Torus actions on compact quotients

Anton Deitmar

Communicated by K.-H. Neeb

Abstract. A Lefschetz formula for actions of noncompact tori on compact quotients of Lie groups is given.

Introduction

Let G denote a Lie group and Γ a uniform lattice in G. We fix a maximal torus T in G and consider the action of T on the compact quotient $\Gamma \backslash G$. Assuming T to be noncompact we will prove a Lefschetz formula relating compact orbits as local data to the action of the torus T on a global cohomology theory (tangential cohomology). Modulo homotopy, the compact orbits are parametrized by those conjugacy classes $[\gamma]$ in Γ whose G-conjugacy classes meet T in points which are regular in the split component. Having a bijection between homotopy classes and conjugacy classes in the discrete group we will identify these two. For a class $[\gamma]$ let X_{γ} be the union of all compact orbits in that class. Then it is known that X_{γ} is a smooth submanifold and with $\chi_r(X_{\gamma})$ we denote its de-twisted Euler characteristic (see sect. 2.). Note that $\chi_r(X_{\gamma})$ is local, i.e. it can be expressed as the integral over X_{γ} of a canonical differential form (generalized Euler form). On the other hand $\chi_r(X_{\gamma})$ can be expressed as a simple linear combination of Betti numbers (see sect. 2.). Next, λ_{γ} will denote the volume of the orbit and P_s the stable part of the Poincaré map around the orbit. Then the number

$$L(\gamma) := \frac{\lambda_{\gamma} \chi_r(X_{\gamma})}{\det(1 - P_s)}$$

will be called the Lefschetz number of $[\gamma]$ (compare [8]). The class $[\gamma]$ defines a point a_{γ} in the split part A of the torus T modulo the action of the Weyl group. In the case when the Weyl group has maximal size (for example when T is maximally split) our Lefschetz formula is an equality of distributions:

$$\sum_{[\gamma]} L(\gamma) \delta_{a_{\gamma}} = \operatorname{tr}(.|H^*(\mathcal{F})),$$

where H^* is the tangential cohomology of the unstable/neutral foliation \mathcal{F} induced by the torus action. In [6] a similar formula is proven to hold up to a smooth

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

function in the case of a flow. The present paper extends results of Andreas Juhl [10], [13] in the real rank one case. See also [11], [12].

1. Euler-Poincaré functions

In this section and the next we list some technical results for the convenience of the reader. Let G denote a real reductive group of inner type [14] and fix a maximal compact subgroup K. Let (τ, V_{τ}) be a finite dimensional unitary representation of K and write $(\check{\tau}, V_{\check{\tau}})$ for the dual representation. Assume that G has a compact Cartan subgroup $T \subset K$. Let $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ be the polar decomposition of the real Lie algebra \mathfrak{g}_0 of G and write $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ for its complexification. Choose an ordering of the roots $\Phi(\mathfrak{g}, \mathfrak{t})$ of the pair $(\mathfrak{g}, \mathfrak{t})$. This choice induces a decomposition $\mathfrak{p} = \mathfrak{p}_- \oplus \mathfrak{p}_+$.

Proposition 1.1. For (τ, V_{τ}) a finite dimensional representation of K there is a compactly supported smooth function f_{τ} on G such that for every irreducible unitary representation (π, V_{π}) of G we have:

tr
$$\pi(f_{\tau}) = \sum_{p=0}^{\dim(\mathfrak{p})} (-1)^p \dim(V_{\pi} \otimes \wedge^p \mathfrak{p} \otimes V_{\check{\tau}})^K.$$

Proof. [5].

Proposition 1.2. Let g be a semisimple element of the group G. If g is not elliptic, then the orbital integral $\mathcal{O}_g(f_{\tau})$ vanishes. If g is elliptic we may assume $g \in T$, where T is a Cartan in K and then we have

$$\mathcal{O}_g(f_\tau) = \frac{\operatorname{tr} \ \tau(g) | W(\mathfrak{t}, \mathfrak{g}_g) | \prod_{\alpha \in \Phi_g^+} (\rho_g, \alpha)}{[G_g : G_q^0] c_g},$$

where c_g is Harish-Chandra's constant, it does only depend on the centralizer G_g of g. Its value is given for example in [3]. **Proof.** [5].

Proposition 1.3. For the function f_{σ} we have for any $\pi \in \hat{G}$:

tr
$$\pi(f_{\sigma}) = \sum_{p=0}^{\dim \mathfrak{g}/\mathfrak{k}} (-1)^p \dim \operatorname{Ext}^p_{(\mathfrak{g},K)}(V_{\sigma},V_{\pi}),$$

i.e. f_{σ} gives the Euler-Poincaré numbers of the (\mathfrak{g}, K) -modules (V_{σ}, V_{π}) . This justifies the name Euler-Poincaré function. **Proof.** [5].

2. De-twisted Euler characteristics

Let \mathcal{C}^+ denote the category of complexes of **C**-vector spaces which are zero in negative indices and have degreewise finite dimensional cohomology, i.e. the dimension of $H^j(E)$ is finite for all j. Let \mathcal{K}^+ denote the weak Grothendieck group of \mathcal{C}^+ , i.e. \mathcal{K}^+ is the abelian group generated by all isomorphism classes of objects modulo the relations A = B + C, whenever any object in A is isomorphic to the direct sum of an object in B and one in C. An element $E = E_+ - E_-$ of \mathcal{K}^+ is called a *virtual complex*. Define the *de-twist* of an element E of \mathcal{K}^+ as

$$E' = \sum_{k=0}^{\infty} E[-k],$$

where $E[k]_j = E_{k+j}$. Since the sum is degreewise finite this defines a new element of \mathcal{K}^+ . The higher de-twists are defined inductively, so $E^{(0)} = E$ and $E^{(r+1)} = E^{(r)'}$.

We need to extend the notion of an $Euler \ characteristic$ to infinite virtual complexes by

$$\chi(E) = \sum_{k=0}^{\infty} (-1)^k \dim H^k(E),$$

provided dim $H^k(E) = \dim H^k(E_+) - \dim H^k(E_-)$ vanishes for almost all k.

Call a virtual complex cohomologically finite if dim $H^{j}(E) = 0$ for large j, in other words, the total cohomology H(E) is finite dimensional.

Observation. Let the virtual complex E be cohomologically finite and assume that the Euler characteristic $\chi(E)$ vanishes. Then the de-twist E' is cohomologically finite.

So start with a cohomologically finite virtual complex E. If $E^{(1)}, \ldots, E^{(r)}$ are cohomologically finite we have

$$\chi(E^{(0)}) = \ldots = \chi(E^{(r-1)}) = 0$$

and

$$\chi(E^{(r)}) = (-1)^r \sum_{j=0}^{\infty} {j \choose r} (-1)^j \dim H^j(E).$$

This is easily proven by induction on r. This motivates the following definition: The r-th de-twisted Euler characteristic of a cohomologically finite virtual complex E is defined by

$$\chi_r(E) := (-1)^r \sum_{j=0}^{\infty} \begin{pmatrix} j \\ r \end{pmatrix} (-1)^j \dim H^j(E)$$

To every compact manifold ${\cal M}$ we now can attach a sequence of Euler numbers

$$\chi_0(M),\ldots,\chi_n(M),$$

where n is the dimension of M. The most significant of these is, as we shall see, the first nonvanishing one, so define the *generic Euler number* of M as

 $\chi_{_{gen}}(M) = \chi_{_r}(M), \text{ where } r \text{ is the least index with } \chi_{_r}(M) \neq 0.$

Proposition 2.1. Let M,N be compact manifolds. We have

$$\chi_{\rm gen}(M\times N)=\chi_{\rm gen}(M)\chi_{\rm gen}(N)$$

Proof. See [4].

To give another example of a situation in which higher Euler characteristics occur we will describe a situation in Lie algebra cohomology which will show up later.

We consider a short exact sequence

$$o \to \mathfrak{n} \to l \to \mathfrak{a} \to 0$$

of finite dimensional complex Lie algebras where \mathfrak{a} is abelian. In such a situation an *l*-module V is called *acceptable*, if the \mathfrak{a} -module $H^q(\mathfrak{n}, V)$ is finite dimensional. Note that V itself need not be finite dimensional.

Example 1. Any finite dimensional *l*-module will be acceptable.

Example 2. Let \mathfrak{g}_0 denote the Lie algebra of a semisimple Lie group G of the Harish-Chandra class, i.e. G is connected and has a finite center. Let K be a maximal compact subgroup of G and let G = KAN be an Iwasawa decomposition of G. Write the corresponding decomposition of the complexified Lie algebra as $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$. Now let $l = \mathfrak{a} \oplus \mathfrak{n}$ with the structure of a subalgebra of \mathfrak{g} . Consider an admissible (\mathfrak{g}, K) -module V. A theorem of [HeSchm] assures us that V then is an acceptable l-module.

Proposition 2.2. Let

$$o \to \mathfrak{n} \to l \to \mathfrak{a} \to 0$$

be an exact sequence of finite dimensional complex Lie algebras. Assume that the Lie algebra \mathfrak{a} is abelian. Let V be an acceptable *l*-module. Then with $r = \dim(\mathfrak{a})$ we have

$$\chi_0(H^*(l,V)) = \ldots = \chi_{r-1}(H^*(l,V)) = 0,$$

and

$$\chi_r(H^*(l,V)) = \chi_0(H^*(\mathfrak{n},V)^\mathfrak{a}),$$

where $H^*(\mathfrak{n}, V)^{\mathfrak{a}}$ denotes the \mathfrak{a} -invariants in $H^*(\mathfrak{n}, V)$. **Proof.** [5].

3. The Lefschetz formula

Let G be a connected Lie group and $\Gamma \subset G$ a uniform lattice. Note that the existence of Γ forces G to be unimodular. Fix a Haar measure on G and consider the representation of G on the Hilbert space $L^2(\Gamma \setminus G)$ given by $R(g)\varphi(x) = \varphi(xg)$. For any smooth compactly supported function f on G define $R(f)\varphi(x) := \int_G f(y)\varphi(xy)dy$, then a calculation shows that R(f) is an integral operator with smooth kernel $k(x,y) = \sum_{\gamma \in \Gamma} f(x^{-1}\gamma y)$. From this it follows that R(f) is a trace

class operator. Since this holds for any f we conclude that $L^2(\Gamma \setminus G)$ decomposes under G as a discrete sum of irreducibles with finite multiplicities:

$$L^{2}(\Gamma \backslash G) = \bigoplus_{\pi \in \hat{G}} N_{\Gamma}(\pi)\pi.$$

It follows that $\operatorname{tr} R(f) = \sum_{\pi \in \hat{G}} N_{\Gamma}(\pi) \operatorname{tr} \pi(f)$. On the other hand, the trace of R(f) equals the integral over the diagonal of the kernel, so

$$\operatorname{tr} R(f) = \int_{\Gamma \setminus G} k(x, x) dx$$
$$= \sum_{[\gamma]} \operatorname{vol}(\Gamma_{\gamma} \setminus G_{\gamma}) \mathcal{O}_{\gamma}(f)$$

where $\mathcal{O}_{\gamma}(f) := \int_{G_{\gamma} \setminus G} f(x^{-1}\gamma x) dx$ is the orbital integral. Note that this expression depends on the choice of a Haar measure on G_{γ} . So we state the Selberg trace formula as

$$\sum_{\pi \in \hat{G}} N_{\Gamma}(\pi) \operatorname{tr} \pi(f) = \sum_{[\gamma]} \operatorname{vol}(\Gamma_{\gamma} \backslash G_{\gamma}) \mathcal{O}_{\gamma}(f).$$

From now on we will assume:

(A1) G is a semidirect product:

$$G \cong H \ltimes R$$

of an abelian Lie group R and a semisimple connected Lie group H with finite center.

For the following fix a maximal torus T of H, write T = AB, where A is the split component and B is compact. Let P = MAN a parabolic then $B \subset M$. Let A^{reg} be the set of regular elements of the split torus A. Since H acts on Rit acts on the unitary dual \hat{R} . Our second assumption is

(A2) Any element of $A^{reg}M$ acts freely on $R - \{0\}$ and on $\hat{R} - \{\text{triv}\}$.

For any $\tau \in \hat{R}$ let H_{τ} be its stabilizer in H. For the trivial representation we clearly have $H_{\text{triv}} = H$. The condition (A2) says that for any nontrivial $\tau \in \hat{R}$ we have $H_{\tau} \cap A^{reg}M = \emptyset$.

Example. Clearly any semisimple connected G with finite center would give an example but there are also a lot of nonreductive examples such as the following: Let $R := \operatorname{Mat}_2(\mathbb{R})$ with the addition, $H := \operatorname{SL}_2(\mathbb{R})$ and let H act on R by matrix multiplication from the left. Let $G := H \ltimes N$ and $T := \left\{ \begin{pmatrix} a \\ a^{-1} \end{pmatrix} \right\}$. It is easily seen that our assumptions are satisfied in this case.

We will only consider uniform lattices of the form $\Gamma = \Gamma_H \ltimes \Gamma_R$, where Γ_H and Γ_R are uniform lattices in H and R. We will further assume Γ_H to be *weakly neat*, this means, Γ_H is a cocompact torsion free discrete subgroup of H which is such that for any $\gamma \in \Gamma_H$ the adjoint $\operatorname{Ad}(\gamma)$, acting on the Lie algebra of H does not have a root of unity $\neq 1$ as an eigenvalue. Any arithmetic group has a weakly neat subgroup of finite index [1].

Example. Take up the above example and let D denote a quaternion division algebra over \mathbb{Q} which splits over \mathbb{R} . So we have $D \hookrightarrow GL_2(\mathbb{R})$ and $D^1 \hookrightarrow SL_2(\mathbb{R})$, where D^1 is the set of elements of reduced norm 1. Let \mathcal{O} denote an order in D and $\mathcal{O}^1 := \mathcal{O} \cap D^1$. Then $\Gamma := \mathcal{O}^1 \ltimes \mathcal{O}$ is a uniform lattice in $SL_2(\mathbb{R}) \ltimes \operatorname{Mat}_2(\mathbb{R})$.

Write the real Lie algebras of G, H, M, A, N, R as $\mathfrak{g}_0, \mathfrak{h}_0, \mathfrak{m}_0, \mathfrak{a}_0, \mathfrak{n}_0, \mathfrak{r}_0$ and their complexifications as $\mathfrak{g}, \mathfrak{h}, \mathfrak{m}, \mathfrak{a}, \mathfrak{n}, \mathfrak{r}$. Let $\Phi(\mathfrak{h}, \mathfrak{a})$ denote the set of roots of the pair $(\mathfrak{h}, \mathfrak{a})$. The choice of the parabolic P amounts to the same as a choice of a set of positive roots $\Phi^+(\mathfrak{h}, \mathfrak{a})$. Let $A^- \subset A$ denote the negative Weyl chamber corresponding to that ordering, i.e. A^- consists of all $a \in A$ which act contractingly on the Lie algebra \mathfrak{n} . Further let $\overline{A^-}$ be the closure of A^- in G, this is a manifold with boundary. Let K_M be a maximal compact subgroup of M. We may suppose that K_M contains B. Fix an irreducible unitary representation (τ, V_{τ}) of K_M . Let K be a maximal compact subgroup of H. We may assume $K \supset K_M$.

Since Γ_H is the fundamental group of the Riemannian manifold

$$X_{\Gamma_H} = \Gamma_H \backslash X = \Gamma_H \backslash H / K$$

it follows that we have a canonical bijection of the homotopy classes of loops:

$$[S^1: X_{\Gamma_H}] \to \Gamma_H / \text{conjugacy.}$$

For a given class $[\gamma]$ let X_{γ} denote the union of all closed geodesics in the corresponding class in $[S^1 : X_{\Gamma}]$. Then X_{γ} is a smooth submanifold of X_{Γ_H} [7]. Let $\chi_r(X_{\gamma})$ denote the *r*-fold de-twisted Euler characteristic of X_{γ} , where $r = \dim A$.

Let $\mathcal{E}_P(\Gamma)$ denote the set of all conjugacy classes $[\gamma]$ in Γ such that γ_H is in H conjugate to an element $a_{\gamma}b_{\gamma}$ of A^-B .

Take a class $[\gamma]$ in $\mathcal{E}_P(\Gamma)$. Modulo conjugation assume $\gamma \in T = AB$, then the centralizer $\Gamma_{H,\gamma}$ projects to a lattice $\Gamma_{A,\gamma}$ in the split part A. Let λ_{γ} be the covolume of this lattice. Normalize the measure on R such that $\operatorname{vol}(\Gamma_R \setminus R) = 1$.

Theorem 3.1. (Lefschetz formula, first version) Let φ be compactly supported on $\overline{A^-}$, dim *G*-times continuously differentiable and suppose φ vanishes on the boundary to order dim G + 1. Then we have that the expression

$$\sum_{\substack{\pi \in \hat{G} \\ \pi|_R \equiv 1}} N_{\Gamma}(\pi) \sum_{p,q} (-1)^{p+q} \int_{A^-} \varphi(a) \operatorname{tr}(a|(H^q(\mathfrak{n},\pi) \otimes \wedge^p \mathfrak{p}_M \otimes V_{\check{\tau}})^{K_M}) da$$

equals

$$(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_{P}(\Gamma)} \lambda_{\gamma} \chi_{r}(X_{\gamma}) \frac{\varphi(a_{\gamma}) \operatorname{tr} \tau(b_{\gamma})}{\det(1 - a_{\gamma} b_{\gamma} | \mathfrak{n}) \det(1 - \gamma | \mathfrak{r})}$$

Proof. Let H act on itself by conjugation, write $h.x = hxh^{-1}$, write H.x for the orbit, so $H.x = \{hxh^{-1}|h \in H\}$ as well as $H.S = \{hsh^{-1}|s \in S, h \in H\}$ for any subset S of H. We are going to consider functions that are supported on the closure of the set $H.(MA^{-})$. At first let f_{τ} be the Euler-Poincaré function defined on M attached to the representation (τ, V_{τ}) of K_M . Next fix a smooth function η on N which has compact support, is positive, invariant under K_M and satisfies $\int_N \eta(n) dn = 1$. Given these data let $\phi = \phi_{\eta,\tau,\varphi} : H \to \mathbb{C}$ be defined by

$$\phi(knma(kn)^{-1}) := \eta(n) f_{\tau}(m) \frac{\varphi(a)}{\det(1 - (ma)|\mathbf{n})}$$

for $k \in K, n \in N, m \in M, a \in \overline{A^-}$. Further $\phi(h) = 0$ if h is not in $H.(M\overline{A^-})$.

Next choose any compactly supported positive function ψ on R with $\int \psi = 1$. Let $\Phi(h, r) := \phi(h)\psi(r)$. We will plug Φ into the trace formula. For the geometric side let $\gamma = (\gamma_H, \gamma_R) \in \Gamma$. We have to calculate the orbital integral:

$$\mathcal{O}_{\gamma}(\Phi) = \int_{G_{\gamma} \setminus G} \Phi(x^{-1}\gamma x) dx.$$

Now let $x = (h, r) \in G$ and compute

$$x^{-1}\gamma x = (h^{-1}\gamma_{H}h, r + h^{-1}\gamma_{R} - h^{-1}\gamma_{H}hr)$$

So (h,r) lies in the centralizer G_{γ} iff $h \in H_{\gamma_H}$ and $r \in R$ satisfies

$$(1-h^{-1})\gamma_R = (1-\gamma_H^{-1})r.$$

Note that by (A2) to any γ such that γ_H is conjugate to an element of $A^{reg}M$, and to any $h \in H_{\gamma_H}$ such an r exists and is unique. But this condition on γ is satisfied if $\varphi(h^{-1}\gamma_H h) \neq 0$. So suppose γ_H is in $H.(A^{reg}M)$. In this case we have the integration rule

$$\int_{G_{\gamma}\backslash G} f(g)dg = \int_{H_{\gamma_{H}}\backslash H} \int_{R} f(h,r)drdh.$$

This is proven by showing that the right hand side is in fact G-invariant. We compute

$$\int_{R} \Phi((h,r)^{-1}\gamma(h,r)) dr = \frac{\varphi(h^{-1}\gamma_{H}h)}{\det(1-\gamma_{H}|\mathfrak{r})}$$

from which we see that the geometric side of the trace formula coincides with our claim.

Now for the spectral side let $\pi \in \hat{G}$ then the restriction of π to R is a direct integral over \hat{R} . The irreducibility of π implies that the corresponding measure is supported on a single orbit o of the H-action on \hat{R} . So we have

$$\pi|_R = \int_o V_\pi(\tau) dm(\tau),$$

where *m* is a scalar valued measure and $V_{\pi}(\tau)$ is a multiple of τ . Fix $\tau_0 \in o$ then the stabilizer H_{τ_0} acts trivially on τ_0 and not only its class since by dim $\tau_0 = 1$ these two notions coincide. It follows that as H_{τ_0} -modules we have $V_{\pi}(\tau) \cong \eta \otimes \tau$

for some representation η of H_{τ_0} . The measure m induces a measure on $G_{\tau_0} \setminus G$ also denoted m which is quasi-invariant. It follows that $\pi = \operatorname{ind}_{H_{\tau_0} \ltimes R}^G(\eta \otimes \tau)$ and hence η must be irreducible since π is. Let $\lambda(x, y)$ denote the Radon-Nikodym derivative of the translate m_x with respect to m. We conclude that $\pi(\Phi)$ is given as an integral operator on $G_{\tau_0} \setminus G$ with kernel

$$k(x,y) = \int_{G_{\tau_0}} \Phi(x^{-1}zy)\lambda(x^{-1}zy,x)^{\frac{1}{2}}(\eta \otimes \tau_o)(z)dz.$$

From this we get

$$\operatorname{tr} \pi(\Phi) = \int_{G_{\tau_0}} \operatorname{tr} \left(\int_{G_{\tau_0}} \Phi(x^{-1}zx) \lambda(x^{-1}zx, x)^{\frac{1}{2}} (\eta \otimes \tau_0)(z) dz \right) dx.$$

Consider the term $\Phi(x^{-1}zx) = \varphi(x_H^{-1}z_Hx_H)\psi(\ldots)$. By (A2) this expression vanishes unless τ_0 is the trivial character. In the case $\tau_0 = \text{triv}$ it follows that $\pi(R) = 1$, so π may be viewed as an element of \hat{H} .

To evaluate $\operatorname{tr} \pi(\Phi)$ further we will employ the Hecht-Schmid character formula [9]. For this let

$$(MA)^{-} = \text{interior in } MA \text{ of the set}$$
$$\left\{g \in MA | \det(1 - ga|\mathfrak{n}) \ge 0 \text{ for all } \mathfrak{a} \in A^{-}\right\}$$

The character Θ_{π}^{G} of $\pi \in \hat{G}$ is a locally integrable function on G. In [9] it is shown that for any $\pi \in \hat{H}$, denoting by π^{0} the underlying Harish-Chandra module we have that all Lie algebra cohomology groups $H^{p}(\mathfrak{n}, \pi^{0})$ are Harish-Chandra modules for MA. The main result of [9] is that for $ma \in (MA)^{-} \cap H^{reg}$, the regular set, we have

$$\Theta_{\pi}^{H}(ma) = \frac{\sum_{p=0}^{\dim \mathfrak{n}} (-1)^{p} \Theta_{H_{p}(\mathfrak{n},\pi^{0})}^{MA}(ma)}{\det(1-ma|\mathfrak{n})}.$$

Let f be supported on $H(MA^{-})$, then the Weyl integration formula states that

$$\int_{H} f(x)dx = \int_{H/MA} \int_{MA^{-}} f(hmah^{-1}) |\det(1 - ma|\mathbf{n} \oplus \bar{n}) dadmdh$$

So that for $\pi \in \hat{H}$:

$$\operatorname{tr} \pi(\phi) = \int_{H} \Theta_{\pi}^{H}(x)\phi(x)dx$$

=
$$\int_{MA^{-}} \Theta_{\pi}^{H}(ma)f_{\tau}(m)\varphi(a)|\det(1-ma|\bar{\mathbf{n}})|dadm$$

=
$$(-1)^{\dim N}\int_{MA^{-}}f_{\tau}(m)\Theta_{H^{*}(\mathbf{n},\pi^{0})}^{MA}(ma)\varphi(a)dadm$$

where we have used the isomorphism $H_p(\mathfrak{n}, \pi^0) \cong H^{\dim N-p}(\mathfrak{n}, \pi^o) \otimes \wedge^{top} \mathfrak{n}$. This gives the claim. \Box

In the second version of the Lefschetz formula we want to substitute the character of the representation τ by an arbitrary central function on K_M . A

smooth function f on K_M is called *central* if $f(kk_1k^{-1}) = f(k_1)$ for all $k, k_1 \in K_M$. Since B is a Cartan subgroup of the compact group K_M , any $k \in K_M$ is conjugate to some element of B so the restriction gives in isomorphism from the space of smooth central functions on K_M to the space of smooth functions on B, invariant under the Weyl group. Hence we are led to consider Weyl group invariant functions on T.

Let \mathcal{A} denote the convolution algebra of all W(H,T)-invariant smooth functions on T with compact support. Let $S \subset T$ be the set of all ab with singular *a*-part.

For any t = ab in T let \mathfrak{n}_t be the space of all $X \in \mathrm{ad}(t)\mathfrak{g}$ on which t acts contractingly. Then \mathfrak{n}_t is a nilpotent Lie subalgebra of \mathfrak{g} .

Theorem 3.2. (Lefschetz formula, second version) Let $\varphi \in \mathcal{A}$ and suppose φ vanishes on the singular set to order dim G + 1 then the expression

$$\sum_{\substack{\pi \in \hat{G} \\ \pi|_R \equiv 1}} N_{\Gamma}(\pi) \sum_q (-1)^q \int_{T/W(H,T)} \varphi(t) \operatorname{tr}(t|H^q(\mathfrak{n}_t,\pi)) dt$$

equals

$$(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_P(\Gamma)} \lambda_{\gamma} \chi_r(X_{\gamma}) \frac{\varphi(t_{\gamma})}{\det(1 - t_{\gamma}|\mathfrak{p}_M \oplus \mathfrak{n}_{h_{\gamma}}) \det(1 - \gamma|\mathfrak{r})}$$

Proof. Extend $b \mapsto \varphi(ab)$ to a central function on K_M . Then expand φ into K_M -types:

$$\varphi(ab) = \sum_{\tau \in \hat{K}_M} c_\tau \operatorname{tr} \tau(b) \varphi_\tau(a),$$

since φ is smooth the coefficients c_{τ} are rapidly decreasing so the expressions of Theorem 3.1 when plugging in $\varphi_{\tau}|_{A^-}$ converge to

$$\sum_{\substack{\pi \in \hat{G} \\ \pi|_R \equiv 1}} N_{\Gamma}(\pi) \sum_{p,q} (-1)^{p+q} \int_{T/W(H,T)} \varphi(t) \operatorname{tr}(t|H^q(\mathfrak{n}_t,\pi) \otimes \wedge^p \mathfrak{p}_M) dt,$$

which equals

$$(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_H(\Gamma)} \lambda_{\gamma} \chi_r(X_{\gamma}) \frac{\varphi(t_{\gamma})}{\det(1 - t_{\gamma} | \mathbf{n}_{h_{\gamma}}) \det(1 - \gamma | \mathbf{r})}$$

Now replace $\varphi(t)$ by $\varphi(t)/\det(1-t|\mathbf{p}_M)$ which gives the claim.

At last we also mention a reformulation in terms of relative Lie algebra cohomology. Again, fix a parabolic P = MAN and now fix also a finite dimensional irreducible representation (σ, V_{σ}) of M.

Theorem 3.3. (Lefschetz formula, third version) Let φ be compactly supported on $\overline{A^-}$, dim *G*-times continuously differentiable and suppose φ vanishes on the boundary to order dim G + 1. Then we have that the expression

$$\sum_{\substack{\pi \in \hat{G} \\ \pi|_R \equiv 1}} N_{\Gamma}(\pi) \sum_q (-1)^q \int_{A^-} \varphi(a) \operatorname{tr}\left(a|H^q(\mathfrak{m} \oplus \mathfrak{n}, K_M, \pi \otimes V_{\check{\sigma}})\right)$$

equals

$$(-1)^{\dim(N)} \sum_{[\gamma] \in \mathcal{E}_P(\Gamma)} \lambda_{\gamma} \chi_r(X_{\gamma}) \frac{\varphi(a_{\gamma}) \operatorname{tr} \sigma(b_{\gamma})}{\det(1 - a_{\gamma} b_{\gamma} | \mathfrak{n}) \det(1 - \gamma | \mathfrak{r})}.$$

Proof. Extend V_{σ} to a $\mathfrak{m} \oplus \mathfrak{n}$ -module by letting \mathfrak{n} act trivially. We then get

$$H^p(\mathfrak{n}, \pi^0) \otimes V_{\check{\sigma}} \cong H^p(\mathfrak{n}, \pi^0 \otimes V_{\check{\sigma}}).$$

The (\mathfrak{m}, K_M) -cohomology of the module $H^p(\mathfrak{n}, \pi^0 \otimes V_{\check{\sigma}})$ is the cohomology of the complex (C^*) with

$$C^{q} = \operatorname{Hom}_{K_{M}}(\wedge^{q}\mathfrak{p}_{M}, H^{p}(\mathfrak{n}, \pi^{0}) \otimes V_{\check{\sigma}})$$

= $(\wedge^{q}\mathfrak{p}_{M} \otimes H^{p}(\mathfrak{n}, \pi^{0}) \otimes V_{\check{\sigma}})^{K_{M}},$

since $\wedge^p \mathfrak{p}_M$ is a self-dual K_M -module. Therefore we have an isomorphism of virtual A-modules:

$$\sum_{q} (-1)^{q} (H^{p}(\mathfrak{n}, \pi^{0}) \otimes \wedge^{q} \mathfrak{p}_{M} \otimes V_{\check{\sigma}})^{K_{M}} \cong \sum_{q} (-1)^{q} H^{q}(\mathfrak{m}, K_{M}, H^{p}(\mathfrak{n}, \pi^{0} \otimes V_{\check{\sigma}})).$$

Now one considers the Hochschild-Serre spectral sequence in the relative case for the exact sequence of Lie algebras

 $0 \to \mathfrak{n} \to \mathfrak{m} \oplus \mathfrak{n} \to \mathfrak{m} \to 0$

and the $(\mathfrak{m} \oplus \mathfrak{n}, K_M)$ -module $\pi \otimes V_{\check{\sigma}}$. We have

$$E_2^{p,q} = H^q(\mathfrak{m}, K_M, H^p(\mathfrak{n}, \pi^0 \otimes V_{\breve{\sigma}}))$$

and

$$E^{p,q}_{\infty} = \operatorname{Gr}^{q}(H^{p+q}(\mathfrak{m} \oplus \mathfrak{n}, K_{M}, \pi^{0} \otimes V_{\breve{\sigma}})).$$

Now the module in question is just

$$\chi(E_2) = \sum_{p,q} (-1)^{p+q} E_2^{p,q}.$$

Since the differentials in the spectral sequence are A-homomorphisms this equals $\chi(E_{\infty})$. So we get an A-module isomorphism of virtual A-modules

$$\sum_{p,q} (-1)^{p+q} (H^p(\mathfrak{n},\pi^0) \otimes \wedge^q \mathfrak{p}_M \otimes V_{\check{\sigma}})^{K_M} \cong \sum_j (-1)^j H^j(\mathfrak{m} \oplus \mathfrak{n}, K_M, \pi^0 \otimes V_{\check{\sigma}}).$$

The claim follows.

4. Geometric interpretation

Now consider the first version of the Lefschetz formula in the case R = 0. The representation τ defines a homogeneous vector bundle E_{τ} over G/K_M and by homogeneity this pushes down to a locally homogeneous bundle over $\Gamma \backslash G/K_M = {}_M X_{\Gamma}$. The tangent bundle $T({}_M X_{\Gamma})$ can be described in this way as stemming from the representation of K_M on

$$\mathfrak{g}/\mathfrak{k}_M \cong \mathfrak{a} \oplus \mathfrak{p}_M \oplus \mathfrak{n} \oplus \overline{\mathfrak{n}}.$$

We get a splitting into subbundles

$$T(_M X_{\Gamma}) = T_c \oplus T_n \oplus T_u \oplus T_s$$

These bundles can be characterized by dynamical properties: the action of $A \cong \mathbb{R}^r$ is furnished with a positive time direction given by the positive Weyl chamber A^+ . Then T_s , the stable part is characterized by the fact that A^+ acts contractingly on T_s . On the unstable part T_u the opposite chamber A^- acts contractingly. T_c , the central part is spanned by the "flow" A itself and T_n is an additive neutral part. Note that T_n vanishes if we choose H to be the maximal split torus. The bundle $T_n \oplus T_u$ is integrable, so it defines a foliation \mathcal{F} . To this foliation we have the tangential cohomology $H^*(\mathcal{F})$ and also for its τ -twist: $H^*(\mathcal{F} \otimes \tau)$. The flow A acts on the tangential cohomology whose alternating sum we will consider as a virtual A-module. For any $\varphi \in C_c^{\infty}(\overline{A^-})$ we define $L_{\varphi} = \int_{A^-} \varphi(a)(a|H^*(\mathcal{F} \otimes \tau))da$ as a virtual operator on $H^*(\mathcal{F} \otimes \tau)$. Then we have

Proposition 4.1. Under the assumptions of Theorem 3.1 the virtual operator L_{φ} is of trace class and the RHS of Theorem 3.1 can be written as

$$\sum_{q} (-1)^q \operatorname{tr} (L_{\varphi} | H^q(\mathcal{F} \otimes \tau)).$$

References

- [1] Borel, A., "Introduction aux groupes arithmétiques, " Hermann, Paris, 1969.
- [2] Borel, A., and N. Wallach, "Continuous Cohomology, Discrete Groups, and Representations of Reductive Groups," Ann. Math. Stud. 94, Princeton 1980.
- [3] Deitmar, A., *Higher torsion zeta functions*, Adv. Math. **110** (1995), 109–128.
- [4] Deitmar, A., Product expansions for zeta functions attached to locally homogeneous spaces, to appear in Duke Math. J.
- [5] —, On some zeta functions attached to Shimura manifolds of higher rank, preprint dg-ga/9511006.
- [6] Duistermaat, J., and V. Guillemin, The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics, Invent. math. **29** (1975), 39–79.
- [7] Duistermaat, J. J., J. A. C. Kolk, and V. S. Varadarajan, Spectra of locally symmetric manifolds of negative curvature, Invent. math. 52 (1979), 27– 93.

- [8] Guillemin, V., Lectures on spectral theory of elliptic operators, Duke Math. J. 44 (1977), 485–517.
- Hecht, H., and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49–151.
- [10] Juhl, A., "Zeta-Funktionen, Index-Theorie und hyperbolische Dynamik," Habilitationsschrift. Humboldt-Universität zu Berlin 1993.
- [11] Osborne, M. S., "Lefschetz formulas on non-elliptic complexes, " Thesis, Yale University, 1972.
- [12] —, Lie algebra cohomology of certain infinite dimensional representations, Bull. Amer. Math. Soc. **80** (1980), 852–854.
- [13] Schubert, V., "Ein kohomologischer Zugang zu verallgemeinerten Selbergschen Zeta-Funktionen auf lokalsymmetrischen kompakten Rang-1-Räumen," Dissertation. Göttingen 1994.
- [14] Wallach, N., "Real Reductive Groups I," Academic Press 1988.

Mathematisches Institut Universität Heidelberg Im Neuenheimer Feld 288 69126 Heidelberg Germany

Received March 21, 1996