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Abstract. A Lefschetz formula for actions of noncompact tori on com-
pact quotients of Lie groups is given.

Introduction

Let G denote a Lie group and Γ a uniform lattice in G. We fix a maximal torus
T in G and consider the action of T on the compact quotient Γ\G. Assuming
T to be noncompact we will prove a Lefschetz formula relating compact orbits as
local data to the action of the torus T on a global cohomology theory (tangential
cohomology). Modulo homotopy, the compact orbits are parametrized by those
conjugacy classes [γ] in Γ whose G-conjugacy classes meet T in points which
are regular in the split component. Having a bijection between homotopy classes
and conjugacy classes in the discrete group we will identify these two. For a class
[γ] let Xγ be the union of all compact orbits in that class. Then it is known
that Xγ is a smooth submanifold and with χr(Xγ) we denote its de-twisted Euler
characteristic (see sect. 2.). Note that χr(Xγ) is local, i.e. it can be expressed as
the integral over Xγ of a canonical differential form (generalized Euler form). On
the other hand χr(Xγ) can be expressed as a simple linear combination of Betti
numbers (see sect. 2.). Next, λγ will denote the volume of the orbit and Ps the
stable part of the Poincaré map around the orbit. Then the number

L(γ) :=
λγχr(Xγ)

det(1− Ps)
will be called the Lefschetz number of [γ] (compare [8]). The class [γ] defines
a point aγ in the split part A of the torus T modulo the action of the Weyl
group. In the case when the Weyl group has maximal size (for example when T
is maximally split) our Lefschetz formula is an equality of distributions:

∑

[γ]

L(γ)δaγ = tr(.|H∗(F)),

where H∗ is the tangential cohomology of the unstable/neutral foliation F induced
by the torus action. In [6] a similar formula is proven to hold up to a smooth
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function in the case of a flow. The present paper extends results of Andreas Juhl
[10], [13] in the real rank one case. See also [11], [12].

1. Euler-Poincaré functions

In this section and the next we list some technical results for the convenience of the
reader. Let G denote a real reductive group of inner type [14] and fix a maximal
compact subgroup K . Let (τ, Vτ) be a finite dimensional unitary representation
of K and write (τ̆ , Vτ̆ ) for the dual representation. Assume that G has a compact
Cartan subgroup T ⊂ K . Let g0 = k0 ⊕ p0 be the polar decomposition of the
real Lie algebra g0 of G and write g = k + p for its complexification. Choose an
ordering of the roots Φ(g, t) of the pair (g, t). This choice induces a decomposition
p = p− ⊕ p+ .

Proposition 1.1. For (τ, Vτ ) a finite dimensional representation of K there
is a compactly supported smooth function fτ on G such that for every irreducible
unitary representation (π, Vπ) of G we have:

tr π(fτ ) =
dim(p)∑

p=0

(−1)p dim(Vπ ⊗ ∧pp⊗ Vτ̆ )K.

Proof. [5]. 2

Proposition 1.2. Let g be a semisimple element of the group G. If g is not
elliptic, then the orbital integral Og(fτ ) vanishes. If g is elliptic we may assume
g ∈ T , where T is a Cartan in K and then we have

Og(fτ ) =
tr τ(g)|W (t, gg)|

∏
α∈Φ+

g
(ρg, α)

[Gg : G0
g]cg

,

where cg is Harish-Chandra’s constant, it does only depend on the centralizer Gg

of g. Its value is given for example in [3].

Proof. [5]. 2

Proposition 1.3. For the function fσ we have for any π ∈ Ĝ:

tr π(fσ) =
dim g/k∑

p=0

(−1)p dim Extp(g,K)(Vσ, Vπ),

i.e. fσ gives the Euler-Poincaré numbers of the (g, K)-modules (Vσ, Vπ). This
justifies the name Euler-Poincaré function.

Proof. [5]. 2
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2. De-twisted Euler characteristics

Let C+ denote the category of complexes of C-vector spaces which are zero in
negative indices and have degreewise finite dimensional cohomology, i.e. the
dimension of Hj(E) is finite for all j . Let K+ denote the weak Grothendieck
group of C+ , i.e. K+ is the abelian group generated by all isomorphism classes of
objects modulo the relations A = B +C , whenever any object in A is isomorphic
to the direct sum of an object in B and one in C . An element E = E+ − E− of
K+ is called a virtual complex. Define the de-twist of an element E of K+ as

E ′ =
∞∑

k=0

E[−k],

where E[k]j = Ek+j . Since the sum is degreewise finite this defines a new
element of K+ . The higher de-twists are defined inductively, so E(0) = E and
E(r+1) = E(r)′ .

We need to extend the notion of an Euler characteristic to infinite virtual
complexes by

χ(E) =
∞∑

k=0

(−1)k dimHk(E),

provided dimHk(E) = dimHk(E+)− dimHk(E−) vanishes for almost all k .

Call a virtual complex cohomologically finite if dimH j(E) = 0 for large j ,
in other words, the total cohomology H(E) is finite dimensional.

Observation. Let the virtual complex E be cohomologically finite and assume
that the Euler characteristic χ(E) vanishes. Then the de-twist E ′ is cohomologi-
cally finite.

So start with a cohomologically finite virtual complex E. If E (1), . . . , E(r)

are cohomologically finite we have

χ(E(0)) = . . . = χ(E(r−1)) = 0

and

χ(E(r)) = (−1)r
∞∑

j=0

(
j
r

)
(−1)j dimHj(E).

This is easily proven by induction on r. This motivates the following definition:
The r -th de-twisted Euler characteristic of a cohomologically finite virtual complex
E is defined by

χr(E) := (−1)r
∞∑

j=0

(
j
r

)
(−1)j dimHj(E).

To every compact manifold M we now can attach a sequence of Euler
numbers

χ0(M), . . . , χn(M),

where n is the dimension of M . The most significant of these is, as we shall see,
the first nonvanishing one, so define the generic Euler number of M as

χgen(M) = χr(M), where r is the least index with χr(M) 6= 0.
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Proposition 2.1. Let M,N be compact manifolds. We have

χgen(M ×N) = χgen(M)χgen(N).

Proof. See [4]. 2

To give another example of a situation in which higher Euler characteristics
occur we will describe a situation in Lie algebra cohomology which will show up
later.

We consider a short exact sequence

o→ n→ l → a→ 0

of finite dimensional complex Lie algebras where a is abelian. In such a situation
an l -module V is called acceptable , if the a-module H q(n, V ) is finite dimensional.
Note that V itself need not be finite dimensional.

Example 1. Any finite dimensional l -module will be acceptable.

Example 2. Let g0 denote the Lie algebra of a semisimple Lie group G of the
Harish-Chandra class, i.e. G is connected and has a finite center. Let K be a
maximal compact subgroup of G and let G = KAN be an Iwasawa decomposition
of G. Write the corresponding decomposition of the complexified Lie algebra as
g = k⊕ a⊕n. Now let l = a⊕n with the structure of a subalgebra of g. Consider
an admissible (g, K)-module V . A theorem of [HeSchm] assures us that V then
is an acceptable l -module.

Proposition 2.2. Let

o→ n→ l → a→ 0

be an exact sequence of finite dimensional complex Lie algebras. Assume that the
Lie algebra a is abelian. Let V be an acceptable l-module. Then with r = dim(a)
we have

χ0(H∗(l, V )) = . . . = χr−1(H∗(l, V )) = 0,

and

χr(H
∗(l, V )) = χ

0
(H∗(n, V )a),

where H∗(n, V )a denotes the a-invariants in H∗(n, V ).

Proof. [5]. 2

3. The Lefschetz formula

Let G be a connected Lie group and Γ ⊂ G a uniform lattice. Note that the
existence of Γ forces G to be unimodular. Fix a Haar measure on G and consider
the representation of G on the Hilbert space L2(Γ\G) given by R(g)ϕ(x) =
ϕ(xg). For any smooth compactly supported function f on G define R(f)ϕ(x) :=∫
G f(y)ϕ(xy)dy , then a calculation shows that R(f) is an integral operator with

smooth kernel k(x, y) =
∑
γ∈Γ f(x−1γy). From this it follows that R(f) is a trace
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class operator. Since this holds for any f we conclude that L2(Γ\G) decomposes
under G as a discrete sum of irreducibles with finite multiplicities:

L2(Γ\G) =
⊕

π∈Ĝ
NΓ(π)π.

It follows that trR(f) =
∑
π∈ĜNΓ(π)trπ(f). On the other hand, the trace

of R(f) equals the integral over the diagonal of the kernel, so

trR(f) =
∫

Γ\G
k(x, x)dx

=
∑

[γ]

vol(Γγ\Gγ)Oγ(f),

where Oγ(f) :=
∫
Gγ\G f(x−1γx)dx is the orbital integral. Note that this expression

depends on the choice of a Haar measure on Gγ . So we state the Selberg trace
formula as ∑

π∈Ĝ
NΓ(π)trπ(f) =

∑

[γ]

vol(Γγ\Gγ)Oγ(f).

From now on we will assume:

(A1) G is a semidirect product:
G ∼= HnR

of an abelian Lie group R and a semisimple connected Lie group H with
finite center.

For the following fix a maximal torus T of H , write T = AB , where A is
the split component and B is compact. Let P = MAN a parabolic then B ⊂ M .
Let Areg be the set of regular elements of the split torus A. Since H acts on R
it acts on the unitary dual R̂ . Our second assumption is

(A2) Any element of AregM acts freely on R− {0} and on R̂− {triv}.

For any τ ∈ R̂ let Hτ be its stabilizer in H . For the trivial representation
we clearly have Htriv = H . The condition (A2) says that for any nontrivial τ ∈ R̂
we have Hτ ∩ AregM = Ø.

Example. Clearly any semisimple connected G with finite center would give an
example but there are also a lot of nonreductive examples such as the following:
Let R := Mat2(R) with the addition, H := SL2(R) and let H act on R by matrix

multiplication from the left. Let G := HnN and T :=

{(
a

a−1

)}
. It is easily

seen that our assumptions are satisfied in this case.

We will only consider uniform lattices of the form Γ = ΓHnΓR , where ΓH
and ΓR are uniform lattices in H and R . We will further assume ΓH to be weakly
neat, this means, ΓH is a cocompact torsion free discrete subgroup of H which is
such that for any γ ∈ ΓH the adjoint Ad(γ), acting on the Lie algebra of H does
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not have a root of unity 6= 1 as an eigenvalue. Any arithmetic group has a weakly
neat subgroup of finite index [1].

Example. Take up the above example and let D denote a quaternion division
algebra over Q which splits over R. So we have D ↪→ GL2(R) and D1 ↪→ SL2(R),
where D1 is the set of elements of reduced norm 1. Let O denote an order in D
and O1 := O ∩D1 . Then Γ := O1nO is a uniform lattice in SL2(R)nMat2(R).

Write the real Lie algebras of G,H,M,A,N,R as g0, h0,m0, a0, n0, r0 and
their complexifications as g, h,m, a, n, r. Let Φ(h, a) denote the set of roots of
the pair (h, a). The choice of the parabolic P amounts to the same as a choice
of a set of positive roots Φ+(h, a). Let A− ⊂ A denote the negative Weyl
chamber corresponding to that ordering, i.e. A− consists of all a ∈ A which
act contractingly on the Lie algebra n. Further let A− be the closure of A− in G,
this is a manifold with boundary. Let KM be a maximal compact subgroup of M .
We may suppose that KM contains B . Fix an irreducible unitary representation
(τ, Vτ) of KM . Let K be a maximal compact subgroup of H . We may assume
K ⊃ KM .

Since ΓH is the fundamental group of the Riemannian manifold

XΓH = ΓH\X = ΓH\H/K

it follows that we have a canonical bijection of the homotopy classes of loops:

[S1 : XΓH ]→ ΓH/conjugacy.

For a given class [γ] let Xγ denote the union of all closed geodesics in the
corresponding class in [S1 : XΓ]. Then Xγ is a smooth submanifold of XΓH

[7]. Let χr(Xγ) denote the r -fold de-twisted Euler characteristic of Xγ , where
r = dimA.

Let EP (Γ) denote the set of all conjugacy classes [γ] in Γ such that γH is
in H conjugate to an element aγbγ of A−B .

Take a class [γ] in EP (Γ). Modulo conjugation assume γ ∈ T = AB , then
the centralizer ΓH,γ projects to a lattice ΓA,γ in the split part A. Let λγ be the
covolume of this lattice. Normalize the measure on R such that vol(ΓR\R) = 1.

Theorem 3.1. (Lefschetz formula, first version) Let ϕ be compactly sup-
ported on A− , dimG-times continuously differentiable and suppose ϕ vanishes
on the boundary to order dimG+ 1. Then we have that the expression

∑

π ∈ Ĝ
π|R ≡ 1

NΓ(π)
∑

p,q

(−1)p+q
∫

A−
ϕ(a)tr(a|(Hq(n, π)⊗ ∧ppM ⊗ Vτ̆ )KM )da

equals

(−1)dim(N)
∑

[γ]∈EP (Γ)

λγχr(Xγ)
ϕ(aγ)trτ(bγ)

det(1− aγbγ |n)det(1− γ|r) .
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Proof. Let H act on itself by conjugation, write h.x = hxh−1 , write H.x for
the orbit, so H.x = {hxh−1|h ∈ H} as well as H.S = {hsh−1|s ∈ S, h ∈ H} for
any subset S of H . We are going to consider functions that are supported on the
closure of the set H.(MA−). At first let fτ be the Euler-Poincaré function defined
on M attached to the representation (τ, Vτ ) of KM . Next fix a smooth function
η on N which has compact support, is positive, invariant under KM and satisfies∫
N η(n)dn = 1. Given these data let φ = φη,τ,ϕ : H → C be defined by

φ(knma(kn)−1) := η(n)fτ (m)
ϕ(a)

det(1− (ma)|n)
,

for k ∈ K, n ∈ N,m ∈M, a ∈ A− . Further φ(h) = 0 if h is not in H.(MA−).

Next choose any compactly supported positive function ψ on R with
∫
ψ =

1. Let Φ(h, r) := φ(h)ψ(r). We will plug Φ into the trace formula. For the
geometric side let γ = (γH , γR) ∈ Γ. We have to calculate the orbital integral:

Oγ(Φ) =
∫

Gγ\G
Φ(x−1γx)dx.

Now let x = (h, r) ∈ G and compute

x−1γx = (h−1γHh, r + h−1γR − h−1γHhr).

So (h,r) lies in the centralizer Gγ iff h ∈ HγH and r ∈ R satisfies

(1− h−1)γR = (1− γ−1
H )r.

Note that by (A2) to any γ such that γH is conjugate to an element of AregM ,
and to any h ∈ HγH such an r exists and is unique. But this condition on γ is
satisfied if ϕ(h−1γHh) 6= 0. So suppose γH is in H.(AregM). In this case we have
the integration rule

∫

Gγ\G
f(g)dg =

∫

HγH \H

∫

R
f(h, r)drdh.

This is proven by showing that the right hand side is in fact G-invariant. We
compute ∫

R
Φ((h, r)−1γ(h, r))dr =

ϕ(h−1γHh)

det(1− γH |r)
,

from which we see that the geometric side of the trace formula coincides with our
claim.

Now for the spectral side let π ∈ Ĝ then the restriction of π to R is a direct
integral over R̂ . The irreducibility of π implies that the corresponding measure is
supported on a single orbit o of the H -action on R̂ . So we have

π|R =
∫

o
Vπ(τ)dm(τ),

where m is a scalar valued measure and Vπ(τ) is a multiple of τ . Fix τ0 ∈ o then
the stabilizer Hτ0 acts trivially on τ0 and not only its class since by dim τ0 = 1
these two notions coincide. It follows that as Hτ0 -modules we have Vπ(τ) ∼= η⊗ τ
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for some representation η of Hτ0 . The measure m induces a measure on Gτ0\G
also denoted m which is quasi-invariant. It follows that π = indGHτ0nR(η⊗ τ) and

hence η must be irreducible since π is. Let λ(x, y) denote the Radon-Nikodym
derivative of the translate mx with respect to m. We conclude that π(Φ) is given
as an integral operator on Gτ0\G with kernel

k(x, y) =
∫

Gτ0

Φ(x−1zy)λ(x−1zy, x)
1
2 (η ⊗ τo)(z)dz.

From this we get

trπ(Φ) =
∫

Gτ0

tr(
∫

Gτ0

Φ(x−1zx)λ(x−1zx, x)
1
2 (η ⊗ τ0)(z)dz)dx.

Consider the term Φ(x−1zx) = ϕ(x−1
H zHxH)ψ(. . .). By (A2) this expression

vanishes unless τ0 is the trivial character. In the case τ0 = triv it follows that
π(R) = 1, so π may be viewed as an element of Ĥ .

To evaluate trπ(Φ) further we will employ the Hecht-Schmid character
formula [9]. For this let

(MA)− = interior in MA of the set

{
g ∈MA|det(1− ga|n) ≥ 0 for all a ∈ A−

}
.

The character ΘG
π of π ∈ Ĝ is a locally integrable function on G. In [9] it

is shown that for any π ∈ Ĥ , denoting by π0 the underlying Harish-Chandra
module we have that all Lie algebra cohomology groups Hp(n, π0) are Harish-
Chandra modules for MA. The main result of [9] is that for ma ∈ (MA)−∩Hreg ,
the regular set, we have

ΘH
π (ma) =

∑dim n
p=0 (−1)pΘMA

Hp(n,π0)(ma)

det(1−ma|n)
.

Let f be supported on H.(MA−), then the Weyl integration formula states that
∫

H
f(x)dx =

∫

H/MA

∫

MA−
f(hmah−1)|det(1−ma|n⊕ n̄)dadmdh.

So that for π ∈ Ĥ :

trπ(φ) =
∫

H
ΘH
π (x)φ(x)dx

=
∫

MA−
ΘH
π (ma)fτ (m)ϕ(a)|det(1−ma|n̄)|dadm

= (−1)dimN
∫

MA−
fτ (m)ΘMA

H∗(n,π0)(ma)ϕ(a)dadm,

where we have used the isomorphism Hp(n, π
0) ∼= HdimN−p(n, πo) ⊗ ∧topn. This

gives the claim. 2

In the second version of the Lefschetz formula we want to substitute the
character of the representation τ by an arbitrary central function on KM . A
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smooth function f on KM is called central if f(kk1k
−1) = f(k1) for all k, k1 ∈ KM .

Since B is a Cartan subgroup of the compact group KM , any k ∈ KM is conjugate
to some element of B so the restriction gives in isomorphism from the space of
smooth central functions on KM to the space of smooth functions on B , invariant
under the Weyl group. Hence we are led to consider Weyl group invariant functions
on T .

Let A denote the convolution algebra of all W (H, T )-invariant smooth
functions on T with compact support. Let S ⊂ T be the set of all ab with
singular a-part.

For any t = ab in T let nt be the space of all X ∈ ad(t)g on which t acts
contractingly. Then nt is a nilpotent Lie subalgebra of g.

Theorem 3.2. (Lefschetz formula, second version) Let ϕ ∈ A and suppose
ϕ vanishes on the singular set to order dimG+ 1 then the expression

∑

π ∈ Ĝ
π|R ≡ 1

NΓ(π)
∑

q

(−1)q
∫

T/W (H,T )
ϕ(t)tr(t|Hq(nt, π))dt

equals

(−1)dim(N)
∑

[γ]∈EP (Γ)

λγχr(Xγ)
ϕ(tγ)

det(1− tγ |pM ⊕ nhγ )det(1− γ|r) .

Proof. Extend b 7→ ϕ(ab) to a central function on KM . Then expand ϕ into
KM -types:

ϕ(ab) =
∑

τ∈K̂M

cτ trτ(b)ϕτ (a),

since ϕ is smooth the coefficients cτ are rapidly decreasing so the expressions of
Theorem 3.1 when plugging in ϕτ |A− converge to

∑

π ∈ Ĝ
π|R ≡ 1

NΓ(π)
∑

p,q

(−1)p+q
∫

T/W (H,T )
ϕ(t)tr(t|Hq(nt, π)⊗ ∧ppM)dt,

which equals

(−1)dim(N)
∑

[γ]∈EH(Γ)

λγχr(Xγ)
ϕ(tγ)

det(1− tγ|nhγ )det(1− γ|r) .

Now replace ϕ(t) by ϕ(t)/det(1− t|pM) which gives the claim. 2

At last we also mention a reformulation in terms of relative Lie algebra co-
homology. Again, fix a parabolic P = MAN and now fix also a finite dimensional
irreducible representation (σ, Vσ) of M .



188 Deitmar

Theorem 3.3. (Lefschetz formula, third version) Let ϕ be compactly sup-
ported on A− , dimG-times continuously differentiable and suppose ϕ vanishes on
the boundary to order dimG+ 1. Then we have that the expression

∑

π ∈ Ĝ
π|R ≡ 1

NΓ(π)
∑

q

(−1)q
∫

A−
ϕ(a)tr(a|Hq(m⊕ n, KM , π ⊗ Vσ̆)

equals

(−1)dim(N)
∑

[γ]∈EP (Γ)

λγχr(Xγ)
ϕ(aγ)trσ(bγ)

det(1− aγbγ |n)det(1− γ|r) .

Proof. Extend Vσ̆ to a m⊕ n-module by letting n act trivially. We then get

Hp(n, π0)⊗ Vσ̆ ∼= Hp(n, π0 ⊗ Vσ̆).

The (m, KM)-cohomology of the module Hp(n, π0⊗ Vσ̆) is the cohomology
of the complex (C∗) with

Cq = HomKM (∧qpM , Hp(n, π0)⊗ Vσ̆)

= (∧qpM ⊗Hp(n, π0)⊗ Vσ̆)KM ,

since ∧ppM is a self-dual KM -module. Therefore we have an isomorphism of
virtual A-modules:

∑

q

(−1)q(Hp(n, π0)⊗ ∧qpM ⊗ Vσ̆)KM ∼=
∑

q

(−1)qHq(m, KM , H
p(n, π0 ⊗ Vσ̆)).

Now one considers the Hochschild-Serre spectral sequence in the relative
case for the exact sequence of Lie algebras

0→ n→ m⊕ n→ m→ 0

and the (m⊕ n, KM)-module π ⊗ Vσ̆ . We have

Ep,q
2 = Hq(m, KM , H

p(n, π0 ⊗ Vσ̆))

and
Ep,q
∞ = Grq(Hp+q(m⊕ n, KM , π

0 ⊗ Vσ̆)).

Now the module in question is just

χ(E2) =
∑

p,q

(−1)p+qEp,q
2 .

Since the differentials in the spectral sequence are A-homomorphisms this equals
χ(E∞). So we get an A-module isomorphism of virtual A-modules

∑

p,q

(−1)p+q(Hp(n, π0)⊗ ∧qpM ⊗ Vσ̆)KM ∼=
∑

j

(−1)jHj(m⊕ n, KM , π
0 ⊗ Vσ̆).

The claim follows. 2
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4. Geometric interpretation

Now consider the first version of the Lefschetz formula in the case R = 0. The
representation τ defines a homogeneous vector bundle Eτ over G/KM and by
homogeneity this pushes down to a locally homogeneous bundle over Γ\G/KM =

MXΓ . The tangent bundle T (MXΓ) can be described in this way as stemming
from the representation of KM on

g/kM ∼= a⊕ pM ⊕ n⊕ n̄.

We get a splitting into subbundles

T (MXΓ) = Tc ⊕ Tn ⊕ Tu ⊕ Ts.

These bundles can be characterized by dynamical properties: the action of A ∼= Rr
is furnished with a positive time direction given by the positive Weyl chamber A+ .
Then Ts , the stable part is characterized by the fact that A+ acts contractingly
on Ts . On the unstable part Tu the opposite chamber A− acts contractingly. Tc ,
the central part is spanned by the “flow” A itself and Tn is an additive neutral
part. Note that Tn vanishes if we choose H to be the maximal split torus. The
bundle Tn ⊕ Tu is integrable, so it defines a foliation F . To this foliation we have
the tangential cohomology H∗(F) and also for its τ -twist: H∗(F ⊗ τ). The flow
A acts on the tangential cohomology whose alternating sum we will consider as a
virtual A-module. For any ϕ ∈ C∞c (A−) we define Lϕ =

∫
A− ϕ(a)(a|H∗(F⊗τ))da

as a virtual operator on H∗(F ⊗ τ). Then we have

Proposition 4.1. Under the assumptions of Theorem 3.1 the virtual operator
Lϕ is of trace class and the RHS of Theorem 3.1 can be written as

∑

q

(−1)q tr(Lϕ|Hq(F ⊗ τ)).
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