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Abstract. For any Lie group action S:G×P → P , we introduce C∞(P )-
linear operators Si• , that transform n-forms ωn ∈ An(P, V ) into (n−i)-forms
Si•ωn ∈ An−i(P,Alti(g, V )) . We compute the exterior derivative of these
generated forms and their behavior under interior products with vector fields
and Lie differentiation. By combination with Lie algebra valued forms θ ∈
A1(P,g) and φp ∈ Ap(P,g) , we recover V -valued forms ω◦S θ ∈ An(P, V ) ,
resp., (χsn◦S θ)•φp for χsn ∈ An(P,Hom(

⊗s g, V )) and compute their exterior
derivative. The derived formulae play an important role for local evaluations
of connections on fiber bundles.
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1. Motivation

Let P (M,G) denote a principal bundle with base manifold M =
⋃
α∈A Uα , pro-

jection π:P →M , Lie group G, right action R:P ×G→ P and local trivializa-
tions ψα: π−1(Uα)→ Uα×G with local projections πα = prG ◦ψα . Recall that any
connection Γ on P defines horizontal and vertical projections of vector fields, not
only on P , but also on every associated fiber bundle B(M,F,G) = P ×G F with
fiber F and left action L:G× F → F , such that the vertical fields are tangential
to the fiber. We thus obtain projections h, v of differential forms via

ωh(. . . ,X i, . . .) := ω(. . . , hX i, . . .), ωv(. . . ,X i, . . .) := ω(. . . , vX i, . . .) (1)

for all V -valued forms ω ∈ A(B, V ). If we compute the vertical projections locally
on the bundle charts Uα × F , we obtain with Lf :G → F defined by Lf (g) :=
L(g, f) and its differential (dLf )e: g→ Tf (F ) at the neutral element e ∈ G:

(φαvα)(x,f)(. . . , (X
i, F i), . . .) = φα(x,f)(. . . , (0, (dL

f)eA
α
x(X i) + F i), . . .) (2)
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for all φα ∈ A(Uα × F, V ) and (X i, F i) ∈ Tx(Uα)⊕ Tf(F ). Here Aα ∈ A1(Uα, g)
mean the Lie algebra valued gauge potentials, which one obtains from the con-
nection 1-form ωΓ ∈ A1(P, g) as pullbacks Aα := σ?α,eω

Γ under the local sec-
tions σα,e:Uα → π−1(Uα) defined by σα,e(x) := ψ−1

α (x, e).

Instead of (2), we would like to obtain a handier formula for these local
projections, which is merely expressed in terms of the involved forms φ and Aα .
Especially if φ is a (pullback of a) form on F , this is indeed possible. Moreover, we
will also be able to give a formula for the exterior derivative d(φv). Such formulas
are quite essential if one tries to combine the de-Rham cohomology of a fiber
bundle with connections on that bundle.

For any X ∈ g, let LX ∈ D1(F ) denote the induced vector field on F that
is given by (LX)f := (dLf )e(X) and let L: g → D1(F ) denote the Lie algebra
antihomomorphism defined hereby. Then L ◦ Aα maps vector fields on Uα to
vector fields on F . For a n-form φ ∈ An(F, V ), we may decompose (pr?F φ)vα

according to (2) into a sum of differential forms χi ∈ An(Uα×F, V ), i = 0, . . . , n,
such that χi acts on n− i vertical fields and i horizontal vector fields via L◦Aα .
The forms χ are obtained from φ in two steps: using a product of i maps L,
we first transform φ into a (n − i)-form Li•φ ∈ An−i(F,Alti(g, V )). Then we
combine that form with i factors of Aα in such a way that for any X ∈ D1(Uα)
the maps pr?Uα[Aα(X )] ∈ C∞(Uα×F, g) serve as input for the maps in Alti(g, V ).
The resulting form will be denoted by [pr?F (Li•φ)] • (pr?Uα Aα).

Such a construction is possible for all Lie groups that act on a differentiable
manifold from the right or the left. Thus we will choose the general framework of
Lie transformation groups in the sequel. For notational convenience, we will recall
the basic definitions from differential geometry for Lie group actions. Then we
introduce the operators Li• and Ri

• for a left, resp., right action and compute, in
how far they commute with exterior differentiation d of forms, interior products ıX
with respect to a vector field X and Lie differentiation LX , which is given by
LX = ıX ◦ d + d ◦ ıX . The operator • has already been discussed in detail
in [1], thus we only recall its definition and main properties for our purposes.
Finally we introduce operators ◦L and ◦R , [such that (pr?F φ)vα is indeed given by
(pr?F φ)◦L (pr?Uα Aα)] and compute the exterior derivative of ωn◦L θ , resp., ωn◦R θ .

2. Basic definitions

Let us first recall some of the definitions we have already used above, accord-
ing to Helgason [3] and Kobayashi, Numizu [4]. For any vector spaces V
and W , Altp(W,V ) and Symp(W,V ) denote the vector spaces of all alternat-
ing, resp., symmetric p-linear maps from W p to V . For convenience we de-
fine Sym±(W,V ) :=

⊕∞
p=0 Sym±p (W,V ) by Sym+

p (W,V ) := Symp(W,V ) and
Sym−p (W,V ) := Altp(W,V ).

If f :M → N is differentiable, we denote the differential of f at x ∈ M
by dfx . We have [dfx(Xx)]g = Xx(g ◦ f) for all Xx ∈ Tx(M), g ∈ C∞(N). If in
addition, f is a diffeomorphism then for X ∈ D1(M) the push-out f?X ∈ D1(N)
is defined by (f?X )f(x) = dfx(Xx) for all x ∈M .

For α ∈ Ar(N, V ), r ∈ N and Xi ∈ Tx(M), the pullback f ?α ∈ Ar(M,V ) is
defined by (f ?α)x(X1, . . . , Xr) = αf(x)(dfx(X1), . . . , dfx(Xr)). For α ∈ C∞(N, V )
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we have f ?α := α ◦ f , linear extension defines the pullback on A(N, V ). If we
insert A(M)⊗V into A(M,V ) in a natural way, then obviously f ?(A(N)⊗V ) ⊆
A(M)⊗V . (If V is finite dimensional, we will identify A(M)⊗V and A(M,V ).)

Let T (V ) denote the tensor algebra of V . Then every linear map Λ:V →W
defines a pullback Λ?: Hom(T (W ), Z)→ Hom(T (V ), Z): for K ∈ Hom(

⊗pW,Z),
Xi ∈ V we have Λ?K(X1, . . . , Xp) = K(Λ(X1), . . . ,Λ(Xp)), so Λ?(Sym±(W,Z)) ⊆
Sym±(V, Z). Λ also defines a push-out Λ?:A(M,V )→ A(M,W ) by Λ?ω = Λ◦ω .
Again Λ?(A(M) ⊗ V ) ⊆ A(M) ⊗W , where we have Λ?(α ⊗ v) = α ⊗ Λ(v) for
all α ∈ A(M), v ∈ V . For an example, let Ej ∈ W , j = 1, . . . , s and let
E1 ⊗ · · · ⊗ Es: Hom(

⊗sW,V ) → V denote the canonical evaluation morphism.
For any differential form χsr ∈ Ar(M,Hom(

⊗sW,V )) define χE1,...,Es
r ∈ Ar(M,V )

to be the push-out of χsr under this morphism: χE1,...,Es
r := (E1 ⊗ · · · ⊗ Es)?χ

s
r ,

i. e., for all x ∈M and X i ∈ D1(M), i = 1, . . . , r ,

(χE1,...,Es
r )x(X 1

x , . . . ,X r
x ) := (E1 ⊗ · · · ⊗ Es) ◦ (χsr)x(X 1

x , . . . ,X r
x ). (3)

In the sequel, G will always mean a Lie group with Lie algebra g, left
and right multiplication λ, ρ:G → G and inversion η:G → G. For S = L,R
let S:G × P → P denote a left, resp., right Lie group action. We identify S
with S:G→ Diff(P ). Also for notational convenience, we always write G on the
left, even if S denotes a right action. In that case, we put sgn(S) := 1, whereas
sgn(S) := −1, if S denotes a left action. Since S is differentiable, all maps
Sp:G→ P , p ∈ P , resp., Sg:P → P , g ∈ G, defined by Sp(g) := Sg(p) := S(g, p),
are differentiable, resp., diffeomorphisms.

G is called a Lie transformation group of the manifold P . If P is a vector
space and the action is linear, we speak of a representation of G, e. g., the adjoint
action Ad:G→ Gl(g) is a left representation. The trivial action means the natural
projection prP :G× V → V .

An action is effective if Sg = idP only for g = e. In that case G may be
thought of as a subgroup of Diff(P ). An action is free if (in addition) Sg(p) = p
only for g = e for all p ∈ P . Via λ and ρ every Lie group acts freely on itself.

ω ∈ A(P, V ) is called G-invariant or simply invariant if S?gω = ω for all
g ∈ G. Denote their set by A(P, V )inv . Analoguosly for any subgroup H < G,
we define A(P, V )H−inv to be the set of H -invariant forms, i. e., those forms that
are invariant under the restriction of S onto H × P . Especially we will use this
notation for Ge -invariant forms, where Ge is the connected component of e ∈ G.

A(P )inv and A(P )inv⊗V are graded subalgebras of A(P ), resp., A(P )⊗V
(whenever a wedge product ∧V of V -valued forms is given by a bilinear map-
ping m:V × V → V ), with d(A(P )inv) ⊆ A(P )inv . Analogous statements hold
for A(P )H−inv and A(P )H−inv ⊗ V , which are modules of A(P )inv . Obviously
A(P )inv ⊆ A(P )H−inv and A(P, V )inv ⊆ A(P, V )H−inv for any subgroup H < G.

Lemma 2.1. If S:G×P→P is a Lie group action then S?:G×D1(P )→D1(P ),
S?◦η:G×A(P, V )→ A(P, V ), S ′:G×A(P,Hom(T (g), V ))→ A(P,Hom(T (g), V ))
and S ′′:G×A(P, g)→ A(P, g) defined by

(S?)g(X ) := (Sg)?X for all X ∈ D1(P ),
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(S? ◦ η)g(ω) := (Sg−1)?ω for all ω ∈ A(P, V ),

S ′g(χ) := (Sg−1)?(Ad(gsgn(S))?)?χ for all χ ∈ A(P,Hom(T (g), V )) and

S ′′g (ϕ) := (Sg−1)? Ad(g− sgn(S))?ϕ for all ϕ ∈ A(P, g),

are all representations of G on the same side.

Let S , S ′ be two actions of G on spaces X , resp., X ′ on the same side. A
mapping f :X → X ′ is called G-equivariant, if

G×X ′ X ′

G×X X

-

-

? ?S ′

S

id×f f

commutes, i. e., if S ′(g, f(x)) = f(S(g, x)) for all x ∈ X and g ∈ G.

If S is a Lie group action on P and R is a right representation on W ,
then a differential form ω ∈ A(P,W ) is called G-equivariant, if S?gχ = R(gsgn(S))?χ

for all g ∈ G (resp., if S?gχ = L(g− sgn(S))?χ for a left representation L). Thus
— referring to the right representation Ad? on W = Hom(T (g), V ) — we call
χ ∈ A(P,Hom(T (g), V )) G-equivariant, if χ is invariant under S ′ . Analogously,
ϕ ∈ A(P, g) will be called G-equivariant if ϕ is invariant under S ′′ . We denote
the set of equivariant forms by A(P,W )equiv . It is a module over A(P )inv .

If G is compact with Haar measure µ we have projections onto invariant
and G-equivariant forms defined in the following way:

ωinv :=
∫

G
S?gω dµ(g) for all ω ∈ A(P, V ),

χequiv :=
∫

G
(Ad(g− sgn(S))?)?S

?
gχ dµ(g) for all χ ∈ A(P,Hom(T (g), V )),

ϕequiv :=
∫

G
Ad(gsgn(S))?S

?
gϕdµ(g) for all ϕ ∈ A(P, g).

As already introduced in the previous section, every X ∈ g induces a
canonical complete vector field SX ∈ D1(P ) by (SX)p := (dSp)e(X), so

(SX)p(f) = (dSp)e(X)(f) =
d

dt
f(SetX (p))|t=0 for all f ∈ C∞(P ), p ∈ P,

[SX ,Y]p = lim
t→0

1

t
{Yp−((SetX)?Y)p} = lim

t→0

1

t
{((Se−tX)?Y)p−Yp} for all Y ∈ D1(P ).

R: g→ D1(P ) and −L: g→ D1(P ) are Lie algebra homomorphisms and

[RX ,RY ] = R[X,Y ], [LX ,LY ] = L[Y,X] = −L[X,Y ] for all X, Y ∈ g,

(Rg−1)?RX = RAd(g)X , (Lg)?LX = LAd(g)X for all g ∈ G, X ∈ g.

Obviously S = L,R only depends on the restriction of S onto Ge × P . For all
forms ω ∈ A(P )⊗ V we have LSXω = [ d

dt
((SetX)?ω)|t=0] and for all X, Y ∈ g:

[LSX ,LSY ] = L[SX ,SY ] = sgn(S)LS[X,Y ]
, [LSX , d] = 0, (4)

[LSX , ıSY ] = ı[SX ,SY ] = sgn(S)ıS[Y,X]
, LSX = ıSX ◦ d+ d ◦ ıSX . (5)
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We call a differential form ω ∈ A(P ) g-invariant if LSXω = 0 for all X ∈ g.
Analogously, ω will be called horizontal if ıSXω = 0 for all X ∈ g. Denote their
sets by A(P )g−inv , resp., A(P )h and let A(P )hg−inv := A(P )g−inv ∩ A(P )h.

The notion of “horizontal” forms is due to the fact that for a principal
bundle P (M,G), the horizontal forms in the sense of (1) are exactly those forms ω
with ıRXω = 0 for all X ∈ g with respect to the free right action R on P .

Since ıX and LX are (skew-)derivations of A(P ) and Ge = 〈exp g〉, we get:

Lemma 2.2. A(P )g−inv , A(P )h and A(P )hg−inv are graded subalgebras of
A(P ) with d(A(P )g−inv) ⊆ A(P )g−inv and d(A(P )hg−inv) ⊆ A(P )hg−inv . Analo-
gous statements hold for A(P )g−inv ⊗ V and ∧V , etc.

A(P )inv⊗V ⊆ A(P )g−inv⊗V = A(P )Ge−inv⊗V for every vector space V .
If G is connected then A(P )inv ⊗ V = A(P )g−inv ⊗ V .

Lemma 2.3. S: g → D1(P ) induces a G-equivariant C∞(P )-module homo-
morphism S ′:C∞(P, g) → C∞(P )S(g) ⊆ D1(P ) (with respect to S ′′ and S? ). If
G acts effectively on P then S is injective. If G acts freely on P then even
(dSp)e is injective for all p ∈ P , thus X 6= 0 yields (SX)p 6= 0 for all p ∈ P ; for
every basis {Ei}i,...,dim g for g, {SEi}i,...,dim g is then a basis for the free C∞(P )-
module C∞(P )S(g) and the induced S ′ is an isomorphism of free C∞(P )-modules.

Proof. Assume that G acts effectively. Let X ∈ g and suppose (SX)p(f) = 0 for
all f ∈ C∞(P ) and all p ∈ P . For p = S(esX , p′) this yields d

dt
f(Se(t+s)X(p′))|t=0 =

d
dt
f(SetX (p′))|t=s = 0 for all f ∈ C∞(P ), p′ ∈ P and s ∈ R. Thus S(etX , p′) = p′

for all p′ ∈ P and t ∈ R, and thus X = 0 since S is effective. Analo-
gously for a free action, one proves injectivity of (dSp)e for all p ∈ P using
(SX)S(esX ,p) = dSesX (SX)p . But then all SEi are independent over C∞(P ), since
they are independent for all p ∈ P .

Finally we need the notion of g-equivariant forms. Just as Ad:G →
Gl(g) induces the representation ad: g → gl(g) with ad(X)(Y ) = [X, Y ], every
representation S:G → Gl(W ) of a Lie group G induces a representation s =
dSe: g → gl(W ) of g such that S ◦ expX = esX for all X ∈ g. We will
identify s with the corresponding bilinear mapping s: g × W → W given by
s(X,w) := sX(w) := (dSw)e(X). From this point of view, R and L: g→ D1(P ) =
derC∞(P ) are the (infinite dimensional) representations induced by the Lie group
representations R? and L?:G→ Aut(C∞(P )).

Let ad?: g × Hom(T (g), V ) → Hom(T (g), V ) denote the bilinear mapping
induced by Ad? . Then for X,Xi ∈ g, p ∈ N0 and K ∈ Hom(

⊗p g, V ), we have

(ad?X K)(X1, . . . , Xp) =
p∑

i=1

K(X1, . . . , [X,Xi], . . . , Xp). (6)

If S is a Lie group action of G on P and S ′:G→ Gl(W ) is a representation,
then a differential form χ ∈ A(P )⊗W will be called g-equivariant if

LSXχ = sgn(S) sgn(S ′)s′(X)?χ for all X ∈ g. (7)

Thus χ ∈ A(P )⊗Hom(T (g), V ) is g-equivariant if LSXχ = sgn(S)(ad?X)?χ for all
X ∈ g. We will denote the vector space of g-equivariant forms by A(P )g−equiv⊗W .
Analogously to Lemma 2.2 we obtain:
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Lemma 2.4. A(P )g−equiv ⊗ W is a A(P )g−inv -module with d(A(P )g−equiv ⊗
W ) ⊆ A(P )g−equiv⊗W and A(P )equiv⊗W ⊆ A(P )g−equiv⊗W = A(P )Ge−equiv⊗W
for all vector spaces W . If G is connected then A(P )equiv⊗W = A(P )g−equiv⊗W .

It is an elementary result in differential geometry (e. g., cf. [4, p. 34]) that

(LXω)(P1, . . . ,Pn) = X (ω(P1, . . . ,Pn))−
n∑

i=1

ω(P1, . . . , [X ,P i], . . . ,Pn)

for all X ,P i ∈ D1(P ) and ω ∈ A(P )⊗ V . This yields the following corollaries:

Corollary 2.5. If ω ∈ An(P )g−inv ⊗ V , then for all X ∈ g and P i ∈ D1(P )

SX(ω(P1, . . . ,Pn)) =
n∑

i=1

ω(P1, . . . , [SX ,P i], . . . ,Pn).

Corollary 2.6. Let χsn ∈ An(P ) ⊗ Hom(
⊗s g, V ) be g-equivariant. Then for

all p ∈ P , P i ∈ D1(P ) and X,Ei ∈ g:

(LSXχ
s
n)(P1, . . . ,Pn)(p)(E1 ⊗ · · · ⊗ Es) =

= {SX(χsn(P1, . . . ,Pn))−
n∑

i=1

χsn(P1, . . . , [SX ,P i], . . . ,Pn)
}

(p)(E1 ⊗ · · · ⊗ Es)

= sgn(S)
s∑

j=1

χsn(P1, . . . ,Pn)(p)(E1 ⊗ · · · ⊗ Ej−1 ⊗ [X,Ej]⊗ Ej+1 ⊗ · · · ⊗ Es).

3. Mapping invariant forms onto equivariant forms

Now everything is prepared for the definition of the operators S i• which map V -
valued forms onto Alti(g, V )-valued forms:

Definition 3.1. Let S be a Lie group action of G on P and ωn ∈ An(P, V ).
We define Si•ωn ∈ An−i(P,Alti(g, V )), i ≤ n, for all Pj ∈ D1(P ), Ek ∈ g and
p ∈ P by

[(Si•ωn)(P1, . . . ,Pn−i)(p)](E1, . . . , Ei) := n!
(n−i)!ωn(S1, . . . ,Si,P1, . . . ,Pn−i)(p) ∈ V,

where S i := SEi . Thus Si•ωn ∈ An−i(P ) ⊗ Alti(g, V ) if ωn ∈ An(P ) ⊗ V . For
i > n we put Si•ωn = 0.

The factor n!
(n−i)! is inherited from the definition of the interior product with

vector fields: recall (Si•ωn)E1,...,Ei
n−i ∈ An−i(P, V ) for Ek ∈ g from (3), then we have

(Si•ωn)E1,...,Ei
n−i = (ıSi ◦ · · · ◦ ıS1)ωn. (8)

If {Ek} is a base for g, we obtain for ω ∈ An(P ) and v ∈ V :

[Si•(ω⊗v)](P1, . . . ,Pn−i) = n!
(n−i)!

∑

k1<···<ki
ω(Sk1, . . . ,Ski,P1, . . . ,Pn−i)⊗[(Ek1∧· · ·∧Eki) 7→v].
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Lemma 3.2. For all i ≤ n, Si•:An(P, V ) → An−i(P,Alti(g, V )) is C∞(P )-
linear. For ωn ∈ An(P, V ), χsn ∈ An(P,Alts(g, V )) and i+ j ≤ n, we have

S0
•ωn = ωn, (Sn•ωn)(p) = n! [(Sp)?ωn]e for all p ∈ P, (9)

Si•(Λ?ωn) = Λ?(S
i
•ωn) for all Λ ∈ Hom(V,W ), (10)

S?g (Si•ωn) = (Ad(gsgn(S))?)?[S
i
•(S

?
gωn)], thus (11)

S?g(S
i
•χ

s
n) = (Ad(gsgn(S))?)?(S

i
•χ

s
n), if S?gχ

s
n = (Ad(gsgn(S))?)?χ

s
n. (12)

Let f i,j: Alti+j(g, V ) ↪→ Alti(g,Altj(g, V )) denote the injection defined by

[f i,j(a)](E1, . . . , Ei)(F1, . . . , Fj) := a(E1, . . . , Ei, F1, . . . , Fj) for a ∈ Alti+j(g, V ).

Then
f i,j? (Si+j• ωn) = (−1)ijSi•(S

j
•ωn). (13)

Lemma 3.3. For all i ≤ n we have:

Si•(An(P, V )inv) ⊆ An−i(P,Alti(g, V ))equiv,

Si•(An(P )inv ⊗ V ) ⊆ An−i(P )equiv ⊗ Alti(g, V ),

Si•(An(P )g−inv ⊗ V ) ⊆ An−i(P )g−equiv ⊗ Alti(g, V ).

Proof. (12) yields that Si•ωn is G-equivariant if ωn is invariant under S . Now
the operators Si• only depend on the restriction of S to Ge×P . Thus Lemmas 2.2
and 2.4 prove that Si•ωn is g-equivariant if ωn is g-invariant.

Let us compute in how far the operators S i• commute with the exterior
differentiation, interior products with vector fields and Lie differentiation.

Lemma 3.4. Let S be a Lie group action of G on P . For all ωn ∈ An(P )⊗V ,
i ≤ n+ 1 and Ek ∈ g we have {Si•(dωn)− (−1)id(Si•ωn)}E1,...,Ei

n+1−i =

= −
i∑

j=1

(−1)j
{

[Si−1
• (LSjωn)]

E1,...,Êj ,...,Ei
n+1−i + sgn(S)

i∑

k=j+1

(Si−1
• ωn)

E1,...,Êj ,...,[Ej ,Ek],...,Ei
n+1−i

}

= −
i∑

j=1

(−1)j
{

[LSj(S
i−1
• ωn)]

E1,...,Êj ,...,Ei
n+1−i − sgn(S)

i∑

k=j+1

(Si−1
• ωn)

E1,...,Êj ,...,[Ej ,Ek],...,Ei
n+1−i

}
,

where ̂ indicates that the term is omitted.

Proof. From (8), the fact that d commutes with the push-outs (E1 ⊗ · · · ⊗ Ei)?
and the identities (5) we get by induction:

{Si•(dωn)− (−1)id(Si•ωn)}E1,...,Ei
n+1−i = −

i∑

j=1

(−1)j(ıSi ◦ · · · ◦ LSj ◦ · · · ◦ ıS1)ωn

= −
i∑

j=1

(−1)j(· · ·◦ı̂Sj◦· · ·)(LSjωn)−
i∑

j=1

(−1)j
j−1∑

k=1

(ıSi◦· · ·◦ı̂Sj◦· · ·◦ı[Sj ,Sk]◦· · ·◦ıS1)ωn.

Interchanging j and k in the last sum and [Sj,Sk] = sgn(S)S[Ej ,Ek] yield the first
equation. The second is proved analogously.
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If χsn ∈ An(P )⊗ Hom(
⊗s g, V ) is g-equivariant, Corollary 2.6 yields

[Si−1
• (LSjχ

s
n)]

E1,...,Êj ,...,Ei+s
n+1−i = sgn(S)

s∑

k=1

(Si−1
• χsn)E1,...,Êj ,...,[Ej ,Ei+k],...,Ei+s,

(we again identify Hom(
⊗i+s g, V ) and Hom(

⊗i g,Hom(
⊗s g, V ))). We obtain:

Corollary 3.5. For g-equivariant χsn ∈ An(P )⊗Hom(
⊗s g, V ) and i ≤ n+1,

{[Si•(dχsn)]− (−1)id(Si•χ
s
n)}E1,...,Ei+s

n+1−i =

= − sgn(S)
i∑

j=1

i+s∑

k=j+1

(−1)j(Si−1
• χsn)

E1,...,Êj ,...,[Ej ,Ek],...,Ei+s
n+1−i .

Thus for g-invariant ωn , dωn = 0 yields d(S•ωn) = 0, too.

Analogously one proves using ıX ◦ ıY = −ıX ◦ ıY and [LX , ıY ] = ı[X ,Y ] :

Lemma 3.6. For all ωn ∈ An(P )⊗ V , X ∈ D1(P ), Ek ∈ g, and i ≤ n,

[Si•(ıXωn)]E1,...,Ei
n−1−i = (−1)i[ıX (Si•ωn)]E1,...,Ei

n−1−i ,

[Si•(LXωn)− LX (Si•ωn)]E1,...,Ei
n−i =

i∑

j=1

(−1)j[Si−1
• (ı[X ,Sj ]ωn)]

E1,...,Êj ,...,Ei
n−i .

If X = SX with X ∈ g, we get [Si•(ıSXωn)]E1,...,Ei
n−1−i = (Si+1

• ωn)X,E1,...,Ei
n−1−i ,

[Si•(LSXωn)− LSX (Si•ωn)]E1,...,Ei
n−i = − sgn(S)

i∑

j=1

(Si•ωn)
E1,...,[X,Ej ],...,Ei
n−i .

4. Mapping equivariant forms onto invariant forms

For our purposes we also need operators in the opposite direction, that produce
V -valued forms from Hom(T (g), V )-valued and g-valued forms. This can be done
in a very general way and does not require a Lie group action (cf. [1]). Given
forms χsr ∈ Ar(P,Hom(

⊗sW,V ) and φp =
∑m
i=1 φ

i ⊗ Ei ∈ Ap(P ) ⊗ W with
p, r, s−1 ∈ N0 , we define a V -valued form χsr •φp in the following way [recall (3)]:

χsr • φp =
m∑

i1,...,is=1

χ
Ei1 ,...,Eis
r ∧ φi1 ∧ · · · ∧ φis ∈ A(P, V ). (14)

Thus if χsr ∈ Ar(P ) ⊗ Hom(
⊗sW,V ) then also χsr • φp ∈ Ar+sp(P )⊗ V . Linear

extension defines the operator • for χ ∈ A(P,Hom(T (W ), V )). Note that if
χsr ∈ Ar(P, Symς

s(W,V ), ς = ±, with s > 1 and ς(−1)p = −1 then χsr • φp = 0.

Since • behaves well under pullbacks and push-outs, one easily proves that
• maps equivariant forms onto invariant forms (cf. [1, Lemma 7.1]):

Lemma 4.1. Let S:G × P → P be a Lie group action and L:G → Gl(W )
be a left representation. If ϕr ∈ Ar(P,W ) and χ ∈ A(P,Hom(T (W ), V )) are
equivariant (i. e., S?gϕr = L(g− sgn(S))?ϕr and S?gχ = (L(gsgn(S))?)?χ for all g ∈
G), then χ • ϕr is invariant. E. g., if χ ∈ A(P,Hom(T (g), V ))equiv and ϕr ∈
Ar(P, g)equiv then χ • ϕr is invariant.

Analogously, if χ and ϕr are both g-equivariant then χ•ϕr is g-invariant.

We are interested especially in the case where χsn = Ss•ωn and we combine
both operators in the following form:
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Definition 4.2. Let S be a Lie group action of G on P . Then for ωn ∈
An(P, V ) and θ ∈ A1(P, g) we define

ωn ◦S θ :=
n∑

i=0

(−1)i(n−i)

i!
(Si•ωn) • θ ∈ An(P, V ).

Analogously, for f :M → P and θ ∈ A1(M, g), resp., linear Λ:V →W we write

(f ?ωn)◦S θ :=
n∑

i=0

(−1)i(n−i)

i!
f ?(Si•ωn) • θ ∈ An(M,V ), resp.,

(Λ?ωn)◦S θ :=
n∑

i=0

(−1)i(n−i)

i!
Λ?[(S

i
•ωn) • θ] ∈ An(P,W ), etc.

Linear extension defines ω ◦S θ for ω ∈ A(P, V ).

Due to Lemmas 3.3 and 4.1, ω◦S θ is (g-)invariant if ω is (g-)invariant and θ
is (g-)equivariant. ω◦S θ is the differential form that one obtains if ωp , p ∈ P , does
not act on the tangent vectors X i

p ∈ Tp(P ) themselves but on X i
p + (dSp)eθp(X i

p).
Indeed, we have:

Lemma 4.3. Let p ∈ P and X i ∈ D1(P ). Then

(ω◦S θ)p(. . . ,X i
p, . . .) = ωp(. . . ,X i

p + (dSp)eθp(X i
p), . . .). (15)

Proof. Let ω ∈ An(P, V ). Then ωp(. . . ,X i
p + (dSp)eθp(X i

p), . . .) =

=
n∑

i=0

(
n
i

) ∑

ρ∈Sn

(−1)ρ

n!
ωp((dS

p)eθpX ρ(1)
p , . . . , (dSp)eθpX ρ(i)

p ,X ρ(i+1)
p , . . . ,X ρ(n)

p )

=
n∑

i=0

1
i!

∑

ρ∈Sn

(−1)ρ

n!
(Si•ω)p(X ρ(i+1)

p , . . . ,X ρ(n)
p )[θpX ρ(1)

p , . . . , θpX ρ(i)
p ]

=
n∑

i=0

(−1)i(n−i)

i!
[(Si•ω) • θ](X 1

p , . . . ,X n
p ) = (ω ◦S θ)p(X 1

p , . . . ,X n
p ).

Lemma 4.4. For all ω ∈ A(P, V ), φ ∈ A1(P, g) and horizontal θ ∈ A1(P, g),

[(ω◦S θ)◦S φ] = ω◦S (θ + φ). (16)

Proof. If θ is horizontal then θp(dS
p)e = 0 for all p ∈ P . Thus for all

vector fields X i , Lemma 4.3 yields [(ω ◦S θ) ◦S φ]p(. . . ,X i
p, . . .) = ωp(. . . ,X i

p +
(dSp)eφp(X i

p)+(dSp)eθp(X i
p)+(dSp)eθp(dS

p)eφp(X i
p), . . .) = ωp(. . . ,X i

p+(dSp)e(φp+
θp)(X i

p), . . .) = [ω◦S (θ + φ)]p(. . . ,X i
p, . . .).

Again for S = L,R , let ΘS ∈ A1(G, g) denote the left, resp., right canonical
1-form on the Lie group G that is given by ΘS = ψS(idg), where ψS: Alt(g, V )→
A(G, V )inv (invariance with respect to left, resp., right multiplication) means the
isomorphism that is inverse to the evaluation at e; i. e., ΘL

g (Xg) = dλg−1(Xg) and
ΘR
g (Xg) = dρg−1(Xg) for all g ∈ G and Xg ∈ Tg(G). We thus have ΘR = Ad •ΘL ,

i. e., ΘR
g = Ad(g) ◦ ΘL

g for all g ∈ G. If f :M → G is differentiable, f ?ΘR =
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(Ad ◦f) • f ?ΘL and f ?ΘL = (Ad ◦f−1) • f ?ΘR , where f−1 := η ◦ f :M → G. Also
with the constant map 1 ∈ C∞(G):

ψS(K) = (1⊗K) •ΘS ∈ A(G, V )inv for all K ∈ Alt(g, V ). (17)

Let us first give an application of ◦S . Suppose S is a Lie group action of
G on P and ω ∈ An(P, V )inv . For any differentiable g:M → G and f :M → P
one would like to compute [S ◦ (g, f)]?ω . Then in order to split this form into its
portions that belong to f ? , resp., g? , one needs ◦S . In fact, the following holds:

Theorem 4.5. Let S be a Lie group action of G on P , S ′ a representation
of G on V on the same side and ω ∈ A(P, V ) be equivariant. If g:M → G and
f :M → P are differentiable, then S ′g ∈ A(M,Gl(W )) and

[S ◦ (g, f)]?ω = S ′g • (f ?ω ◦S g?ΘS
G) = (S ′g • f ?ω)◦S g?ΘS

G. (18)

Proof. Let X i ∈ D1(M) and x ∈M . Then {[S ◦ (g, f)]?ω}x(. . . ,X i
x, . . .) =

= ωS(g(x),f(x))(. . . , [(dSg(x))f(x)dfx + (dSf(x))g(x)dgx]X i
x, . . .)

= (S?g(x)ω)f(x)(. . . , dfxX i
x + d(Sg−1(x) ◦ Sf(x))g(x)dgxX i

x, . . .)

= S ′g(x) ◦ [ωf(x)(. . . , dfxX i
x + (dSf(x))e(g

?ΘS
G)xX i

x, . . .)]

= S ′g(x) ◦ [(f ?ω◦S g?ΘS
G)x(. . . ,X i

x, . . .)] = [S ′g • (f ?ω◦S g?ΘS
G)]x(. . . ,X i

x, . . .).

Corollary 4.6. If S be a Lie group action of G on P and ω ∈ A(P, V ) is
invariant then for any differentiable g:M → G and f :M → P

[S ◦ (g, f)]?ω = f ?ω ◦S g?ΘS
G. (19)

Suppose that under the conditions of Theorem 4.5, (Sp)?ωn is indepen-
dent of p ∈ P . Then (Sp)?ωn ∈ An(G, V ) is invariant: (Lp)?ω = ψR(K),
resp., (Rp)?ω = ψL(K) for a K ∈ Altn(g, V ). Moreover, we find (S ′g)?K =
Ad(g− sgnS)?K , so for the i = n term in the definition of ◦S in Theorem 4.5 we
get from (9) with −S := R for S = L, and vice versa:

S ′g • [f ?(Sn•ωn) • g?ΘS
G] = g?ψ−S(K).

The i = 0 term reads S ′g • f ?ω , so for ω ∈ A1(G, g) we obtain

Corollary 4.7. Let L,R:G× P → P be a left, resp., right action of G on P
and f :M → P and g:M → G be differentiable; K ∈ Alt1(g, g) be invertible and
ω ∈ A1(P, g). Then K(Ad ◦g)K−1 ∈ A0(M,Alt1(g, g)) and we have

1. If (Lp)?ω = ψR(K) and L?cω = K Ad(c)K−1 ◦ ω for all p ∈ P , c ∈ G, then

[L ◦ (g, f)]?ω = K(Ad ◦g)K−1 • f ?ω + g?ψR(K).

2. If (Rp)?ω = ψL(K) and R?
cω =KAd(c−1)K−1◦ω for all p ∈ P , c ∈ G, then

[R ◦ (g, f)]?ω = K(Ad ◦g−1)K−1 • f ?ω + g?ψL(K).
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For P = G and L = λ, resp., R = ρ, Corollary 4.7 gives a proof for the
formulas for (f · g)?ΘS and (f−1)?ΘS : put K = idg and observe that (f · f−1)? =
e? = 0, where e:M → {e} ⊆ G is the constant map onto the neutral element.
Then Corollary 4.7 yields:

(f · g)?ΘL = (Ad ◦g−1) • f ?ΘL + g?ΘL,

(f · g)?ΘR = f ?ΘR + (Ad ◦f) • g?ΘR,

(f−1)?ΘL = −(Ad ◦f) • f ?ΘL = −f ?ΘR,

(f−1)?ΘR = −(Ad ◦f−1) • f ?ΘR = −f ?ΘL.

We already stated another application of ◦S in Section 1.: if Γ is a connec-
tion on a principal bundle P (M,G) and B(M,F,G) is an associated fiber bundle
with a left Lie group action L:G× F → F (we also use L for the natural exten-
sions to the bundle charts Uα × F ), then for any φ ∈ A(F, V ), the local vertical
projections of pr?F φ ∈ A(Uα × F ) are given by

(pr?F φ)vα = (pr?F φ)◦L (pr?Uα Aα). (20)

This follows immediately from Lemma 4.3 and vα(x,f)(X, Y ) = (0, Y +(dLf)eA
α
x(X))

for all (X, Y ) ∈ Tx(Uα)⊕ Tf(F ). If φ is invariant, then one easily computes that

L?g[(pr?F φ)vα] = (pr?F φ)◦L [(pr?Uα(Ad(g−1)?A
α)]. (21)

Let Uαβ := Uα∩Uβ 6= Ø and Tβα := (ψβ|Uαβ)−1)◦(ψα|Uαβ) denote the maps
for the change of bundle charts. If gβα:Uαβ → G are the transition functions, then
the maps Tβα are given by

Tβα = (prUαβ , L ◦ (gβα ◦ prUαβ , prF )) = L ◦ (gβα ◦ prUαβ , idUαβ×F ). (22)

For computations on fiber bundles one needs to know how differential forms trans-
form under such a change of bundle charts, e. g., in order to check whether a
collection of local forms defines a global form. In view of this question we obtain
from (19) for φ ∈ A(F, V )inv :

T ?βα(pr?F φ) = (pr?F φ)◦L (gβα ◦ prUαβ)?ΘL. (23)

Recall from the theory of connections that the gauge potentials Aα transform
according to Aα = (Ad ◦gαβ) • Aβ + g?βαΘL , where we omitted the restriction
to Uαβ . In fact this is a consequence of Corollary 4.7.2 for ω = ωΓ , K = idg

and f = σβ,e because σα,e = R ◦ (gβα, σβ,e). Further observe that in view of
Lemma 4.4, (gβα ◦prUαβ)?ΘL and (pr?Uα Aα) are both horizontal. Although due to
(21) for invariant φ ∈ A(F, V ), the vertical form (pr?F φ)vα needs not be invariant
and thus Corollary 4.6 does not apply, one quickly checks tracing the proof of
Theorem 4.5, that

T ?βα[(pr?F φ)vβ] = [(pr?F φ)◦L [(pr?Uαβ(Ad(gαβ)?A
β)]]◦L (gβα ◦ prUαβ)?ΘL

= [(pr?F φ)◦L [pr?Uαβ((Ad ◦gαβ) • Aβ + g?βαΘL)] = (pr?F φ)vα.

We have thus proved
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Theorem 4.8. If φ ∈ A(F, V ) is invariant, {(pr?F φ)vα ∈ A(Uα × F, V )}α∈A ,
resp., {(π?αφ)vα ∈ A(π−1(Uα), V )}α∈A defines a global form φv ∈ A(B, V ). If φ
is invariant and locally vertical, then {π?αφ}α∈A is global.

Generalizations of this theorem to combinations of equivariant differen-
tial forms as in Lemma 4.1 are possible. E. g., if χ ∈ A(F,Hom(T (g), V )) is
equivariant and Fα ∈ A2(Uα, g) denote the local gauge fields that are obtained
from the curvature 2-form ΩΓ as Fα := σ?α,eΩ

Γ , then {[(π?αχ)vα] • (π?Fα) ∈
A(π−1(Uα), V )}α∈A defines a global form χv • F on the bundle B , cf. [2]. Lo-
cally this form is given by

[(pr?F χ)vα] • (pr?Uα Fα) = [(pr?F φ)◦L (pr?Uα Aα)] • (pr?Uα Fα). (24)

5. Differentiation of the combined forms

From the previous applications it should be clear that it is important to control
interior products, Lie derivatives and above all, the exterior derivatives of the
differential forms χsr • φp and ωn ◦S θ . E. g., one is interested in the exterior
derivative d(φv) from Theorem 4.8 if φ is closed. Thus the computation of
d(ωn◦S θ) and, more generally, of d[(χsn◦S θ)•φp] will be the main task of this last
section. Unfortunately, the most general formulas turn out to be quite voluminous.
For this reason, we will then discuss the important special cases.

We need to generalize • to give formulas for χsr • (φp + ψp) and d(χsr • φp),
cf. [1]. First we observe that χsr ∈ Ar(P, Symς

s(g, V )), ς = ±, naturally defines

χs
′;s′′
r ∈ Ar(P, Symς

s′(g, Symς
s′′(g, V ))) for all s′, s′′ ∈ N0, s

′ + s′′ = s. (25)

For any such combination of s′ and s′′ , χsr • (φqp + ψqp) will contain terms, where
s′ factors of φqp and s′′ terms of ψqp serve as input for χsr . In order to cover this
situation, we need the following two definitions.

Generally, for χs
′;s′′
r ∈ Ar(P,Hom(

⊗s′ g,Hom(
⊗s′′ g, V ))), s′, s′′ ∈ N, r ∈

N0 , and any Ei ∈ g, i = 1, . . . , s′ , we define

χE1,...,Es′ ;s
′′

r := [(E1 ⊗ · · · ⊗ Es′)?]?χs
′;s′′
r ∈ Ar(P,Hom(

⊗s′′ g, V ))).

[Thus if χs
′,s′′
r ∈ Ar(P )⊗Hom(

⊗s′ g,Hom(
⊗s′′ g, V )) then χ

E1,...,Es′ ;s
′′

r ∈ Ar(P )⊗
Hom(

⊗s′′ g, Z).] For any such differential form χs
′;s′′
r and any φp ∈ Ap(P )⊗ g, let

V ′ := Hom(
⊗s′′ g, Z) and χ̃s

′
r := χs

′;s′′
r ∈ Ar(P,Hom(

⊗s′ g, V ′)), and define

χs
′;s′′
r J φp := χ̃s

′
r • φp ∈ Ar+s′p(P,Hom(

⊗s′′ g, V ))).

If φp =
m∑
j=1

φj ⊗ Ej ∈ Ap(P )⊗W then we obtain

χs
′;s′′
r J φp =

m∑

j1,...,js′=1

χ
Ej1 ,...,Ejs′ ;s

′′

r ∧ φj1 ∧ · · · ∧ φjs′ , (26)

which shows that χs
′;s′′
r J φp ∈ Ar+s′p(P ) ⊗ Hom(

⊗s′′ g, V )) if χs
′;s′′
r ∈ Ar(P ) ⊗

Hom(
⊗s′ g,Hom(

⊗s′′ g, V )).
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We also introduce generalizations
(
s
k

)
±

of the ordinary binomial coefficients:

(
s

k

)

+

:=

(
s

k

)
,

(
s

k

)

−
:=





0, if s even and k odd,(
[s/2]
[k/2]

)
, else (for r ∈ R, [r] := max

z∈Z
{z ≤ r}). (27)

Thus
(
s
k

)
±

=
(

s
s−k

)
±

as before. Now if χsr ∈ Ar(P, Symς
s(g, V )) and ` := ς(−1)p

then χsr • (φp + ψp) can be written as

χsr • (φp + ψp) =
s∑

k=0

(
s
k

)
`
(χk;s−k

r J φp) • ψp =
∑s
k=0

(
s
k

)
`
(χk;s−k

r J ψp) • φp.

If χsr ∈ Ar(P )⊗Symς
s(g, V ) we obtain for d(χsr •φp), ıX (χsr •φp) and LX (χsr •φp):

d(χsr • φp) = (dχ)sr+1 • φp + (−1)r
(
s
1

)
`

[χ1;s−1
r J (dφ)p+1] • φp, (28)

ıX (χsr • φp) = (ıXχ)sr−1 • φp + (−1)r
(
s
1

)
`

[χ1;s−1
r J (ıXφ)p−1] • φp, (29)

LX (χsr • φp) = (LXχ)sr • φp +
(
s
1

)
`

[χ1;s−1
r J (LXφ)p] • φp. (30)

Note that whenever χsr •φp 6= 0,
(
s
k

)
`
=
(
s
k

)
. If χsr∈Ar(P )⊗Hom(

⊗s g, V ), we get

d(χsr • φp) = (dχsr)• φp + (−1)r
s−1∑

j=0

(−1)jp[(χj;s−jr J φp)1;s−j−1J dφp] • φp, (31)

ıX (χsr • φp) = (ıXχ
s
r)• φp + (−1)r

s−1∑

j=0

(−1)jp[(χj;s−jr J φp)1;s−j−1J ıXφp] • φp,(32)

LX (χsr • φp) = (LXχ
s
r) • φp +

s−1∑

j=0

(−1)jp[(χj;s−jr J φp)1;s−j−1 J LXφp] • φp. (33)

Now for the operator ◦S : if θ is horizontal one quickly verifies analogously
to the proof of Lemma 4.4 that ıSX (ω◦S θ) = (ıSXω)◦S θ . Thus we have:

Lemma 5.1. If χsr ∈ Ar(P )⊗ Symς
s(g, V ) and θ is horizontal then

ıSX [(χsr◦S θ)•φp] = [(ıSXχ)sr−1◦S θ]•φp+(−1)r
(
s
1

)
`

[(χsr◦S θ)1;s−1
r J (ıSXφ)p−1]•φp;

If χsr ∈ Ar(P )⊗ Hom(
⊗s g, V ) and both θ and φp are horizontal then

ıSX [(χsr ◦S θ) • φp] = [(ıSXχ)sr−1 ◦S θ] • φp.

Recall ∧V from Section 2. and let ∧g denote the exterior product for g-
valued differential forms which is induced by ad: g× g→ g.

Lemma 5.2. Let χ1
n ∈ An(P,Hom(g, V )) and {Ek}k=1,...,dim g be a basis for g.

Then for θq =
∑dim g
k=1 θkq ⊗ Ek ∈ Aq(P, g) and φp =

∑dim g
l=1 φlp ⊗ El ∈ Ap(P, g),

χ1
n • (θq ∧g φp) =

dim g∑

j=1

χEjn ∧ (θq ∧g φp)
j =

dim g∑

k,l=1

χ[Ek,El]
n ∧ θkq ∧ φlp. (34)
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Proof. Let [Ek, El] =
∑dim g
j=1 cjklEj with structure constants cjkl . Then by

definition, θq ∧g φp =
∑dim g
k,l=1 θ

k
q ∧ φlp ⊗ [Ek, El] =

∑dim g
j,k,l=1 c

j
kl θ

k
q ∧ φlp ⊗ Ej =:

∑dim g
j (θq ∧g φp)

j ⊗ Ej , thus

χ1
n•(θq∧gφp) =

dim g∑

j=1

χEjn ∧(θq∧gφp)
j =

dim g∑

j,k,l=1

cjkl χ
Ej
n ∧θkq∧φlp =

dim g∑

k,l=1

χ

∑dim g

j=1
cj
kl
Ej

n ∧θkq∧φlp.

We will divide the computation of the exterior derivatives into two steps:

Proposition 5.3. Let S be a Lie group action of G on P , θq ∈ Aq(P, g),
φp ∈ Ap(P, g) and χsn ∈ An(P ) ⊗ Hom(

⊗s g, V ) g-equivariant. Then for all
i ≤ n+ 1 with ` = (−1)q−1

{[d(Si•χ
s
n)− (−1)iSi•(dχ

s
n)]i;sn+1 J θq}

s • φp =

= sgn(S)
{
−
(
i
2

)
`
{[(Si−1

• χsn)i−2;s+1
n+1−i Jθq]1;sJ(θq∧gθq)}s •φp +

+
(
i
1

)
`

s∑

k=1

(−1)qp(k−1){[[(Si−1
• χsn)i−1;s

n+1−iJθq]k−1;s−k+1Jφp]1;s−kJ(θq∧gφp)}s−k•φp
}
.

Proof. With the notation of the previous lemma, we evaluate the left side using
(14). Then by Corollary 3.5,

dim g∑

l1,...,li+s

{d(Si•χ
s
n)− (−1)iSi•(dχ

s
n)}El1 ,...,Eli+sn+1−i ∧· · ·∧θliq ∧φli+1

p ∧· · ·∧φli+sp =

= sgn(S)
i∑

j=1

i+s∑

k=j+1

(−1)i+j
dim g∑

l1,...,li+s

(Si−1
• χsn)

El1,...,Êlj,...,[Elj,Elk ],...,Eli+s
n+1−i ∧· · ·∧θliq ∧φli+1

p ∧· · ·

= − sgn(S)
i∑

j=1

i∑

k=j+1

`k−j+1
dim g∑

l1,...,li+s

(Si−1
• χsn)

El1 ,...,Êlj ,...,Êlk ,...,Eli ,[Elj ,Elk ];...,Eli+s
n+1−i ∧

∧ θl1q ∧ · · ·
̂
θ
lj
q · · · θ̂lkq · · · ∧ θliq ∧ θljq ∧ θlkq ∧ φli+1

p ∧ · · · ∧ φli+sp

+ sgn(S)
i∑

j=1

`i−j
s∑

k=1

(−1)qp(k−1)
dim g∑

l1,...,li+s

(Si−1
• χsn)

El1,...,Êlj,...,Eli;...,[Elj,Eli+k ],...,Eli+s
n+1−i ∧

∧ θl1q ∧ · · · θ̂
lj
q · · · ∧ θliq ∧ φli+1

p ∧ · · · ∧ θljq ∧ φli+kp ∧ · · · ∧ φli+sp

= − sgn(S)
i∑

j=1

i∑

k=j+1

`k−j+1
dim g∑

l1,...,li+s−1

(Si−1
• χsn)

El1 ,...,Eli−1
;Eli ,...,Eli+s

n+1−i ∧

∧ θl1q ∧ · · · ∧ θli−2
q ∧ (θq ∧g θq)

li−1 ∧ φlip ∧ · · · ∧ φli+s−1
p

+ sgn(S)
i∑

j=1

`i−j
s∑

k=1

(−1)qp(k−1)
dim g∑

l1,...,li+s−1

(Si−1
• χsn)

El1 ,...,Eli−1
;Eli ,...,Eli+s

n+1−i ∧

∧ θl1q ∧ · · · ∧ θli−1
q ∧ φlip ∧ · · · ∧ (θq ∧g φp)

li+k−1 ∧ · · · ∧ φli+s−1
p ,

by (34). Since
i∑

j=1

i∑
k=j+1
`k−j+1 =

(
i
2

)
`

and
i∑
j=1
`i−j =

(
i
1

)
`
, all follows from (26).
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Corollary 5.4. Suppose θ ∈ A1(P, g) and χsn ∈ An(P )⊗Symς
s(g, V ) in Propo-

sition 5.3, then with ` = ς(−1)p for all i ≤ n+ 1

{[d(Si•χ
s
n)]i;s J θ}s • φp − (−1)i{[Si•(dχsn)]i;s J θ}s • φp =

= − sgn(S)
(
i
2

)
{[(Si−1

• χsn)i−2;s+1
n+1−i J θ]1;s J (θ ∧g θ)}s • φp

+ sgn(S) i
(
s
1

)
`
{[(Si−1

• χsn)i−1;s J θ]1;s−1 J (θ ∧g φp)}s−1 • φp.

Proof. This follows from (−1)p(k−1)[[(Si−1
• χsn)i−1;s

n+1−iJθ]k−1;s−k+1Jφp]1;s−kJ(θ∧gφp) =

`k−1[[(Si−1
• χsn)i−1;s

n+1−iJθ]1;s−1J(θ∧gφp)]
k−1;s−kJφp and

∑s
k=1 `

k−1 =
(
s
1

)
`
.

Theorem 5.5. Let S be a Lie group action of G on P , θ ∈ A1(P, g), φp ∈
Ap(P, g) and χsn ∈ An(P )⊗ Symς

s(g, V ) g-equivariant. If ` := ς(−1)p , then

d[(χsn ◦S θ) • φp]− [(dχsn)◦S θ] • φp =

= {[(S•χsn)◦S θ]1;s J (dθ − sgn(S) 1
2
θ ∧g θ)}s • φp

+(−1)n
(
s
1

)
`

[(χsn ◦S θ)1;s−1 J (dφp − sgn(S) θ ∧g φp)]
s−1 • φp.

Proof. By linearity of d and • in its left argument we obtain for the left side

n∑

i=0

(−1)in−i

i!
d{[(Si•χsn)i;s J θ] • φp} −

n+1∑

i=0

(−1)in

i!
{[Si•(dχsn)]i;s J θ} • φp =

=
n∑

i=0

(−1)in−i

i!
[d(Si•χ

s
n)i;sJ θ] • φp +

(
s
1

)
`

n∑

i=0

(−1)in−n−i

i!
{[(Si•χsn)i;sJ θ]1;s−1J dφp} • φp

−
n∑

i=1

(−1)in−n−i

(i−1)!
{[(Si•χsn)i−1;s+1Jθ]1;sJ dθ} • φp −

n+1∑

i=0

(−1)in

i!
{[Si•(dχsn)]i;sJ θ} • φp

by (28). With Corollary 5.4 we get

n∑

i=0

(−1)in−i

i!
[d(Si•χ

s
n)i;s J θ] • φp −

n+1∑

i=0

(−1)in

i!
{[Si•(dχsn)]i;s J θ} • φp =

= −
n+1∑

i=2

(−1)in−i

(i−2)!
{[(Si−1

• χsn)i−2;s+1 J θ]1;s J (sgn(S) 1
2
θ ∧g θ)} • φp

+
(
s
1

)
`

n+1∑

i=1

(−1)in−i

(i−1)!
{[(Si−1

• χsn)i−1;s J θ]1;s−1 J (sgn(S) θ ∧g φp)} • φp.

Finally we put all together and use Si+1
• χsn = (−1)iSi•(S•χ

s
n) from (13).

For χsn ∈ An(P )⊗ Hom(
⊗s g, V ), the last term in Theorem 5.5 reads

s∑

k=1

(−1)n+p(k−1){[[(χsn ◦S θ)k−1;s−k+1 J φp]1;s−k J (dφp − sgn(S) θ ∧g φp)]
s−k • φp}

as a consequence of Proposition 5.3, cf. (31). In any case we get the following
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Corollary 5.6. If S is a Lie group action of G on P , χsn ∈ An(P )g−equiv ⊗
Hom(

⊗s g, V ), and θ ∈ A1(P, g), φp ∈ Ap(P, g) with dφp = sgn(S) θ ∧g φp , then

d[(χsn◦S θ) • φp] = [(dχsn)◦S θ] • φp + {[(S•χsn)◦S θ]1;sJ (dθ − sgn(S) 1
2
θ ∧g θ)}s• φp.

Now suppose, θ is a pullback of an invariant 1-form on G. Then the
Maurer-Cartan identities dΘS = sgn(S)1

2
ΘS ∧g ΘS and (17) give

Corollary 5.7. Let S be a Lie group action of G on P , f :P → G differen-
tiable, K ∈ End(g) and χsn ∈ An(P )⊗ Hom(

⊗s g, V ) g-equivariant.

1. If χsn ∈ An(P )⊗ Symς
s(g, V ) and φp ∈ Ap(P, g), then

d[(χsn ◦S f ?ψS(K)) • φp] = [(dχsn)◦S f ?ψS(K)] • φp
+(−1)n

(
s
1

)
`

[(χsn ◦S f ?ψS(K))1;s−1 J (dφp − sgn(S) f ?ψS(K) ∧g φp)]
s−1• φp,

d[(χsn ◦S f ?ΘS) • φp] = [(dχsn)◦S f ?ΘS] • φp
+(−1)n

(
s
1

)
`

[(χsn ◦S f ?ΘS)1;s−1 J (dφp − sgn(S)f ?ΘS ∧g φp)]
s−1• φp.

2. For φp ∈ Ap(P, g) with dφp = sgn(S)f ?ψS(K) ∧g φp , e. g. for φ2 =
d(f ?ψS(K)),

d[(χsn ◦S f ?ψS(K)) • φp] = [(dχsn)◦S f ?ψS(K)] • φp,
d[(χsn ◦S f ?ΘS) • φp] = [(dχsn)◦S f ?ΘS] • φp.

Finally, in the case s = 0, Theorem 5.5 yields

Corollary 5.8. If S is a Lie group action of G on P and ωn ∈ An(P ) ⊗ V
is g-invariant, then for all θ ∈ A1(P, g)

d(ωn◦S θ) = (dωn)◦S θ + [(S•ωn)◦S θ]1 J (dθ − 1
2

sgn(S) θ ∧g θ).

For any f :P → G, K ∈ End(g), especially K = idg , we thus obtain

d(ωn◦S f ?ψS(K)) = (dωn)◦S f ?ψS(K), d(ωn◦S f ?ΘS) = (dωn)◦S f ?ΘS.

Recall that the gauge fields Fα ∈ A2(Uα, g) are given by Fα = dAα +
1
2
Aα ∧g Aα . For that reason we are interested especially in the case where φ2 =
dθ − 1

2
sgn(S) θ ∧g θ . Using θ ∧g (θ ∧g θ) = 0 one easily checks that this yields

dφ2 = sgn(S) θ ∧g φ2 . Thus Corollary 5.6 reads

d[(χsn ◦S θ) • φ2] = [(dχsn)◦S θ] • φ2 + [(S•χ
s
n)◦S θ] • φ2.

Now S•χsn ∈ An−1(P,Hom(g,Hom(
⊗s g, V ))) ∼= An−1(P,Hom(

⊗s+1 g, V )). Since
φ2 has even degree, only the symmetric part of Hom(

⊗s+1 g, V ) counts [e.g., confer
(14)]. So [(S•χsn)◦S θ]•φ2 = Sym?[(S•χ

s
n)◦S θ]•φ2 = [Sym?(S•χ

s
n)◦S θ]•φ2, because

◦S only acts on A(P ) and commutes with any operation on Hom(
⊗s+1 g, V ). This

leads to the following definition:
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Definition 5.9. For χsn ∈ An(P,Hom(
⊗s g, V )) and S:G×P → P , we define

S∨• χ
s
n := Sym?(S•χ

s
n) ∈ An−1(P, Syms+1(g, V )).

Corollary 5.10. If S is a Lie group action of G on P , χsn ∈ An(P )g−equiv ⊗
Hom(

⊗s g, V ), θ ∈ A1(P, g) and φ2 = dθ − 1
2

sgn(S) θ ∧g θ ∈ A2(P, g), then

d[(χsn◦S θ) • φ2] = [(dχsn)◦S θ] • φ2 + [(S∨• χ
s
n)◦S θ] • φ2.

Extend the symmetric product ∨ in Sym(g,R) ∼= S(g∗) to Sym(g, V ),
whenever a bilinear map φ:V ×V → V is given. Equip A(P )⊗Sym(g, V ) with the
gradation induced by A(P ), then we obtain from (8) since ıX is a skew-derivation
of degree −1:

Lemma 5.11. S∨• is a skew-derivation of degree −1 of A(P )equiv⊗ Sym(g, V )
and A(P )⊗Sym(g, V ), e. g. for αn∈An(P )⊗Sym(g, V ) and ω∈A(P )⊗Sym(g, V ),

S∨• (αn ∧∨ ω) = (S∨• αn) ∧∨ ω + (−1)nαn ∧∨ (S∨• ω).

In view of our applications to connections on bundles we have thus proved:

Theorem 5.12. Let Γ be a connection on a principal fiber bundle P (M,G)
and let B(M,F,G) be an associated bundle, V any vector space, χsn ∈ An(F ) ⊗
Hom(

⊗sg, V ) be G-equivariant and φn ∈ An(F )⊗V be invariant under G. Then

d(χsnv • F) = [(dχsn)v]sn+1 • F + [(L•χ
s
n)v]s+1

n−1 • F,

= [(dχsn)v]sn+1 • F + [(L∨•χ
s
n)v]s+1

n−1 • F,

d(φnv) = (dφn)v + [(L•φn)v]1n−1 • F.
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