all
x where this expression is defined. Then α is actually in the structure group
since jαj = α−1 is a linear transformation. Consequently, the conjugation by jα
defines an involutive automorphism j∗α∗ = (jα)∗ of the conformal group Co(V ).
We write Co(V )j∗α∗ for its fixed point group. Certainly there exist α such that
(jα)2 = idV : one may choose α or −α to be an involutive automorphism.

Proposition 2.2.1. If V is a semi-simple Jordan algebra and α ∈ Gl(V ) is
such that (jα)2 = idV , then the orbit

X(α) := Co(V )j∗α∗0 · 0 ⊂ V c

is open in the conformal compactification V c and is a symmetric space with
symmetry − idV at the origin. The symmetric pair associated to X (α) is

(co(V )j∗α∗ , str(V )j∗α∗).
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Proof. Because α and j commute with − idV , Co(V )j∗α∗ is stable under
the conjugation (− id)∗ . Therefore (− idV )∗ induces an involution on this group
and on its Lie algebra co(V )j∗α∗ . Recalling that co(V ) = str(V ) ⊕ (V ⊕W ) is
the decomposition in ±1-eigenspaces, we see that

co(V )j∗α∗ = h(α) ⊕ q(α); h(α) = str(V )j∗α∗ , q(α) = {v + j∗αv| v ∈ V };

is the decomposition in ±1-eigenspaces with respect to (− idV )∗ . Let us show
now that κ : Co(V )j∗α∗0 → V c, g 7→ g · 0 is a submersion, so its image will be
open in V c . By equivariance, it is enough to show that the differential at the
origin

κ̇ : co(V )j∗α∗ → T0V
c = V, ξ 7→ ξ(0)

is surjective. But this is clear because for v + j∗αv ∈ q(α) , (v + j∗αv)(0) =
v (recall that j∗αv is homogeneous quadratic und thus zero at the origin).
Furthermore, ker κ̇ = h(α) because ξ(0) = 0 for all ξ ∈ str(V ). This means that
the stabilizer of the base point 0 in Co(V )j∗α∗ has Lie algebra h(α) , and so is
open in the subgroup fixed by the involution (− idV )∗ . Thus X(α) is a symmetric
space with the associated decomposition of the Lie algebra given above. Let us
calculate its symmetry σ at the origin: if x = g · 0 with g ∈ Co(V )j∗α∗ , then
σ(x) = ((− idV )∗g) · 0 = −g · 0 = −x .

We will call a symmetric space, realized as an open orbit X (α) as in
the preceding proposition, a Makarevič space. Work of Rivillis and Makarevič
shows that actually any reductive symmetric space G/H which can be realized
as an open orbit in V c (in such a way that G acts as a subgroup of Co(V )) is
isomorphic to a space X(α) ([Ri70, Th.3], [Ma73, Th.3]). Spaces of the form X (α)

have been classified by B.O.Makarevič in [Ma73] (but no proof of completeness
of this classification is given there). The most important examples are:

2.2.2 A class of causal symmetric spaces. All spaces listed in table 0.3.1
are of the form X(α) ; see Theorem 2.4.1.

2.2.3 General linear groups Gl(n,F) . See 1.6.A.

2.2.4 Unitary groups U(A, ε,F) . See 1.5.B. We have remarked there that only
some of these groups can be realized as open orbits in Jordan algebras, but all of
them in a Jordan triple system of skew-Hermitian matrices. In [Be96b] we will
call such spaces Makarevič spaces of the second kind.

2.2.5 Symmetric cones and their non-convex analogues. See 1.5.A and
1.6.A. We consider here a Cayley-transformed realization: we use the relation
α(Gβ) = Gαβα

−1

holding for any group G and automorphisms α and β of G .
By this relation, for all φ ∈ Co(V ),

φ(Co(V )j∗α∗ · 0) = Co(V )φ∗j∗α∗φ
−1
∗ · φ(0).

Taking for φ the real Cayley-transform R given in Lemma 2.1.1 we obtain, using
that RjR−1 = − idV ,

R−1(X(idV )) = Co(V )
(R−1jR)∗
0 ·R−1(0) = Co(V )

(− idV )∗
0 · e = Str(V )0 · e,
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which is by definition the open cone Ω associated to the Jordan algebra V .

2.2.6 Tubes over convex or non-convex cones. Generalizing the preceeding
calculation, if α is an involutive automorphism of V , then (by remark 2.1.2)

R−1(X(α)) = Co(V )
(−α)∗
0 · e.

This domain contains as an open subset the tube V − ⊕ Ω+ , where V ± = {v ∈
V |α(v) = ±v} and Ω+ is the cone Ω+ = Str(V +)0 · e associated to the Jordan
algebra V + . This is an immediate consequence of the fact that Co(V )(−α)∗

contains the translations by elements of V − and and the group Str(V )α∗ which
acts transitively on Ω+ .

2.2.7 Hermitian and pseudo-Hermitian symmetric spaces. If V is a
complex Jordan algebra, then Co(V ) is a complex Lie group acting C -rationally
on V ; hence V c is a complex manifold on which Co(V ) acts holomorphically.
Clearly any Makarevič space X (α) ⊂ V c inherits the invariant complex structure
from V c . If α is complex-linear, then X(α) will be a complex symmetric space,
i.e. a quotient of complex Lie groups. If α is conjugate-linear, then X (α) will be
a pseudo-Hermitian symmetric space in the proper sense, i.e. have an invariant
complex structure without being a quotient of complex Lie groups.

2.2.8 Hermitian and pseudo-Hermitian symmetric spaces of tube type.
Let V be a complex Jordan algebra and τ be a conjugation, i.e. a conjugate-
linear involution of V . Then V τ is a real form of V . A similar calculation as in
2.2.5, using the Cayley transform C from Lemma 2.1.1, yields

C(X(τ)) = Co(V )
(CjτC−1)∗
0 · (−ie) = Co(V )τ∗0 · (−ie).

This orbit contains as an open subset the tube TΩ := V τ − iΩτ where Ωτ is
the open symmetric orbit associated to the real form V τ . In fact, this is a
special case of 2.2.6. Here we have the additional feature that multiplication by
i =
√
−1 yields an isomorphism of V τ and V −τ , permitting us to realize the

tube over V τ instead of V −τ . Spaces of this type are called pseudo-Hermitian
symmetric spaces of tube type; they are studied in [FG95]. If V τ is Euclidean,
then X(τ) is the well-known tube domain in its disc realization. In [Be96b] we
will explain how to consider bounded symmetric domains which are not of tube
type as Makarevič spaces of the second kind.

2.2.9 c-duals of the preceding spaces. We will prove that X (−α) is the
c-dual of X(α) (Proposition 2.3.2). By duality, we get from 2.2.3 and 2.2.4 the
spaces GC/G where G is one of the above mentioned groups, from the symmetric
cones we get compact causal symmetric spaces, and from the bounded symmetric
domains we get compact Hermitian symmetric spaces.

2.2.10 Orbits of type Co(V )/ Str(V ) . If V = W × W is the product of
two copies of the semi-simple Jordan algebra W , then Co(V )0 = Co(W )0 ×
Co(W )0 and (W × W )c = W c × W c (see [Be96a, Th.2.3.1]). We define an
involutive automorphism of V by α((x, y)) = (y, x). The induced involution
of Co(W ) × Co(W ) is given by α∗(g, h) = (h, g), and because jV = jW × jW
we get (αj)∗(g, h) = (j∗h, j∗g). The fixed point group of this involution is
{(g, j∗g)|g ∈ Co(W )} , and an element of this group stabilizes 0V = (0W , 0W ) iff
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g ∈ Str(W ). Hence

X(α) = Co(W ×W )
(αj)∗
0 · 0 ∼= Co(W )0/ Str(W )0.

If we replace α by −α , we get an isomorphic orbit: let J(x, y) = (−y, x); then
jJj = −J , hence J ∈ Str(V ), and the lemma to be stated next implies then
that X(−α) = JXα .

Back to the general set-up. In order to get hold of the spaces X (α) , we
write

Str(V )Jj∗ := {α ∈ Str(V )| j∗(α) = α−1}.
This is the fixed-point set of the involutive anti-automorphism Jj∗ of Str(V ),
where J(g) = g−1 is the inversion in Str(V ) and j∗(α) = jαj is the canonical
involution of Str(V ). The formula g · α := j∗g ◦ α ◦ g−1 defines an action of
Str(V ) on Str(V )Jj∗ which is in general not transitive. The next lemma states
that X(α) essentially only depends on the connected components of Str(V )Jj∗ .

Lemma 2.2.11. (i) The action of Str(V ) is transitive on every connected
component of Str(V )Jj∗ .

(ii) For all g ∈ Str(V ) and α ∈ Str(V )Jj∗ , X(g·α) = g(X(α)) (the space
translated by the map g ).

Proof. (i) This is a general fact about any Lie group G with involution σ ,
acting on the set GJσ = {g ∈ G|σ(g) = g−1} by g ·α = σ(g)αg−1 : fix α ∈ GJσ ;

its stabiliser in G is the fixed point group Gα
−1
∗ ◦σ , and the submanifold αGα

−1
∗ ◦σ

of G intersects GJσ transversally at α (the condition αg ∈ GσJ with g ∈ Gα−1
∗ ◦σ

implies that g = g−1 which is only trivially solvable in a neighbourhood of the
origin of G). Hence G · α has the same dimension as GJσ .

(ii) For g ∈ Str(V ) and α ∈ GJj∗ , j◦(g·α) = j◦jgj◦α◦g−1 = g◦jα◦g−1 ,
so

Co(V )j∗(g·α)∗ · 0 = Co(V )g∗j∗α∗g
−1
∗ · 0 = (g∗(Co(V )j∗α∗)) · 0 = g(Co(V )j∗α∗ · 0).

Corollary 2.2.12. Let V be a complex Jordan algebra, and denote by i :
V c → V c multiplication by i =

√
−1 .

(i) For all C-linear α ∈ Str(V )Jj∗ ,

iX(α) = X(−α).

(ii) For all C-conjugate-linear α ∈ Str(V )Jj∗ and t ∈ R ,

eitX(α) = X(α)

(i.e. the pseudo-Hermitian spaces from example 2.2.7 are circled.)

Proof. For any scalar λ ∈ C , λ · α = λ−1 ◦ α ◦ λ−1 .

(i) By C -linearity of α , i · α = i ◦ α ◦ i = −α . Now use the preceeding
lemma, part (ii).

(ii) By conjugate-linearity of α , eit · α = α , and the claim follows as
above.
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2.3 Complexifications and c-duality. Any symmetric space X = G/H
admits, at least locally, a complexification XC = GC/HC . We first show that
the spaces X(α) always admit globally a complexification, and we will not have
to make assumptions of the kind “GC simply connected”. This is due to the
fact that our set-up is essentially algebraic. There are two interesting features
related to complexification: first, the spaces X (α) and X(−α) are c-dual, and
second, the spaces X(α) admit yet another kind of complexification which we
call Hermitian complexification: namely, they are real forms of pseudo-Hermitian
spaces introduced in Example 2.2.7. For general symmetric spaces, no such
complexification is known; hence it seems that this is a quite specific feature
of Makarevič spaces. It turns out that all is a straightforward consequence of the
fact that a real Jordan algebra V can be complexified, just as a Lie algebra, in
a natural way (see [FK94, ch. VIII]); we will denote by VC the complexification
of V .

Lemma 2.3.1. Let V be a semi-simple Jordan algebra, VC its complexification
and τ the conjugation of VC such that V τC = V . Then Co(VC) (respectively,
its Lie-algebra co(VC)) is stable under conjugation with τ (resp. under its
differential at the origin), and if we define

(i) Co(V )→ Co(VC)τ∗ , φ 7→ φC,

(ii) co(V )→ co(VC)τ∗ , ξ 7→ ξC,

where φC (resp. ξC ) is the unique C-rational (resp. -polynomial) continuation
of φ (resp. ξ ), then (i) is an injection as an open subgroup and (ii) is an
isomorphism.

Proof. We first check, using that τ commutes with the Jordan-inverse j ,
that the structure group Str(VC) ⊂ Gl(VC) (and hence also its Lie algebra) is
stable by the conjugation τ∗ . Then the chain rule implies immediately that, if
φ is Str(VC)-conformal, this is also the case for τ∗(φ) = τφτ , so Co(VC) is τ∗ -
stable, and taking differentials at the origin we get the analogous statement for
the Lie algebra. It is clear that (i) and (ii) are injective. To show that (ii) is also
surjective, one just shows that ξ 7→ ξ|V is a well-defined inverse of (ii): in fact,
if ξ is τ∗ -fixed, then, if x ∈ V = V τC also ξ(x) ∈ V , and it is easily seen that
then ξ|V is str(V )-conformal. So (ii) is an isomorphism, and that the image of
(i) is open is an immediate consequence.

We will from now on consider the map (i) of the preceding lemma as an
inclusion and thus get an inclusion, compatible with the inclusion V ⊂ VC , of
the corresponding conformal compactifications:

V c = Co(VC)τ∗0 · 0 ⊂ (VC)c = Co(VC)/PC.

If X(α) is a conformally flat symmetric space, we can now define its inclusion in

its complexified space X
(α)
C by

X(α) = Co(V )j∗α∗0 · 0 ⊂ X(α)
C := Co(VC)j∗α∗0 · 0 ⊂ (VC)c,
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where we use the same letters j and α for the corresponding conformal map

of V as well as for its C -rational continuations. The conjugation of X
(α)
C with

respect to X(α) is τ . Recall that the c-dual of a symmetric space X = G/H is a
symmetric space Y = L/H such that the associated eigenspace decomposition of
the Lie algebra l of L is l = h⊕ iq if g = h⊕ q is the decomposition associated
to G/H . It is well-known that Riemannian symmetric spaces of compact and
non-compact type are c-dual in this sense.

Proposition 2.3.2. For all α ∈ Str(V )Jj∗ , the symmetric spaces X(α) and
X(−α) are c-duals of each other.

Proof. By Corollary 2.2.12 (i) we have iX
(−α)
C = X

(α)
C . Recall that − idV is

the geodesic symmetry of a conformally flat symmetric space with respect to the

origin. Hence the c-dual real form of X
(α)
C is given by

(X
(α)
C )−τ0 = (iX

(−α)
C )−τ0 = i(X

(−α)
C )τ0 = iX(−α),

i.e. X(−α) is isomorphic to the real form of XC with respect to the conjugation
−τ . This means that X(−α) is (globally) c-dual to X(α) , and it implies the
weaker, infinitesimal notion of c-duality introduced above.

Example: the Borel-imbedding. a) Let V be Euclidean. Then X (idV ) is a
Riemannian symmetric space of non-compact type, isomorphic to the symmetric
cone Ω (ex. 2.2.5). Hence X(− idV ) is compact. Because it is open in the
connected space V c , we have X(− id) = V c .

b) Let V be complex and τ be a conjugation with respect to a Euclidean
real form. Then D = X(τ) is a bounded symmetric domain and hence of non-
compact type (ex. 2.2.8), and it follows as above that X (−τ) = V c . The
imbedding X(τ) = D ⊂ V c = X(−τ) is the well-known Borel-imbedding of the
disc D into its compact dual. We can thus consider the preceeding proposition
as a generalization of the Borel-imbedding where in general the situation will
be much more complicated because we won’t have inclusion of one space in the
other but only open intersections.

2.3.3 The Hermitian complexification of X (α) . It is defined by by

X
(α)

C := Co(VC)
(jτα)∗
0 · 0 ⊂ (VC)c.

Here τα = ατ is nothing but the conjugate-linear continuation of α onto VC .

As explained in example 2.2.7, X
(α)

C is a pseudo-hermitian symmetric space, and

X(α) appears as its real form with respect to the conjugation τ . Remark that,
by Cor. 2.2.12 (ii), the real form with respect to the conjugation −τ will be
isomorphic to X(α) , so there is no notion of “hermitian c-dual”. This is related
to the following remarkable property: Multiplication by i in any tangent space

of X
(α)

C extends to a globally biholomorphic map of X
(α)

C . We finally remark
that, if V is already a complex Jordan-algebra, then VC ∼= V × V , and then
the Hermitian complexification will also be a complex symmetric space in the

ordinary sense; one may check that in this case X
(α)

C
∼= Co(V )/ Str(V ), cf. Ex.

2.2.10.
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2.4 The Euclidean case (causal symmetric spaces). Recall that the cone
Ω = Str(V )0 · e associated to a Jordan-algebra is convex if and only if V is
Euclidean. Thus the Makarevič spaces X (α) have an invariant causal (flat)
structure given by Ω if and only if the Jordan-algebra used in the construction
is Euclidean. Recall that G(Ω) is the group of all linear automorphisms of Ω; it
is an open subgroup of Str(V ) ([FK94, p.150]).

Theorem 2.4.1. Let V be a Euclidean Jordan algebra (having no ideal
isomorphic to R) and Ω the associated symmetric cone.

(i) Every locally defined causal transformation (class C4 ) of the flat
causal structure defined by Ω is birational, and its rational extension is given
by an element of the group Co(G(Ω)) generated by the translations, the group
G(Ω) and −j , where j is the Jordan inversion. These transformations extend
to globally defined causal automorphisms of the conformal compactification V c

of V . The identity component of the causal group Co(G(Ω)) is Co(V )0 .

(ii) If X(α) ⊂ V c is a Makarevič space, then X (α) inherits a (flat) causal
structure from V c . Every element of the causal pseudogroup of this structure on
X(α) is rational and can, by (i), be identified with an element of Co(G(Ω)) .

(iii) The symmetric spaces X = L/H and X ′ = L′/H given in table
0.3.1 can be realized as Makarevič spaces in V c where V is given in the column
to the right, and their causal pseudogroup can, by (ii), be identified with a group of
birational transformations the identity component of which is the group Co(V )0

given in the table.

(iv) Table 0.3.1 gives a complete list of Makarevič spaces associated to
simple Euclidean Jordan algebras.

Proof. The first claim of (i) is a restatement of [Be96a, Th.2.3.1 (ii)], observing
that a local diffeomorphism φ is causal if and only if Dφ(x) ∈ G(Ω) for all x
where φ is defined. By the same theorem, Co(V ) and Co(G(Ω)) have the same
identity component. Its action on V c is transitive by definition of V c , and hence
the causal structure of V can, by forward transport, be extended to an invariant
causal structure on V c . This proves (i). Now (ii) is just the specialization of (i)
to maps having domain and range in X(α) .

(iii) The spaces X = L/H and X ′ = L′/H are c-duals of each other,
and by Prop. 2.3.2 one of these two spaces admits a causal imbedding into V c

if and only if the other does. For each line corresponding to the cases I - III we
constructed in Section 1.5 explicitely the imbedding of one of the spaces L/H or
L′/H into V c ; in fact, the first line in each case contains the so-called Cayley-
type spaces which arise from ex. 2.2.10 (see 1.5.C); the second line contains the
open Str(V )0 -orbits in V , in particular the symmetric cone and its compact dual
(ex. 2.2.5, see 1.5.A), and the following lines are from 1.5.D (case I) and 1.5.B
(case II and III). The list for cases IV and V is taken from [Ma73, p.416]; for case
IV see also [Ri69]. By (ii), the causal pseudogroup is given by Co(V )0 which we
have described, for cases I–III, in Section 1.4; for the other cases cf. [Ma73].

The proof of part (iv) will be prepared by somme lemmas.

Lemma 2.4.2. If V is Euclidean, then j∗ is a Cartan-involution of Str(V ) ,
and Str(V )j∗ = {±1} ·Aut(V ) .
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Proof. If V is Euclidean, then Str(V ) = ±1 · G(Ω) (see [FK94, p.150]).
Because an element of the structure group is an automorphism if and only if it
fixes the unit element e (see [FK94, p.148]), we can write Ω ∼= G(Ω)/Aut(V ),
and the involution of this symmetric space is j . As is well known, Ω is a
symmetric space of the non-compact type, and thus j∗ is a Cartan-involution of
G(Ω) and also of Str(V ) = ±1 ·G(Ω), and ±G(Ω)j∗ = ±1 ·Aut(V ).

One can also show that, if V is Euclidean, using that Co(V )/Co(V )(−j)∗

is a symmetric space of the non-compact type (the tube domain), that (−j)∗ is
a Cartan-involution of Co(V ).

Lemma 2.4.3. Let G be a reductive Lie group, θ : G → G be a Cartan-
involution with associated decomposition g = h⊕ p of the Lie algebra of G and
Cartan decomposition G = K exp p , and let GJθ = {g ∈ G|θ(g) = g−1} . Then
the Cartan decomposition induces a diffeomorphism

GJθ ∼= {(k,X)| k ∈ K, k = k−1;X ∈ p,Ad(k)X = X}.

Proof. Writing g ∈ GJθ as g = k expX with k ∈ K = Gθ and X ∈ p = g−θ ,
an easy calculation shows that the condition θ(g) = g−1 is equivalent to k = k−1

and X = Ad(k)X .

Corollary 2.4.4. If V is Euclidean, then any Makarevič space X (α) associ-
ated to V is isomorphic to a space X (±β) arising from an involutive automor-
phism β or from its negative −β .

Proof. As j∗ is a Cartan-involution of Str(V ), every connected component of
Str(V )Jj∗ contains by the previous lemma an element k ∈ K = ±Aut(V ) with
k2 = id , which is thus either an involutive automorphism of V or its negative. By
Lemma 2.2.12, the space associated to any element of the connected component
of Str(V )Jj∗ containing k is isomorphic to the space associated to k .

The involutive automorphisms of a Euclidean Jordan algebra have been
classified, see [Kay94] or [H67]. Using Corollary 2.4.4 and this classification, one
can check that table 0.3.1 gives indeed a complete list of all Makarevič spaces
associated to simple Euclidean Jordan algebras.
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