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Haar measure on linear groups over local skew fields

Helge Glöckner1

Communicated by K. H. Hofmann

Abstract. General and special linear groups over local fields, as well as

their projective counterparts, are prominent examples of totally discon-

nected, locally compact groups. In this article, an explicit description of
Haar measure on these groups is given by computing the measure on special

local bases, consisting of open compact subgroups. These data can be used
to compute the measure of any open set. In addition to that, I show that

all of the groups above are unimodular, and I give a description of Haar

measure on the general linear groups in terms of Haar measure on vector
spaces over local fields.

1. Notational Conventions

Throughout this article, K denotes a local field, that is, a non–discrete, totally
disconnected, locally compact field, commutative or not. As Weil [11] points out,
K can be endowed with an ultrametric absolute value which induces the given
topology on K , as follows: For any unit x ∈ K× , left multiplication with x
yields an automorphism lx of (K,+). We define |x| to be the module of lx ,
that is, if m is a Haar measure on (K,+) and U is a measurable subset of K
such that 0 < m(U) <∞ , we define

|x| := modK (lx) :=
m(lx(U))

m(U)
=
m(xU)

m(U)
.

This definition is being completed by setting |0| := 0.
We fix the following notation:

R := {x ∈ K : |x| ≤ 1 }, P := {x ∈ K : |x| < 1 }.

Theorem 1.1. R is the unique maximal compact subring of K . Its group of
units is R× = {x ∈ K : |x| = 1 } , and P is the unique maximal proper ideal

1 This article is based on several chapters of my Diplomarbeit, Glöckner [7]. I am grateful to
Markus Stroppel, my supervisor, for the stimulating discussions which gave rise to this work.
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of R . The quotient by this ideal, k := R/P , is a finite field. If q denotes its
order, then |K×| = 〈q〉 ≤ R+ . Furthermore, there is an element π ∈ R such
that P = πR = Rπ ; its absolute value is |π| = q−1 .

Proof. See Weil loc. cit. Chapter I.–4, Theorem 6.

Note that since |.| takes discrete values on K× , the subsets R and R× are open
in K . Also, since open subgroups of topological groups are closed, P is closed
in R , hence compact.
For ` ∈ N = {1, 2, . . .} we define P` := π`R = Rπ` = {x ∈ K : |x| ≤ q−` } .
Plainly these sets constitute a local base at 0 of the topology on K ; each P` is
an open and compact two–sided ideal of R .

Theorem 1.2. Let T be a transversal of R/P such that {0, 1} ⊆ T . Then,
for any x ∈ K , there is a unique sequence (ai)i∈Z in T , with support bounded
below, such that

x =
∑

i∈Z
aiπ

i.

Proof. See Weil loc. cit. Chapter I.–4, Corollary 2 to Theorem 6.

For n ∈ N , M(n,K) = Kn×n denotes the ring of n×n–matrices with entries
in K . We define

GL(n,K) := M(n,K)×

SL(n,K) := GL(n,K)′

PGL(n,K) := GL(n,K)/Z

PSL(n,K) := SL(n,K)/(Z ∩ SL(n,K)),

where Z = Z(K×) 1 denotes the centre of GL(n,K). The quotient mor-
phisms GL(n,K) → PGL(n,K) and SL(n,K) → PSL(n,K) will be denoted
by α and β , respectively. SL(n,K) is the kernel of the Dieudonné determinant
det : GL(n,K) → K̄ , where K̄ = K×/(K×)′ . We denote the coset of x ∈ K×
in K̄ by x̄ . Recall that, for n ≥ 2, SL(n,K) is the subgroup of GL(n,K) gen-
erated by the elementary matrices Bij(λ) = 1 + λEij , where i 6= j and λ ∈ K ,
see Artin [1]. Finally, note that SL(1, K) = (K×)′ .

2. Special Local Bases at the Identity

With product topology, M(n,K) is a locally compact topological ring. For ` ∈ N ,
the open compact additive subgroups P n×n` = M(n, P`) constitute a local base
of the topology at 0. We give GL(n,K) and SL(n,K) the topologies induced
by M(n,K), and we give the projective linear groups the respective quotient
topologies. For ` ∈ N , define

Un` := 1 + Pn×n`

V n` := Un` ∩ SL(n,K)

Ũn` := α(Un` )

Ṽ n` := β(V n` ).
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Proposition 2.1. GL(n,K) is a locally compact topological group. For `∈N ,
the sets Un` constitute a local base for the topology at the identity element,
consisting of open compact subgroups.

Proof. Any Un` is an open compact subset of M(n,K), which is multiplica-
tively closed, since P n×n` = (π`1)M(n,R) is an ideal of M(n,R): We have
Un` U

n
` = (1 + Pn×n` )(1 + Pn×n` ) ⊆ 1 + Pn×n` = Un` . Any matrix A ∈ Un` is

invertible, with inverse in Un` , since we presently show that A−1 = (1 +B)−1 =∑∞
i=0(−B)i , where B := A− 1 ∈ P n×n` . Once we have established the conver-

gence of this so-called von Neumann series, it is clear that its limit is the desired
inverse of A . Since K , hence M(n,K), is complete, we only need to check that
the series above is a Cauchy series. To this end, note that (−B)i ∈ Pn×ni` for

any i ∈ N . Therefore
∑ν′

i=ν(−B)i ∈ Pn×nν` , for all ν ≤ ν′ ∈ N . This implies
the Cauchy property. Fixing ν = 0 and letting ν ′ tend to infinity, the previous
formula also shows that

∑∞
i=0(−B)i ∈ 1 + Pn×n` = Un` .

Since GL(n,K) contains the open subset Un1 of M(n,K) and left multiplication
by a unit is a homeomorphism of M(n,K), we conclude that GL(n,K) is an
open subset of M(n,K). Now since multiplication is continuous, inversion is
continuous if it is continuous at the identity element. But this is guaranteed,
since the von Neumann series converges absolutely and uniformly on Un1 .

Lemma 2.2. The Dieudonné determinant det : GL(n,K)→ K̄ is continuous.

Proof. Since det is a homomorphism of groups, it suffices to check continuity
at the identity. We claim det (Un` )⊆(U1

` )− . To see this, let A = (aij) ∈ Un` . Left
multiplication with the elementary matrix Bn1(−an1a

−1
11 ) ∈ Un` yields a matrix

A′ ∈ Un` whose (n, 1)–entry vanishes; here we used that a11 ∈ U1
` is a unit.

Continuing in this way, we can replace an1, . . . , a21 by zero, and then we apply
the same procedure to the other columns. We conclude that there is a lower
triangular matrix B ∈ Un` ∩ SL(n,K) and an upper triangular matrix (cij) =
C ∈ Un` such that BA = C . Then det (A) = det (C) = c̄11 · . . . · c̄nn ∈ (U1

` )− .

Lemma 2.3. The commutator subgroup (K×)′ is closed in K× .

Proof. The centre κ of K is a local field, and K has finite dimension over κ ,
see Weil [11] Chapter I.–4, Proposition 5. Hence K is a central division algebra
over κ . Let F be a splitting field for K , that is, a commutative extension field
of κ such that there is an isomorphism of F –algebras g : K⊗κF →M(n, F ) for
some n ∈ N . Such a splitting field always exists, and we may assume that F |κ is
a finite Galois extension, see Cohn [4] Chapter 7.2. Then F is a local field. Given
x ∈ K , one can show that RNK/κ(x) := detFn(g(x⊗ 1)) ∈ κ , see Cohn loc. cit.
Chapter 7.3. The mapping RNK/κ : K → κ is called the reduced norm on K . We
claim that RNK/κ is continuous. Recall that any finite dimensional vector space
over a local field L admits precisely one topology which makes it a topological
L–vector space, and that every linear map between finite dimensional L–vector
spaces is continuous, see Weil [11] Chapter I.–2, Corollary 1 to Theorem 3. We
give K⊗κF and M(n, F ) the unique F –vector space topologies. Then g is
continuous. With the topology above, K⊗κF is a topological κ–vector space as
well. Hence the κ–linear map K → K ⊗κ F , x 7→ x⊗ 1, is continuous. Finally,
the determinant mapping M(n, F ) → F is continuous since F is a topological
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field. Hence RNK/κ is continuous, being a composite of continuous maps.
The reduced norm induces a continuous homomorphism K×→ κ× , also denoted
by RNK/κ ; its kernel is closed in K× . But ker RNK/κ = (K×)′ , for any local
field K , a fact usually expressed by saying that the reduced Whitehead group
SK1(K) := (ker RNK/κ)/(K×)′ is trivial, see Draxl [6].

Proposition 2.4.

(1) SL(n,K) , PGL(n,K) , and PSL(n,K) are locally compact groups.

(2) For any ` ∈ N , V n` is an open and compact subgroup of SL(n,K) .
{V n` : ` ∈ N} is a local base of the topology at 1 .

(3) A similar statement holds for the projective linear groups; here,

the open and compact subgroups are Ũn` and Ṽ n` , respectively.

Proof. By the previous lemmas, the Dieudonné determinant is a continuous
homomorphism in a Hausdorff topological group. Hence SL(n,K) = ker det is
closed in GL(n,K). Since Z(K×) is a closed subgroup of K× , the respective
quotient topologies on PGL(n,K) and PSL(n,K) are locally compact Hausdorff.
The remainder is obvious, since quotient morphisms of topological groups are
open and continuous.

Remark 2.5. Note that Un` and V n` are normal subgroups of GL(n,R) and
GL(n,R) ∩ SL(n,K), respectively, for any ` ∈ N . This is due to the fact that
since any A ∈ GL(n,R) is a unit of M(n,R) and P n×n` is an ideal of this ring,
AUn` = A(1 + Pn×n` ) = A+ Pn×n` = Un` A .
Now R is an open and compact subring of K , hence M(n,R) is an open and
compact subring of M(n,K). If A ∈ M(n,R)\GL(n,R), then A + P n×n1 ∩
GL(n,R) = Ø. In fact, if there was some matrix B in this intersection, then A ∈
B+Pn×n1 = B (1+Pn×n1 ) would be invertible, a contradiction. Hence GL(n,R)
is a closed subset of M(n,R), from which we conclude that GL(n,R) is an
open and compact subgroup of GL(n,K).2This in turn implies that GL(n,R)∩
SL(n,K) is an open and compact subgroup of SL(n,K).

3. Some Quotients and their Orders

Definition 3.1. For ` ∈ N , ψ` : R → R/P` : x 7→ x + P` denotes the
quotient morphism. We define ψn` : M(n,R) → M(n,R/P`) by the prescription
A = (aij) 7→ (ψ`(aij)). We also write x[` ] := ψ`(x), A[` ] := ψn` (A).

Lemma 3.2. Let ` ∈ N .

(1) Assume that a, b ∈ R are given, with expansions a =
∑∞
i=0 aiπ

i and
b =

∑∞
i=0 biπ

i , respectively. Then a[` ] = b[` ] iff ai = bi for 0 ≤ i ≤ `−1 .

(2) (∀A,B ∈ M(n,R)) A+ P n×n` = B + Pn×n` ⇔ A[` ] = B[` ] .

2 Serre [10] shows that, in the commutative case, GL(n,R) is a maximal compact sub-
group of GL(n,K) , and that all maximal compact subgroups of GL(n,K) are conjugate.
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(3) ψn` is a quotient morphism of topological rings, and kerψn` = Pn×n` .

(4) (∀A,B ∈ GL(n,R)) AUn` = BUn` ⇔ A[` ] = B[` ] .

(5) (∀A,B ∈ SL(n,K) ∩GL(n,R)) AV n` = BV n` ⇔ A[` ] = B[` ] .

Proof. (1) and (2) are obvious.
Ad (3). It is clear that ψn` is a surjective morphism of rings with kerψn` =
(kerψ`)

n×n = Pn×n` . Since this is an open subset of M(n,R), we conclude that
ψn` is continuous.

Ad (4). Pn×n` is an ideal of M(n,R), and A is a unit. Therefore AUn` =
A(1 + Pn×n` ) = A + APn×n` = A + Pn×n` . We conclude that AUn` = BUn` ⇔
A+ Pn×n` = B + Pn×n` . Now apply (2).

Ad (5). Since V n` ≤ Un` , we infer from (3) that AV n` = BV n` ⇒ A[` ] = B[` ] .
Conversely, if A[` ] = B[` ] , where A,B ∈ SL(n,K) ∩ GL(n,R), then there is
some C ∈ Un` such that AC = B , by (4). But this implies C = A−1B ∈
Un` ∩ SL(n,K) = V n` .

Lemma 3.3. Let aij ∈ δij + P for i, j ∈ J , where J := {1, . . . , n}2\{(1, 1)} ,
and set A := {a11 ∈ U1

1 : (aij) ∈ V n1 } . Then A is the union of y := [V 1
1 : V 1

` ]
equivalence classes modulo U 1

` , for every ` ∈ N . In particular, A is not empty.

Proof. We may assume n ≥ 2, since the case n = 1 is trivial. Let a11 ∈ U1
1

and set A := (aij). Then there is a lower unitriangular matrix B ∈ V n1 ,
independent of a11 , such that AB =: (cij) is an upper triangular matrix. We
can construct B as follows. Multiplication of A on the right by the product
of elementary matrices Bn := Bn1(−a−1

nnan1) · . . . · Bnn−1(−a−1
nnann−1) yields a

matrix (a′ij) such that a′ni = 0 for i = 1, . . . , n−1. We proceed analogously with
columns n − 1, . . . , 2, obtaining lower triangular matrices Bn−1, . . . , B2 ∈ V n1 ,
all of whose diagonal entries are 1 and which are independent of a11 , such that
ABn · · ·B2 is upper triangular. Now set B := Bn . . .B2 .

Note that c11 = a11 + r for some r ∈ P , where r is independent of a11 .
Also, c22, . . . , cnn are independent of a11 . Set s := c22 · . . . · cnn ∈ U1

1 . Then
A ∈ SL(n,K) if and only if (a11 + r)s ∈ (K×)′ , and, indeed, if and only if
(a11 + r)s ∈ (K×)′ ∩ U1

1 = V 1
1 . Now choose representatives t1, . . . , ty of the

cosets of V 1
` = (K×)′ ∩ U1

` in V 1
1 . For k = 1, . . . , y , set ak := tks

−1 − r ∈ U1
1 .

Then (ak + r)s = tk , whence ak ∈ A . Note that for a, b ∈ A , a[` ] = b[` ] ⇔
((a + r)s)[` ] = ((b + r)s)[` ] ; here we use that ψ` is a ring homomorphism, and
that s , hence s[` ] , is a unit. From this the claim follows.

Lemma 3.4. With notation as in Lemma 3.3, assume A′ = (a′ij) ∈ V n`
such that (a′ij)[` ] = (aij)[` ] for (i, j) ∈ J . Then there is a11 ∈ A such that
(a11)[` ] = (a′11)[` ] .

Proof. Let a11 ∈ U1
1 and set A = (aij). Define B , C , s as above, and let B′ ,

C ′ , s′ be the corresponding expressions for A′ . Then B[` ] = B′[` ] . Also, s[` ] =

s′[` ] , and (cij)[` ] = (c′ij)[` ] for (i, j) ∈ J . Further, c11 = a11+r and c′11 = a′11+r′

for some r, r′ ∈ P` , where r[` ] = r′[` ] . We have t := (a′11 + r′)s′ ∈ (K×)′ ∩ U1
1 ,

since A′ ∈ V n1 . Then (a11)[` ] = (a′11)[` ] if and only if ((a11 + r)s)[` ] = t[` ] . We
may replace a11 by ã11 := ts−1 − r without changing B , C , r , and s . Then
ã11 ∈ A , and (ã11)[` ] = (a′11)[` ] .
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Proposition 3.5. For any ` ∈ N ,

(1) [Un1 : Un` ] = qn
2(`−1)

(2) [Ũn1 : Ũn` ] = x−1
` qn

2(`−1)

(3) [V n1 : V n` ] = y` q
(n2−1)(`−1)

(4) [Ṽ n1 : Ṽ n` ] = z−1
`,n [V n1 : V n` ].

Here x` := [U1
1 ∩ κ× : U1

` ∩ κ×] divides q`−1 , and so do y` := [V 1
1 : V 1

` ] and
z`,n := [U1

1 ∩ Wn : U1
` ∩ Wn] , where κ denotes the centre of K , and where

Wn := {x ∈ κ× : xn ∈ (K×)′} .

Remark 3.6. Note that if K is commutative, Wn is just the group of n–th
roots of unity in K , which is finite. Hence z`,n becomes stationary for ` ∈ N
sufficiently large. Also note that y` = 1 and x` = q`−1 in the commutative case.

Proof. Ad (1). By Lemma 3.2 (1) and (4), the set of matrices with entries of

the form aij = δij +
∑`−1
k=1 αijkπ

k , where αijk ∈ T , is a transversal of Un1 /U
n
` .

But this set has qn
2(`−1) elements.

Ad (2). Set Z := Z(GL(n,K)) = κ× 1 . Since Un` Z∩Un1 = Un` (U1
1 ∩κ×)1

and [Un` (U1
1 ∩κ×)1 : Un` ] = [(U1

1 ∩κ×)1 : (U1
1 ∩κ×)1∩Un` ] = [U1

1 ∩κ× : U1
` ∩κ×] ,

we have [Ũn1 : Ũn` ] = [Un1 : Un` Z ∩ Un1 ] = [Un1 : Un` ] · [U1
1 ∩ κ× : U1

` ∩ κ×]−1 , from
which (2) follows.

Ad (3). For n = 1, we compute [V 1
1 : V 1

` ] = [(K×)′∩U1
1 : (K×)′∩U1

` ] =
[((K×)′ ∩ U1

1 )U1
` : U1

` ] , which divides [U1
1 : U1

` ] = q`−1 . Now assume n ≥ 2.
Set J := {1, . . . , n}2\{(1, 1)} . We consider the set R of matrices A = (aij)

such that aij = δij +
∑`−1
k=1 αijkπ

k for (i, j) ∈ J , where αijk ∈ T , and where,
for fixed (aij)(i,j)∈J , we let a11 run through a set of representatives modulo
U1
` of the possible (1, 1)–entries, A , as in the proof of Lemma 3.3 (where

the representatives were denoted by ak ). We claim that R is a transversal
of V n1 /V

n
` . To see this, let B = (bij) ∈ V n1 , and, for i, j ∈ {1, . . . , n} , let

bij = δij +
∑∞
k=1 βijkπ

k be the expansion of bij , where βijk ∈ T . Then there
is precisely one A = (aij) ∈ R such that AV n` = BV n` , since, by Lemma

3.2, this condition is equivalent to aij = δij +
∑`−1

k=1 βijk for (i, j) ∈ J , and
(a11)[` ] = (b11)[` ] . By Lemma 3.4, we can choose a11 as required.

To obtain (4), note that V n` Z∩V n1 = V n` (Wn∩U1
1 )1 . Now copy the proof of (2).

Lemma 3.7. Assume that K is commutative. If det` : M(n,R/P`) → R/P`
and det : M(n,R)→ R denote the determinant mappings, then

det`(A[` ]) = (detA)[` ],

for any matrix A ∈ M(n,R) and any ` ∈ N . In particular, detUn` ⊆1+P`=U1
` .

Proof. By an easy computation.

Since ψn` is a morphism of rings by Lemma 3.2, it maps units to units. If
K is commutative, Lemma 3.7 implies that A[` ] ∈ SL(n,R/P`), for every
A ∈ SL(n,R). Hence, for ` ∈ N , we can consider

φn` := ψn` |GL(n,R/P`)
GL(n,R)

χn` := ψn` |SL(n,R/P`)
SL(n,R) .
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Proposition 3.8. Assume that K is commutative. Then, for all ` ∈ N , the
mappings φn` and χn` are quotient morphisms of groups, and their kernels are
kerφn` = Un` and kerχn` = V n` . In particular,

[GL(n,R) : Un1 ] = |GL(n,R/P1)| = (qn − 1) · . . . · (qn − qn−1)

and, for n ≥ 2 ,

[SL(n,R) : V n1 ] = |SL(n,R/P1)| = (qn − 1) · . . . · (qn − qn−2) qn−1.

Proof. φn` is onto: For any A ∈ GL(n,R/P`), there are Ã, B̃ ∈ M(n,R)

such that ψn` (Ã) = A and ψn` (B̃) = A−1 , since ψn` is onto by Lemma 3.2 (3).

Lemma 3.7 shows that (det ÃB̃)[` ] = det` 1 = 1[` ] , from which we conclude that

(det Ã)(det B̃) = det ÃB̃ ∈ 1 + P` ⊆ R× is a unit. This implies Ã ∈ GL(n,R),
and we have proved that φn` is onto. Now another application of Lemma 3.2 (3)
shows kerφn` = (1 + kerψn` ) ∩GL(n,R) = Un` .
χn` is onto: Let A ∈ SL(n,R/P`). Then there is some B ∈ GL(n,R) such that
φn` (B) = A , as has just been shown. Now (detB)[` ] = det` (A) = 1[` ] , whence
detB ∈ 1 + P` and r := (detB)−1 ∈ 1 + P` . Set C := diag(r, 1, . . . , 1). Then
BC ∈ SL(n,R), and we have χn` (BC) = φn` (BC) = φn` (B)φn` (C) = A , because
C ∈ Un` = kerφn` . Since A was arbitrary, χn` is onto. Finally, one computes
kerχn` = kerφn` ∩ SL(n,R) = Un` ∩ SL(n,R) = V n` .
The remainder of the proposition follows easily now: simply note that R/P1 =
R/P = k is a finite field with q elements, and that the general and special linear
groups over these fields have the orders stated above.

4. Computation of Haar Measure

In this section, we give an explicit description of Haar measure on the linear
groups over local fields. To this end, the measure of the open compact subgroups
introduced in Section 2 is being computed. Lemma 4.1 and Proposition 4.4 show
how the Haar measure of any open compact subset can be determined from
these data. In fact, the measure of any open subset can be expressed in terms
of the values of Haar measure on the local bases, but in a less explicit way. An
alternative description of Haar measure on the general linear groups will be given
in Section 6.

We recall that if G is a locally compact topological group, a positive
measure µ on the σ–algebra of Borel sets of G is called a Haar measure on G ,
if it is finite on all compact sets, regular, left–invariant, and if there is an open
subset U of G such that 0 < µ(U) <∞ . Then, by inner regularity, µ(V ) > 0 for
any non–empty open subset V of G , since any compact subset of U is covered
by finitely many translates of V . It can be shown that on any locally compact
group G , there exists a Haar measure µ , which is unique up to a multiplicative
positive constant (see Hewitt and Ross [8], Section 15.8). Note that all of the
topological groups discussed in this article satisfy the second countability axiom,
since K is metric and has a dense countable subset by Theorem 1.2. Now, in
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any locally compact, second countable group, any open subset is σ–compact. By
Rudin [9], Theorem 2.18, any Borel measure on a locally compact space with this
property is regular, provided it is finite on compact sets. Hence, as regards the
groups we are interested in, regularity of Haar measure is a consequence of the
other axioms.

Lemma 4.1. Let G be a locally compact group and µ a Haar measure on G .
If U and V are open compact subgroups of G such that V ≤ U , then the index
of V in U is finite, and µ(V ) = [U : V ]−1µ(U) .

Proof. Since V is an open subgroup of the compact group U , finitely many
cosets of V cover U , that is, the index of V in U is finite. If F is a transversal
of U/V , then U =

⋃
x∈F xV , where the union is disjoint. Now, by left invariance

of Haar measure, µ(U) =
∑

x∈F µ(xV ) =
∑
x∈F µ(V ) = [U : V ]µ(V ).

Theorem 4.2. Let µ1 , µ2 , µ3 , and µ4 denote Haar measure on GL(n,K) ,
PGL(n,K) , SL(n,K) , and PSL(n,K) , respectively. Then, with notation as in
Lemma 3.5,

(1) µ1(Un` ) = q−n
2(`−1) µ1(Un1 )

(2) µ2(Ũn` ) = x` q
−n2(`−1) µ2(Ũn1 )

(3) µ3(V n` ) = y−1
` q−(n2−1)(`−1) µ3(V n1 )

(4) µ4(Ṽ n` ) = z`,n y
−1
` q−(n2−1)(`−1) µ4(Ṽ n1 ) .

If K is commutative and µ1 , µ3 are chosen such that µ1(GL(n,R)) = 1 and
µ3(SL(n,R)) = 1 , respectively, then

(5) µ1(Un` ) = γ q−n
2(`−1) , where γ = |GL(n,Fq)|−1 ;

(6) µ3(V n` ) = δ q−(n2−1)(`−1) , where δ = |SL(n,Fq)|−1 .

Proof. The assertions follow immediately from Proposition 3.5, Proposi-
tion 3.8 and Lemma 4.1.

Remark 4.3. If K is commutative, the image of the measure µ3 under the
quotient morphism β : SL(n,K)→ PSL(n,K) also yields a Haar measure, λ say,
on PSL(n,K), defined by λ(Ω) := µ3(β−1(Ω)) for Borel sets Ω of PSL(n,K).
Since ker β = K×1 ∩ SL(n,K) is finite, λ inherits the required properties
from µ3 .

Proposition 4.4. Let G be a totally disconnected, locally compact group
satisfying the first countability axiom. Then there is a descending countable local
base W1 ⊇W2 ⊇ · · · of the topology, where Wi is an open and compact subgroup
of G , for any i ∈ N . If W is any open and compact subset of G , then there
exists r ∈ N such that W is the (disjoint) union of finitely many cosets of Wr .

Proof. Since G is locally compact and totally disconnected, the open and
compact subgroups constitute a local base of the topology. By first countability,
a countable subbase can be selected. Replacing its elements by suitable finite
intersections, we obtain a local base with the required properties. Now since W
is open, there is an ix ∈ N such that xWix ⊆ W , for any x ∈ W . Due to
compactness of W , there is a finite subset F of W such that W =

⋃
x∈F xWix .

Then W is a disjoint union of cosets of Wr , where r := max{ix : x ∈ F} .
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Arbitrary open sets can be decomposed into open and compact ones as well:

Proposition 4.5. Let G and W = {Wi : i ∈ N} be as in Proposition 4.4,
and assume that G is σ–compact. Then, for any open subset U of G , there
are a countable set J and families (gj)j∈J ∈ GJ , (Vj)j∈J ∈ WJ such that
U =

⋃
j∈J gjVj , where the union is disjoint. Hence, if µ is a Haar measure

on G , we have µ(U) =
∑

j∈J µ(Vj) .

Proof. For any g ∈ U , there is an ig ∈ N such that gWig ⊆ U , being minimal
with respect to this property. The set J := {gWig : g ∈ U} is countable, since,
for any i ∈ N , the index of the open subgroup Wi in the σ–compact group G
is countable. We claim that U is the disjoint union of the sets V ∈ J . For let
h, g ∈ U be given such that hWih ∩ gWig 6= Ø. We may assume that ig ≤ ih .
Then hWig = gWig ⊆ U , whence ih ≤ ig , by minimality. We conclude ih = ig ,
hence hWih = gWig .

Lemma 4.6. Let G denote one of the groups K× , GL(n,K) , SL(n,K) ,
PGL(n,K) , or PSL(n,K) , where n ≥ 2 , let µ be a Haar measure on G , and
choose a non–empty open and compact subset U of G . We know that |R/P | = q
is a power of some prime p .

(1) There is γ ∈ Q , such that for any open and compact subset V of G ,
there are unique numbers z ∈ N and i ∈ N0 such that gcd (p, z) = 1 and
µ(V )µ(U)−1 = γzp−i .

(2) For any i0 ∈ N0 , there exists an open and compact subset V of G , such
that i ≥ i0 , with notations as in (1).

Proof. The assertions follow immediately from Proposition 2.1, Theorem 4.2,
and Proposition 4.4.

Corollary 4.7. With notation as in Lemma 4.6, let Γ be the set of all rationals
µ(V )µ(U)−1 , where V ranges through the open and compact subsets of G . Let p′

be a prime number, and let νp′ denote the p′–adic valuation on Q . Then p = p′

if and only if νp′(Γ) is not bounded below.

Remark 4.8. The following application demonstrates the usefulness of the
ideas presented in this article. For i ∈ {1, 2} , consider a local field Ki with
valuation ring Ri and valuation ideal Pi . Then qi := |Ri/Pi| is a power of some
prime pi . Let Gi be a general linear group GL(ni, Ki), where ni ∈ N , or one
of the groups SL(ni, Ki), PGL(ni, Ki), or PSL(ni, Ki), where ni ≥ 2. Assume
that θ : G1 → G2 is a topological isomorphism. We choose a non–empty open
and compact subset U1 of G1 and set U2 := θ(U1). For i ∈ {1, 2} , we define
Γi as in Corollary 4.7. Then Γ1 = Γ2 , since if µ1 is a Haar measure on G1 ,
then the image of µ1 under θ is a Haar measure on G2 . The conclusion of the
corollary shows p1 = p2 .3 An interesting special case is stated in Corollary 4.10.

3 For n1,n2≥2 , this also follows from general investigations on the isomorphy problem of linear
groups, cf. Dieudonné [5], which show that the local fields K1 and K2 are algebraically isomor-
phic or antiisomorphic. This actually implies q1=q2 in the commutative case, see Glöckner [7].
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Lemma 4.9. Let F be a commutative field, where charF 6= 2 , and n ∈ N .
Then ∆2 := { diag(α1, . . . , αn) : (αi)

2 = 1 } is a maximal elementary abelian
2–subgroup of GL(n, F ) , and all of these are conjugate. An analogous statement
holds for SL(n, F ) and its subgroup ∆2 ∩ SL(n, F ) .

Proof. Let H be an elementary abelian 2–subgroup of GL(n, F ), and A ∈ H .
Then spec (A) ⊆ {1,−1} , since A2 = 1 . For any x ∈ Fn , we have x =
(x+Ax)/2 + (x−Ax)/2, where A(x±Ax) = ±(x±Ax). Hence F n is the sum
of the eigenspaces of A , that is, A is diagonalizable. Note that since H is abelian,
the matrices A ∈ H are simultaneously diagonalizable: there is S ∈ SL(n, F )
such that SHS−1 ≤ ∆2 . If H ≤ SL(n, F ), then SHS−1 ≤ ∆2 ∩ SL(n, F ). The
assertions follow easily from this.

Corollary 4.10. For any n1, n2 ∈ N and prime numbers p1 and p2 , the
topological groups GL(n1,Qp1

) and GL(n2,Qp2
) are isomorphic if and only if

n1 = n2 and p1 = p2 . An analogous statement holds for the special linear groups,
provided n1, n2 ≥ 2 . (Here Qpi denotes the field of pi–adic numbers).

Proof. Assume that θ : GL(n1,Qp1
) → GL(n2,Qp2

) is an isomorphism.
By Lemma 4.9, there exists a maximal elementary abelian 2–subgroup H of
GL(n1,Qp1

), of order 2n1 . Then θ(H) is a maximal elementary abelian 2–
subgroup of GL(n2,Qp2

), whose order is 2n2 . This implies n1 = n2 . Now since
Ri = Zpi is the valuation ring of Qpi , and Pi = piZpi its valuation ideal, we
infer |Ri/Pi| = |Fpi | = pi , for i ∈ {1, 2} . Hence p1 = p2 , by Remark 4.8.

5. Computation of the modular functions

Let G be a locally compact topological group, µ a Haar measure on G and φ
an (algebraical and topological) automorphism of G . We obtain another Haar
measure, ν , on G by defining ν(Ω) := µ(φ(Ω)) for Borel sets Ω of G . By
uniqueness, there is a positive real number modG(φ), the module of φ , such that
ν = modG(φ)µ . For g ∈ G , we set mod(g) := modG(Ig), where Ig : G → G
denotes the inner automorphism x 7→ g−1xg of G . The mapping mod: G→ R+

is a morphism of topological groups; it is called the modular function of G . If
mod ≡ 1, G is called unimodular (cf. Hewitt and Ross [8], Chapter 15).

Theorem 5.1. All of the groups GL(n,K) , SL(n,K) , PGL(n,K) , PSL(n,K)
are unimodular.

Proof. Let G denote one of the groups above. Since mod : G → R+ is a
homomorphism into an abelian group, we conclude that G′ ≤ ker mod, where G′

denotes the derived group.

Now, for n ≥ 2, we have SL(n,K)′ = SL(n,K), hence PSL(n,K)′ =
PSL(n,K), which shows that these groups are unimodular. Note that SL(1, K) =
(K×)′ is a closed subset of R× , hence compact. Also, PSL(1, K) is compact,
and we conclude that these groups are unimodular.

As regards GL(n,K), note that GL(n,K)′ = SL(n,K) ≤ ker mod. For x ∈ K× ,
we define Ax := diag(x, 1, . . . , 1). Since SL(n,K) ∪ {Ax : x ∈ K×} generates
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GL(n,K), it suffices to show that mod (Ax) = 1, for all x ∈ K× . Hence let
x ∈ K× and A := Ax , where we may assume |x| = q−` ≤ 1, that is, ` ≥ 0
(otherwise compute mod (A−1

x ) = mod (Ax−1)). For any B = (bij) ∈ GL(n,K),
we have

A−1BA =




x−1b11x x−1b12 · · · x−1b1n
b21x b22 · · · b2n

...
...

...
bn1x bn2 · · · bnn


 ,

from which we infer that A−1Un`+1A is the set of all matrices B = (bij) such that
b11∈ 1+P`+1 , bij ∈ δij+P`+1 , bi1 ∈P2`+1 , and b1j ∈P1 , where i, j ∈{2, . . . , n} .
Hence

Un2`+1 ≤ A−1Un`+1A ≤ Un1 ≤ GL(n,R).

We wish to determine the index [A−1Un`+1A : Un2`+1] . By Lemma 3.2 (1) and (4),
this can be achieved by counting the possible choices for the first 2`+ 1 co-
efficients occuring in the power series expansions of the entries bij of matrices
(bij)∈A−1Un`+1A . The first row yields q`(q2`)n−1 possible choices, the remaining
coefficients of the first column allow for only one possible choice, and the remain-
der of the matrix yields another (q`)(n−1)2

choices, whence [A−1Un`+1A : Un2`+1] =

q`+2`(n−1)+`(n−1)2

= q`n
2

holds. Now, if µ denotes Haar measure on G , we ob-
tain µ(A−1Un`+1A) = q`n

2

µ(Un2`+1) = q`n
2

q−2`n2

µ(Un1 ) = µ(Un`+1), which implies
mod(A) = 1.

Now let λ denote Haar measure on PGL(n,K). We have PGL(n,K)′ =
α(GL(n,K)′) = α(SL(n,K)), and by the preceding argument, it suffices to
show mod(α(A)) = 1 for A = Ax as above. Proceeding as in the proof of
Proposition 3.5 (2), we obtain

[α(A)−1Ũn`+1α(A) : Ũn2`+1] = [A−1Un`+1A : (Un2`+1Z) ∩A−1Un`+1A]

= [A−1Un`+1A : Un2`+1(U1
`+1 ∩ κ×)1]

= [A−1Un`+1A : Un2`+1]·[Un2`+1(U1
`+1∩ κ×)1 : Un2`+1]−1

= [Un`+1 : Un2`+1] · [Un2`+1(U1
`+1 ∩ κ×)1 : Un2`+1]−1

= [Ũn`+1 : Ũn2`+1],

whence λ
(
α(A)−1Ũn`+1α(A)

)
= λ(Ũn`+1), that is, mod(α(A)) = 1.

6. An alternative description of Haar measure on GL(n,K)

It is well–known that if K is a commutative local field, a Haar measure µ on
GL(n,K) is given by dµ = ρ dλ , where ρ(A) := |det(A)|−n for A ∈ GL(n,K),
and where λ denotes the restriction of Haar measure on (Kn,+) to the Borel
sets of GL(n,K), see Bourbaki [3], Chap. VII–3. We wish to drop the hypothesis
that K be commutative.
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Lemma 6.1. Let K be a local field, commutative or not, |.| = modK the
absolute value on K described in Section 1, and det : GL(r,K) → K̄ the
Dieudonné determinant. Since R+ is abelian, the restriction of modK to K×

factors through K̄ = K×/(K×)′ , via a homomorphism f : K̄ → R+ .
Claim: modKr (A) = f(det(A)) , for any A ∈ GL(r,K) .

Proof. Any elementary matrix A is in the commutator subgroup SL(r,K) =
GL(r,K)′ , hence in the kernel of modKr : Aut(Kr) → R+ . This implies
modKr (A) = 1 = f(det(A)). Now if D = diag(1, . . . , 1, a) and W is an open
subset of K of finite positive measure, then modKr (D)λ(W r) = λ(DW r) =
modK(a)λ(W r), using that Haar measure λ on Kr is the r–fold product of
Haar measure on K . We infer modKr (D) = modK(a) = f(det(D)). Since the
matrices above generate GL(r,K), the claim follows.

Theorem 6.2. With notations as in 6.1, define ρ(A) := (f(detA))−n for
A ∈ GL(n,K) . Let λ′ denote Haar measure on Kn×n . Then dµ = ρ dλ is a
Haar measure on GL(n,K) , where λ denotes the restriction of λ′ to the Borel
sets of GL(n,K) .

Proof. Since µ(Un1 ) = λ(Un1 ) = λ(1 + Pn×n1 ) = λ′(Pn×n1 ) > 0, we only need
to check that µ is left invariant. Let V := Kn×n . Then

l : GL(n,K)→ GL(n, V ),

C 7→ (lC : A 7→ CA)

defines a morphism of topological groups. Note that lC = C ⊕ · · · ⊕ C , since
the action of lC on each column is multiplication by C . Hence detV (lC) =
(detKn(C))n , and Lemma 6.1 shows that modV (lC)=f(det(lC))=(f(det(C)))n .

Now let Ω be a Borel set of GL(n,K) and B ∈ GL(n,K). Then

µ(BΩ) =

∫
1BΩ(A) · (f(detA))−n dλ(A)

=

∫
(1Ω ◦ lB−1)(A) ·mod−1

V (lA) dλ(A)

=

∫
(1Ω ◦ lB−1)(A) ·mod−1

V (lBB−1A) dλ(A)

=

∫
(1Ω · (mod−1

V ◦ l ◦ lB)) ◦ lB−1 dλ

=

∫
1Ω · (mod−1

V ◦ l ◦ lB) dlB−1λ,

by transformation of integrals, cf. Bauer [2], Satz 19.1. Here lB−1λ denotes the
image of λ under the mapping lB−1 , defined by (lB−1λ)(ω) := λ((lB−1)−1(ω))
for Borel sets ω ⊆ GL(n,K), see Bauer loc. cit. Definition 7.6. Now we have
λ((lB−1)−1(ω)) = λ(lB(ω)) = modV (lB)λ(ω), hence lB−1λ = modV (lB) · λ .
Since modV : Aut(V )→ R+ is a homomorphism, one computes

(modV ◦ l ◦ lB)(A) = modV (llB(A)) = modV (lBA)

= modV (lBlA) = (modV (lB) · (modV ◦ l ))(A).
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With these replacements, µ(BΩ) =
∫

1Ω·(modV (lB))−1·(mod−1
V ◦l )·modV (lB) dλ

=
∫

1Ω · (mod−1
V ◦ l ) dλ = µ(Ω). Since Ω was arbitrary, µ is left invariant, and

we have proved that µ is a Haar measure on GL(n,K).

Remark 6.3. In particular, Theorem 6.2 shows that a Haar measure on the
open compact subgroup GL(n,R) of GL(n,K) can be obtained by restricting the
Haar measure on (Kn×n,+) to the Borel sets of GL(n,R). Similar phenomena
occur in every standard group, see Serre [10] Part II, Chapter IV, Exercise 5.

A Haar measure λ on the additive group Kn×n can be described explicitely. We
consider the open and compact subgroups P n×n` introduced in Section 2, which
constitute a local base of the topology. As in the proof of Proposition 3.5, one
computes [Pn×n1 :Pn×n` ] = qn

2(`−1) . This implies λ(Pn×n` ) = q−n
2(`−1)λ(Pn×n1 ).
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