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On invariants of a set of matrices
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Abstract. For any connected reductive linear group H⊂SLn(k) it is
proved that the algebra of invariants of a set of matrices X1,...,Xp∈H (p>2)

under simultaneous conjugations by matrices of N(H) is the normalization
of the algebra generated by the traces trXi1 ...Xik .

It is a classical fact that the algebra of invariants of a set of matrices with respect
to simultaneous conjugations is generated by the traces of their products.

Let now H ⊂ SLn(k) be a reductive algebraic linear group. Consider
the algebra of invariants of a set of matrices

(X1, . . . , Xp) ∈ Hp = H × · · · ×H︸ ︷︷ ︸
p

with respect to simultaneous conjugations by the matrices of the normalizer
N(H) of H in SLn(k). Is it true that this algebra is generated by the traces of
products of X1, . . . , Xp?

Making use of the classical invariant theory, one can easily show that it
is true for any classical linear group

H = SLn(k), SOn(k), Spn(k).

(Except for the case SOn(k), n even, the action of N(H) on H reduces to that
of H . In the exceptional case it reduces to the action of On(k).)

An analogous question can be asked for the field of rational invariants.
It was proved in my preprint [5] that the answer to this question is positive for
any connected reductive linear group H and p > 2. For p = 1, the answer is in
general negative (see a counterexample in Section 4).

As for the original question, the answer is in general negative, even for
H connected and p > 2 (see a counterexample in Section 4). It was conjectured
in [5] that under these assumptions the algebra of invariants is the normalization
of the algebra generated by the traces. The main purpose of this paper is to
prove this conjecture. In fact, we prove it in greater generality.

ISSN 0949–5932 / $2.50 C© Heldermann Verlag



250 Vinberg

A portion of this work was done during my visit to the Tata Institute
of Fundamental Research in January–February of 1993. I am grateful to this in-
stitute for its hospitality. The completion of this research was made possible by
the grant MQZ300 from the International Science Foundation and and the Rus-
sian Government, and by the grant 95-01-00783a from the Russian Foundation
of Fundamental Research.

I am grateful to E. A. Tevelev, who suggested a simpler proof of Propo-
sition 8 in the case when G0 is a torus.

1. Statement of the main results.

The ground field k is supposed to be algebraically closed and of characteristic
zero. For an action of a reductive algebraic group H on an affine algebraic variety
X the algebra of G -invariant polynomials (respectively, the field of G -invariant
rational functions) on X is denoted by k[X]G (respectively, by k(X)G ). The
categorical quotient of the action G : X , i.e., the spectrum of k[X]G , is denoted
by X//G , and the canonical morphism X → X//G defined by the embedding
k[X]G ⊂ k[X] is denoted by πG .

We use some standard facts of invariant theory, which can be found, for
example, in [2]. In particular, it is a standard fact that each fiber of πG contains
exactly one closed G -orbit.

Let a reductive algebraic group G act on Gp by simultaneous conjuga-
tions. It is proved in [3] that the orbit of a p -tuple

g = (g1, . . . , gp) ∈ Gp

is closed iff the algebraic subgroup (topologically) generated by g is reductive.

For any reductive algebraic subgroup H ⊂ G we have the following
commutative diagram of natural morphisms:

(1)

Hp πH−→ Hp//H
πN(H)/H−→ Hp//N(H)

↓
yψ

yϕ

Gp
πG−→ Gp//G ←↩ Hp//G

where N(H) is the normalizer of H in G and

(2) Hp//G + πG(Hp)(= ϕ(Hp//N(H)) = ψ(Hp//H)).

Since the group of automorphisms of H defined by N(H) contains the
group of inner automorphisms of H as a subgroup of finite index (see Corollary 2
to Proposition 3), the morphism πN(H)/H is finite.

Now we formulate the main results of the paper.
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Theorem 1. The morphism ψ is finite (and, in particular, πG(Hp) is closed
in Gp//G) .

An interpretation of this theorem in terms of varieties of characters of
finitely generated groups will be given in Section 16.

Theorem 2. If H is connected and p > 2 , the morhism ϕ is birational.

Very often, but not always, the morphism ϕ is birational for p = 1 as
well.

Corollary 2a. If H is connected and p > 2 , the morphism ϕ is the normal-
ization.

In other words, the algebra k[Hp]N(H) is the normalization of the re-
striction to Hp of the algebra k[Gp]G . Applying this to G = SLn(k), we obtain
that for any connected reductive group H ⊂ SLn(k) and any p > 2 the alge-
bra k[Hp]N(H) is the normalization of the algebra generated by the traces of
products.

In the case G = SLn(k) Theorem 2 was proved in the preprint [5]. In
the general case the proof is the same. It will be given in the next section.

Theorem 2 can be generalized to non-connected subgroups. To this end,
we need some modification of Hp .

Denote by H̃p the union of connected (=irreducible) components of Hp

containing a generating set of H . Note that any connected component of Hp

has the form H1 × · · · ×Hp , where H1, . . . , Hp are some connected components
of H . As we shall prove (see Corollary 1 of Proposition 8), for p > 2

H1 × · · · × Hp ⊂ H̃p iff H1, . . . , Hp generate the group H/H0 . Obviously,

H̃p is invariant under N(H).

The diagram (1) can be re-written with replacing Hp by H̃p . Denote
by ϕ̃ the morphism replacing ϕ in the modified diagram.

Theorem 2 ′ . The morphism ϕ̃ is birational.

Corollary 2 ′a. The morphism ϕ̃ is the normalization.

2. Proof of Theorem 2

To prove the theorem, we need some preparatory results on generating sets of
reductive groups.

Unless stated otherwise, we understand the term “generate” in the topo-
logical sense. So “an algebraic group G is generated by a p -tuple g ∈ Gp ”
means that the subgroup algebraically generated by g is (Zariski) dense in G .

Proposition 1. Any algebraic torus T is generated by one element. Moreover,
the set of all generating elements is dense in T .

Proof. An element t generates T iff there is no nontrivial character of T
vanishing at t . For such t , one can take any element, whose coordinates are
different primes. Such elements constitute a dense subset in T .
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Corollary 1a. For any p > 1 the set of p-tuples generating T is dense in
T p .

Proposition 2. Any connected reductive algebraic group G is generated by
two elements. Moreover, the set of all generating pairs is dense in G2 .

Proof. Let t ∈ G be a semisimple element generating a maximal torus T of G .
It follows from the root decomposition of the tangent algebra of G with respect
to T that there exist only finitely many algebraic subgroups of G containing
T . If an element h does not belong to any of maximal algebraic subgroups
containing T , then the pair (t, h) generates G . The set of pairs of such type is
dense in G2 .

Corollary 2a. For any p > 2 the set of p-tuples generating G is dense in
Gp .

Proof of Theorem 2. Let us note that if h ∈ Hp generates H and, for some
g ∈ G , we have ghg−1 ∈ Hp , then gHg−1 ⊂ H , which implies g ∈ N(H).

Denote by Hp
gen the set of all p -tuples generating H . Under the hy-

potheses of Theorem 2, Hp
gen is dense in Hp . It follows that πG(Hp

gen) is dense
in Hp//G . For any p -tuple h ∈ Hp generating a reductive subgroup, the fiber
ϕ−1(πG(h)) consists of the points πN(H)(h

′), where h′ ∈ Hp is G -equivalent to
h . It follows from what was proved above that if h ∈ Hp

gen , then ϕ−1(πG(h))
consists of a single point. Now Theorem 2 is implied by the following

Lemma 1. Let ϕ:X → Y be a dominant morphism of irreducible algebraic
varieties. If there exists a dense subset Z ⊂ Y such that for any y ∈ Z the fiber
ϕ−1(y) consists of a single point, then ϕ is birational.

Proof. If ϕ is not birational, then there exists an open subset Y0 ⊂ Y such
that for any y ∈ Y0 the fiber ϕ−1(y) contains more than one point. Since
Y0 ∩ Z 6= ∅ , this contradicts our condition.

The proof of Theorem 2 ′ is similar. It will be given in Section 8.

3. An intermediate result

Let us now prove that the morphism ψ is quasi-finite, i.e., that all of its fibers
are finite. This means that, for any closed G -orbit O in Gp , the intersection
O ∩Hp decomposes into finitely many (closed) H -orbits.

To prove this, we apply the following lemma, going back to R. W.
Richardson. Its proof can be found in [1].

Lemma 2. Let an algebraic group G act on an algebraic variety X . Suppose
H ⊂ G is an algebraic subgroup and Y ⊂ X is an H -invariant subvariety. If
for any y ∈ Y

(3) g(y) ∩ Ty(Y ) = h(y),
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then, for any G-orbit O , the intersection O ∩ Y decomposes into finitely many
H -orbits, each of them being closed in O ∩ Y .

(Here g and h are the tangent algebras of G and H , respectively, and Ty(Y ) is
the tangent space of Y at y .)

Proposition 3. Let G be a reductive group, and H a reductive subgroup of
G . Then for any G-orbit O in Gp , the intersection O ∩ Hp decomposes into
finitely many H -orbits, each of them being closed in O ∩Hp .

Proof. We apply Lemma 2 to the action G:Gp and the subvariety Hp ⊂ Gp .
For a p -tuple h = (h1, . . . , hp) ∈ Hp , we have

Th(Gp) = gh1 ⊕ . . . ghp,

Th(Hp) = hh1 ⊕ . . .hhp,

and, for any ξ ∈ g ,

ξ(h) = (ξh1 − h1ξ, . . . , ξhp − hpξ) = ((ξ −Ad(h1)ξ)h1, . . . , (ξ − Ad(hp)ξ)hp).

So ξ(h) ∈ Th(Hp) iff

(4) ξ −Ad(hi)ξ ∈ h, i = 1, . . . , p.

Let m be an Ad(H)-invariant complementary subspace of h in g . If

ξ = η + ζ (η ∈ h, ζ ∈ m),

then (4) implies that

ζ − Ad(hi)ζ = 0, i = 1, . . . , p,

whence

ξ(h) = η(h) ∈ h(h).

So the condition (3) is fulfilled in our situation and Lemma 2 gives the
desired result.

Corollary 3a. The morphism ψ is quasi-finite.

Corollary 3b. The group of automorphisms of H defined by N(H) is a finite
extension of the group of inner automorphisms of H .

Proof. Take any p -tuple h = (h1, . . . , hp) generating H . It follows from the
proposition that the N(H)-orbit of h decomposes into finitely many H -orbits.
Since any automorphism a of H is uniquely defined by a(h), this implies the
assertion.
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4. Some counterexamples

The following example shows that for p = 1 (and H connected) the morphism
ϕ need not be birational.

Let

G = SL5(k), H = SL2(k)⊕ SO3(k).

Since H has no outer automorphisms, the action of N(H) on H coincides
with that of H . It h1 ∈ SL2(k) has eigenvalues λ, λ−1 and h2 ∈ SO3(k) has
eigenvalues µ, µ−1, 1, then h = h1 ⊕ h2 has eigenvalues λ, λ−1, µ, µ−1, 1. The
same eigenvalues has h′ = h′1 ⊕ h′2 , where h′1 ∈ SL2(k) has eigenvalues µ, µ−1

and h′2 ∈ SO3(k) has eigenvalues λ, λ−1, 1. If λ, µ 6= ±1 and µ 6= λ, λ−1 , then
the H -orbits of h and h′ are closed and distinct from each other, while their
G -orbits coincide.

The next example shows that even if p > 2 (and H connected) the
morphism ϕ need not be injective.

Let

G = SL5(k), H = R(SL2(k)),

where R is the 5-dimensional irreducible representation of SL2(k). As in the
preceding example, H has no outer automorphisms, so the action of N(H) on
Hp coincides with that of H . If u ∈ SL2(k) has eigenvalues λ, λ−1 , then R(u)
has eigenvalues λ2, λ−2, λ, λ−1, 1. Let λ = exp 2πi

5 . Then R(u) and R(u2) have
the same eigenvalues, so their G -orbits coincide. At the same time their H -orbits
are closed and distinct from each other. The same is true for the p -tuples

(R(u), . . . , R(u)), (R(u2), . . . , R(u2)) ∈ Gp

for any p .

5. Toric subvarieties

In order to handle nonconnected groups, we need some generalization of maximal
tori. We follow ideas of Gantmacher [2]. For more details see [3].

Let G be a reductive group, G0 its connected component containing e ,
and G1 some connected component of G .

Any coset S of a torus in G , lying in the centralizer of this torus, will be
called a toric subvariety. Its normalizer (respectively, centralizer) in G0 will be
denoted by N0(S) (respectively, Z0(S)). The group W0(S) = N0(S)/Z0(S) will
be called the Weyl group of S . Note that the group W0(S) is finite, because it
is an algebraic group of automorphisms of the subgroup generated by S , which
is a direct product of a torus and a finite cyclic group.
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Proposition 4. 1) Any two maximal toric subvarieties of G1 are G0 -
conjugate.

2) Any semisimple element of G is contained in a maximal toric subva-
riety.

3) Two elements of a maximal toric subvariety S are G0 -conjugate iff
they are W0(S)- conjugate.

One can easily show (and it follows from the first assertion of the proposition)
that any maximal toric subvariety of a connected reductive group is a maximal
torus. In this partial case the proof of the proposition is well-known. In the
general case only small modifications are needed.

Sketch of the proof. Let S be a maximal toric subvariety contained in G1 ,
and g ∈ S . We have S = gT , where T is a maximal torus in the centralizer Z0(g)
of g in G0 . An element g ∈ S is called regular, if Z0(g) is a finite extension of T .
Obviously, the subvariety S is uniquely determined by any regular element of it.
Considering the weight decomposition of the tangent algebra g of G with respect
to the subgroup generated by S , we see that the regular elements constitute a
non-empty open subset in S . Denote it by Sreg . A standard computation shows
that the map

G0 × Sreg → G1, (g, s) 7→ gsg−1,

is smooth and hence its image is open in G1 . As usually, this implies the first
assertion of the proposition. The second one is trivial. The proof of the third
one does not differ from the usual proof for the case when S is a maximal torus.

Corollary 4a. Let S ⊂ G1 be a maximal toric subvariety. Then the natural
morphism

S//W0(S) −→ G1//G0

is an isomorphism.

The following consequence of this theory will be used in the proof of
Theorem 1.

Proposition 5. The restriction of the morphism πG:G→ G//G to any toric
subvariety S ⊂ G is a finite morphism.

Proof. Let S1 be a maximal toric subvariety containing S . If S (and S1 ) is
contained in a connected component G1 of G , then the restriction of πG on S
is the composition of the following finite morphisms:

S ↪→ S1 → S1/W0(S1) →̃ G1//G0 → G//G0 → G//G.

Let now S be a maximal toric subvariety of G , which is a coset of a
torus T . It is known [3] that the centralizer of T in G0 is a maximal torus of
G .

Consider the weight decomposition g =
∑
α gα of the Lie algebra g with

respect to the subgroup generated by S . We have g0 = t (the tangent algebra
of T ). The non-zero weights vanishing on T are called imaginary roots. Denote
the set of imaginary roots by ∆im . The sum t+

∑
α∈∆im

gα is a Cartan subalgebra

of g . The weights not vanishing on T are called real roots. Denote the set of
real roots by ∆re . It is known [3] that dim gα = 1 for any α ∈ ∆re .
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Proposition 6. If G is semisimple, there are only finitely many maximal
algebraic subgroups of G containing S .

Proof. Let H ⊂ G be such a subgroup. Since H ⊂ N(H0), we have
N(H0) = G or H .

In the first case H0 is a normal subgroup of G0 . Since H0 ⊃ T , the
centralizer of H0 in G0 is abelian. Hence H0 = G0 , and there are only finitely
many possibilities for H .

In the second case H is completely defined by its tangent algebra h ,
which is invariant under S , contains T , and coincides with its normalizer in g .
Let us prove that there are only finitely many such subalgebras in g .

Let h be such a subalgebra, and

∆re(h) = {α ∈ ∆re: gα ⊂ h}.

We have
h = t +

∑

α∈∆im

(h ∩ gα) +
∑

α∈∆re(h)

gα.

Since h coincides with its normalizer in g ,

h ∩ gα = {ξ ∈ gα: [ξ, gβ] = 0 for all β ∈ ∆re(h) such that β + α /∈ ∆re(h)}

for α ∈ ∆im . It follows that h is completely defined by ∆re(h).

6. Splitting of nonconnected reductive groups

Let G be any reductive group.

Proposition 7. There exists a finite subgroup F ⊂ G such that G = G0F .

Proof. For an algebraic group H , let AutH denote the group of all auto-
morphisms and IntH the group of inner automorphisms of H . It is well-known
that if H is a connected semisimple group, then AutH is a semidirect product
IntH h A(H), where A(H) is some finite group.

Put (G0, G0) = H and consider the subgroup of G , consisting of the
elements g such that the automorphism h 7→ ghg−1 of H belongs to A(H). It
contains representatives of all cosets of H (and the more of all cosets of G0 )
and its connected component is contained in the centralizer of H and hence is a
torus. Thereby the proof reduces to the case when G0 is a torus.

Let G0 = T be a torus, and G/G0 = Γ. The extention T ⊂ G is
described by a cocycle c ∈ Z2(Γ, T ). Let Tfin denote the subgroup of elements
of finite order of T . Since in the group T/Tfin each equation xn = a has a unique
solution, H2(Γ, T/Tfin) = 0. Therefore the cocycle c is equivalent to a cocycle
c′ ∈ Z2(Γ, Tfin). In fact all the values of c′ belong to a (finitely generated and
hence) finite subgroup ∆ ⊂ T . This means that there exists a finite subgroup
F ⊂ G containing representatives of all cosets of T and intersecting T in ∆.

In the notation of the proposition, G is isomorphic to a quotient group
of the semidirect product G0 h F with respect to some finite normal subgroup.
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7. Generators of non-connected reductive groups

To prove Theorem 2 ′ , we need the following generalization of Proposition 2.

Proposition 8. Let G1 and G2 be (possibly coinciding) connected components
of a reductive group G . Then there are elements g1 ∈ G1 and g2 ∈ G2 generating
an algebraic subgroup of finite index in G . Moreover, the set of all such pairs is
dense in G1 ×G2 .

Proof. We may assume that the group G/G0 is generated by G1 and G2 .
Under this condition we are to prove that there are elements g1 ∈ G1 and g2 ∈ G2

generating G , and the set of all such pairs is dense in G1 ×G2 .

Denote by Z the center of G0 . It is easy to see that an algebraic subgroup
H ⊂ G coincides with G iff it projects both onto G/Z and G/(G0, G0). In such
a way the proof of the theorem reduces to two partial cases when G is semisimple
or G0 is a torus.

Let first G be semisimple. Take any maximal toric subvariety S ⊂ G1 .
The subgroup generated by S is a direct product of a torus T and a finite cyclic
group C . Let c be the generator of C lying in S . Then for any element t ∈ T
generating T , the element s = tc generates T ×C . The set of all such elements
s is dense in S .

Let s be chosen as above. According to Proposition 6 there are only
finitely many maximal algebraic subgroups of G containing s . Note that none
of them can contain G2 . If h ∈ G2 does not belong to any of these subgroups,
the pair (s, h) generates G . Obviously, the set of all pairs (s, h) of such type is
dense in G1 ×G2 .

Let now G0 = T be a torus. In view of Proposition 7 it suffices to
consider the case G = T hΓ, where Γ is some finite group. In this case, we have
G1 = Tγ1, G2 = Tγ2 , where γ1, γ2 ∈ Γ.

Consider the homomorphism of the free group on two generators to
G/T , taking the i -th generator to Gi . Let w1, . . . , wn be generators of its
kernel. Then for g1 ∈ G1, g2 ∈ G2 the intersection of T with the alge-
braic subgroup generated by g1 and g2 is the algebraic subgroup generated
by w1(g1, g2), . . . , wn(g1, g2).

For i = 1, . . . , n , the map

ϕ:T 2 → T, (t1, t2) 7→ wi(t1γ1, t2γ2),

is a homomorphism of algebraic tori. The elements t1γ1 and t2γ2 generate G iff
ϕ1(t1, t2), . . . , ϕn(t1, t2) generate T . Note that if (t1, t2) generates T 2 , then
ϕi(t1, t2) generates ϕi(T

2) for each i . So it suffices to prove that the subgroup
T ′ generated by ϕ1(T 2), . . . , ϕn(T 2) coincides with T .

It is easy to see that T ′ is a normal subgroup of G . Passing to the
quotient group, we may assume that T ′ = {e} . Under this condition we are to
prove that T = {e} .
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The condition T ′ = {e} means that for any t1, t2 ∈ T the intersection
of T with the subgroup generated by t1γ1 and t2γ2 reduces to {e} . For any
γ ∈ Γ denote by c(γ) the (unique) element of T such that c(γ)γ belongs to
this subgroup. Then c is a 1-cocycle on Γ with values in T . By definition
c(γ1) = t1 , c(γ2) = t2 . If follows that dimZ1(Γ, T ) = 2 dimT , whence

dimH1(Γ, T ) > dimZ1(Γ, T )− dimC0(Γ, T ) = dimT.

But the group H1(Γ, T ) is finite. Hence dimT = 0.

Corollary 8a. Let p > 2 and some connected components G1, . . . , Gp of G
generate the group G/G0 . Then G1 × · · · ×Gp contains a generating p-tuple of
G; moreover, the set of all such p-tuples is dense in G1 × · · · ×Gp .

Corollary 8b. The set of generating p-tuples is dense in G̃p for any p .

(The definition of G̃p is given in Section 1.)

Proof. For p > 2 this follows immediately from Corollary 1. For p = 1 the
only case is to be considered when G is a direct product of a torus and a finite
cyclic group. This case was handled in the proof of Proposition 8.

Remark 1. One can prove that, if G is semisimple, the set of generating p -
tuples is open in Gp . But we do not need this fact.

Now we can prove Theorem 2 ′ by repeating the proof of Theorem 2 given
in Section 2, replacing ϕ by ϕ̃ and Hp by H̃p .

8. Stable actions

In order to prove Theorem 1 we need some preliminary results. In this section
we recall the notion of a stable action.

Let a reductive group G act on an affine variety X . We admit X to be
reducible but require that G act transitively on the set of irreducible components
of X (so X//G is irreducible). Such a G -variety will be called G-irreducible.

Let mG be the maximal (=typical) dimension of orbits of the action
G : X , and Xdeg the union of orbits of lesser dimension. Obviously, Xdeg is a
proper G -invariant closed subvariety of X .

We put X//G = Y .

Proposition 9. The following properties of the action G : X are equivalent:

(a) there exists a nonempty open subset Ỹ ⊂ Y such that for any y ∈ Ỹ the
fiber π−1

G (y) consists of a single orbit;

(b) there exists an invariant non-empty open subset X̃ ⊂ X consisting of
closed orbits;

(c) there is a closed orbit of dimension mG ;

(d) πG(Xdeg) 6= Y .
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These equivalences are well-known: see [1] and references there. Nevertheless we
give their proof for convenience of the reader.

Proof. (a) ⇒ (b). Take X̃ = π−1
G (Ỹ ).

(b) ⇒ (c) is obvious.

(c) ⇒ (d). If O is a closed orbit of dimension mG , then πG(O) /∈
πG(Xdeg).

(d) ⇒ (a). Note that πG(Xdeg) is a closed subvariety of Y . Let Ỹ be

the complement of this subvariety. Then for any y ∈ Ỹ the fiber π−1
G (y) consists

of orbits of the maximal dimension, hence of a single orbit.

An action, satisfying the equivalent conditions of Proposition 9, is called
stable. In the case k[X]G = k the stability of the action means its transitivity.

For a stable action, orbits in general position are separated by invariants,
which implies that

(6) dimX//G = dimX −mG.

9. The dimension of Hp//G

For the action G:Gp considered above, all the stabilizers contain the center Z(G)
of G . Moreover, if a p -tuple generates G , then its stabilizer coincides with Z(G)
and its orbit is closed. So the action of G on any G -irreducible component of
Gp lying in G̃p is stable and applying formula (6) yields that all irreducible

components of G̃p//G have the dimension equal to

(7) dim G̃p//G = (p− 1) dimG+ dimZ(G).

Let now H be a connected reductive subgroup of G . It was proved in
Section 3, that the natural dominant morphism Hp//H → Hp//G is quasi-finite.
Hence

(8) dim H̃p//G = dim H̃p//H = (p− 1) dimH + dimZ(H),

where Z(H) denotes the center of H .

10. Fields of definition of reductive groups

The results presented in this section are, of course, known to specialists, but I
have not found an appropriate reference.

Let as above k be an algebraically closed field of characteristic zero, and
K an algebraically closed extension of k .

Any algebraic k -variety X (respectively, algebraic k -group G) defines
in a natural way an algebraic K -variety X(K) (respectively, an algebraic K -
group G(K)). Such an algebraic K -variety (respectively, an algebraic K -group)
is called defined over k .



260 Vinberg

Any morphism X → Y of algebraic k -varieties (respectively, a homo-
morphism G→ H of algebraic k -groups, an action of an algebraic k -group G on
an algebraic k -variety X ) defines in a natural way a morphism X(K)→ Y (K)
(respectively, a homomorphism G(K)→ H(K), an action of G(K) on X(K)).
Such a morphism (respectively, a homomorphism, an action) is called defined
over k .

Two homomorphism ϕ, ψ : G → H of algebraic groups will be called
equivalent, if there exists h ∈ H such that

ψ(g) = hϕ(g)h−1

for any g ∈ G .

Proposition 10. 1) Any reductive K -group is isomorphic to a K -group
defined over k .

2) Any homomorphism of reductive K -groups defined over k is equiva-
lent to a homomorphism defined over k .

3) Any reductive subgroup of an algebraic K -group defined over k is
conjugate to a subgroup defined over k .

Before proving the proposition we prove some lemmas.

Lemma 3. For a reductive k -group G , any linear representation of G(K) is
equivalent to a representation defined over k .

Proof. It suffices to prove the assertion for irreducible representations. De-
compose the regular representation of G into a sum of irreducible representations.
Tensoring this decomposition by K , we obtain a decomposition of the regular
representation of G(K) into a sum of irreducible representations, each of them
is defined over k . Since the regular representation of a reductive group contains
all its irreducible representations, we obtain the desirable result.

Lemma 4. For a reductive k -group G , any normal algebraic subgroup of G(K)
is defined over k .

Proof. Since any normal algebraic subgroup of an algebraic group is the kernel
of some linear representation of the group, the assertion follows from Lemma 4.

Lemma 5. Let an algebraic k -group G act on an algebraic k -variety X . If
the group G(K) acts on X(K) with finitely many orbits, then all these orbits
are defined over k .

Proof. We may assume that G acts transitively on the set of irreducible
components of X (and hence G(K) acts transitively on the set of irreducible
components of X(K)). Let dimX = m . Then the (only) open orbit of G(K)
in X(K) is the complement of the subvariety

X(K)deg = {x ∈ X(K): dimG(K)x < m} =

= {x ∈ X(K): dimg(K)(x) < m}

which is defined over k . Hence the open orbit is also defined over k . Proceeding
by induction on dimX , we obtain the desirable result.
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Proof of Proposition 10. We start with the second assertion. Let G and H
be reductive k -groups and ϕ:G(K)→ H(K) a homomorphism. We may assume
that H ⊂ GLn(k), so H(K) ⊂ GLn(K). Then the composition of ϕ and the
latter embedding yields a linear representation

ρ:G(K)→ GLn(K),

which is by Lemma 3 equivalent to a representation defined over k .

Let the group G be generated by a p -tuple g = (g1, . . . , gp) ∈ Gp .
The variety O of all representations equivalent to ρ , can be identified with the
GLn(K)-orbit of the p -tuple

ρ(g) = ϕ(g) ∈ GLn(K)p,

a representation σ ∈ O being identified with the p -tuple σ(g). Since the orbit
O contains a k -point, it is defined over k .

The intersection O∩H(K)p is, of course, also defined over k . According
to Proposition 3, it decomposes into finitely many H(K)-orbits. Each of them is
by Lemma 5 defined over k . In particular, the H(K)-orbit of ϕ(g) is defined over
k and, consequently, contains a k -point. This means that the homomorphism ϕ
is equivalent to a homomorphism defined over k .

Now we prove the first assertion of the proposition. Lemma 4 implies
that if a reductive K -group is defined over k , then any quotient group of it is
also defined over k . Any reductive K -group is isomorphic to a quotient group
of a group of the form

(9) G = (H × T )h F,

where H is a simply connected semisimple group, T is a torus, F is a finite
group and h denotes a semidirect product (see Section 6). So it suffices to prove
the assertion for groups of the form (9).

It follows from the classification of semisimple groups that any simply
connected semisimple K -group is isomorphic to a group defined over k . The
same is, of course, true for tori. So we may assume that the group H × T = G0

is defined over k .

Finally, the homomorphism ϕ:F → AutG0 , defining the semidirect
product in (9), by the above is equivalent to a homomorphism defined over k .
Hence, the group G is isomorphic to a group defined over k .

The third assertion of the proposition follows from the first two ones.

11. The embeddings Gp//G ⊂ Gq//G
For any group G , let us identify a p -tuple (g1, . . . , gp) ∈ Gp with the (p+1)-tuple
(g1, . . . , gp, e) ∈ Gp+1 . In such a way we get G -equivariant embeddings

(10) G1 ⊂ G2 ⊂ · · · ⊂ Gp ⊂ Gp+1 ⊂ . . .
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Let now G be a reductive algebraic group. Then the embeddings (10)
are closed and give rise to closed embeddings

G1//G ⊂ G2//G ⊂ · · · ⊂ Gp//G ⊂ Gp+1//G ⊂ . . .

For a reductive subgroup H ⊂ G we have

H1//G ⊂ H2//G ⊂ · · · ⊂ Hp//G ⊂ Hp+1//G ⊂ . . .

Proposition 11. (Hq//G) ∩ (Gp//G) = Hp//G for q > p .

Proof. It suffices to prove that

(Hp+1//G) ∩ (Gp//G) = Hp//G.

Consider the G -equivariant projection

ρ:Gp+1 → Gp, (g1, . . . , gp, gp+1) 7→ (g1, . . . , gp).

It defines a projection
ρG:Gp+1//G→ Gp//G.

Since ρG(Hp+1//G) ⊂ Hp//G and ρG is the identity map on Gp//G , we get

(Hp+1//G) ∩ (Gp//G) ⊂ Hp//G.

The opposite inclusion is evident.

Let us now prove the analogous property for H̃p ’s (see the notation in
Section 1). Obviously, we have

H̃1//G ⊂ H̃2//G ⊂ · · · ⊂ H̃p//G ⊂ H̃p+1//G ⊂ . . .

Proposition 12. (H̃q//G) ∩ (Gp//G) = H̃p//G for q > p > 2 .

Let H0 be the connected component of H , containing e , and H1 some other
connected component. We put

H1//G = πG(H1).

Lemma 6. H1//G 63 πG(e) .

Proof. Let S be a maximal toric subvariety of H1 . Then πG(H1) =
πG(S). According to Proposition 5, πG is finite on S . Hence πG(S) is closed
and H1//G = πG(S). Since S consists of semisimple elements distinct from
e, πG(S) 63 e .

Proof of Proposition 12. It suffices to prove that

(H̃p+1//G) ∩ (Gp//G) = H̃p//G.

Consider the G -equivariant projection

σ:Gp+1 → G, (g1, . . . , gp, gp+1) 7→ gp+1.
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It defines a projection
σG:Gp+1//G→ G//G.

Let H ′ = H \H0 . In view of Corrollary 1 to Proposition 8

H̃p+1 ⊂ (H̃p ×H0) ∪ (Hp ×H ′)
and hence

H̃p+1//G = πG(H̃p+1) ⊂ πG(H̃p ×H0) ∪ πG(Hp ×H ′).
By Lemma 6 we have

σG(πG(Hp ×H ′)) ⊂ σGπG(Hp ×H ′) = πG(H ′) 63 πG(e),

which implies that
πG(Hp ×H ′) ∩ (Gp//G) = ∅

Thus
(H̃p+1//G) ∩ (Gp//G) = πG(H̃p ×H0) ∩ (Gp//G).

Now we can do as in the proof of Proposition 11. Namely, since

ρG(πG(H̃p ×H0)) ⊂ H̃p//G

and ρG is the identity map on Gp//G , we get

(H̃p+1//G) ∩ (Gp//G) ⊂ H̃p//G.

The opposite inclusion is evident.

12. The action AutFp:G
p

Let Fp be the free group on generators u1, . . . , up , and Γp = AutFp the group
of its automorphisms. For any group G , one can define a right action of Γp on
Gp as follows. Let γ ∈ Γp . Then

γ(ui) = wi(u1, . . . , up),

where w1, . . . , wp are some words in p letters. We put

(g1, . . . , gp)
γ = (w1(g1, . . . , gp), . . . , wp(g1, . . . , gp)).

Obviously, this action commutes with the action of G by simultaneous conju-
gations. If H ⊂ G is a subgroup, then the subset Hp ⊂ Gp is invariant under
Γp .

We have natural embeddings

F1 ⊂ F2 ⊂ · · · ⊂ Fp ⊂ Fp+1 ⊂ . . . ,
Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γp ⊂ Γp+1 ⊂ . . . ,

where γ ∈ Γp is extended to an automorphism of Fp+1 by γ(up+1) = up+1 .
Obviously, the embedding Gp ⊂ Gp+1 is Γp -equivariant.

Let now G be a reductive algebraic group. Then any element of Γp acts
as an automorphism of the algebraic variety Gp , so the action of the group Γp on

Gp induces its action on Gp//G . Note that G̃p , and hence G̃p//G , is invariant
under Γp . The embedding Gp//G ⊂ Gp+1//G is Γp -equivariant.

If H ⊂ G is a reductive subgroup, then Hp//G and H̃p//G are invariant
under Γp .
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Proposition 13. Assume that g = (g1, . . . , gp) ∈ Gp (topologically) generates
G . Then for sufficiently large q > p the closure of the Γq -orbit of g coincides

with G̃q .

Proof. Denote the Γq -orbit of g by O and its closure by Ō . Obviously, any

element of O generates G and hence belongs to G̃q . Thus, Ō ⊂ G̃q . We are to
prove that Ō ⊃ G̃q for sufficiently large q .

Note that the group Γq contains (and is generated by) the following two
types of transformations of Gq :

(T1) multiplication of some component by some word in other components;

(T2) permutation of the components.

Let q = p+ r . Applying to g transformations of type (T1), we can get
any q -tuple of the form

(g1, . . . , gp, h1, . . . , hr),

where h1, . . . , hr belong to the subgroup Γ algebraically generated by g . Since
Γ is dense in G , this implies that

(g1, . . . , gp, h1, . . . , hr) ∈ Ō

for any h1, . . . , hr ∈ G .

If h1, . . . , hr generate G , we can prove in the same way that

(f1, . . . , fp, h1, . . . , hr) ∈ Ō

for any f1, . . . , fp ∈ G . Since the set of generating r -tuples is dense in G̃r

(Corollary 8b of Proposition 8), we obtain that

(11) Gp × G̃r ⊂ Ō.

Now take r > 2 large enough for the following condition to be satisfied:
Any generating set of > r elements of the group G/G0 contains a generating
subset of r elements. (For example, we can take r = max{2, |G/G0|} .) Then

(11) and Corollary 8a of Proposition 8 imply that G̃q ⊂ Ō .

Corollary 13a. If h = (h1, . . . , hp) ∈ Gp generates a reductive subgroup H ,

then for sufficiently large q > p the Γq -orbit of πG(h) is dense in H̃q//G .

13. Approximation of subgroups

Let H and F be reductive subgroups of a reductive group G .

Lemma 7. The following conditions are equivalent:

(a) πG(f) ∈ H̃p//G for some generating set f = (f1, . . . , fp) of F ;

(b) F̃ p//G ⊂ H̃p//G for all p > 2 .

(c) F̃ p//G ⊂ H̃p//G for some p such that F̃ p 6= ∅ .
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Proof. (a) ⇒ (b). According to Corollary 13a of Proposition 13 the Γq -orbit

of πG(f) is dense in F̃ q//G for sufficiently large q . Since H̃q//G is Γq -invariant

and closed in Gq//G , this implies that F̃ q//G ⊂ H̃q//G . But then (b) follows in
view of Proposition 12.

(b) ⇒ (c) is evident.

(c) ⇒ (a) is also evident.

If the equivalent properties of Lemma 7 are satisfied, we shall say that the
subgroup F is approximated by H and write F ≺ H . Obviously, this relation is
transitive. It is also clear that if F ⊂ H and FH0 = H (i.e., F intersects each
connected component of H ), then F ≺ H . (We shall see later that the converse
is also true up to conjugacy.)

If follows from formula (8) applied for sufficiently large p that if F ≺ H
then

dimF 6 dimH.

Lemma 8. If F ≺ H , then (F, F ) ≺ (H,H) .

Proof. Let f = (f1, . . . , fp) be a generating set of F . Then πG(f) ∈
πG(H1 × · · · ×Hp), where H1, . . . , Hp are connected components of H such that

H1 × · · · ×Hp ⊂ H̃p .

Let v1, . . . , vr (r > 2) be some words in the commutator subgroup
of the free group on p generators. Define a G -equivariant morphism θ:Gp →
(G,G)r by

θ(g1, . . . , gp) = (v1(g1, . . . , gp), . . . , vr(g1, . . . , gp)).

It induces a morphism θG:Gp//G → (G,G)r//G . The words v1, . . . , vr can be
choosen in such a way that θ(f) generate (F, F ) and θ(h) generate

(H,H)/(H,H)0 for h ∈ H1 × · · · ×Hp.

Then θ(H1 × · · · ×Hp) ⊂ (̃H,H)r and

πG(θ(f)) = θG(πG(f)) ∈ θG(πG(H1 × · · · ×Hp)) ⊂ πG(θ(H1 × · · · ×Hp))

⊂ (̃H,H)r//G,

so (F, F ) is approximated by (H,H).

Lemma 9. If F ≺ H and dimF = dimH , then dimZ(F ) > dimZ(H) . (We
shall see below that in fact such a situation is impossible, unless F = H .)

Proof. This is an immediate consequence of Lemma 8 and the following
lemma.

Lemma 10. For any reductive group G ,

(12) dim(G,G) + dimZ(G) = dimG.
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Proof. Consider the group G/(G,G0). Its center contains G0/(G,G0) and
hence has finite index. By a theorem of Schur the commutator subgroup of
G/(G,G0) is finite. This means that (G,G) is a finite extension of (G,G0). (In
fact (G,G0) = (G,G)0 .)

Consider now the decomposition of the tangent algebra g of G into the
direct sum of the subspace gG of Ad(G)-invariant elements and the subspace gG
spanned by the elements Ad(g)ξ−ξ , (g ∈ G, ξ ∈ g). Clearly, gG is the tangent
algebra of Z(G). The subspace gG contains [g, g] and can be characterized as
the least ideal of g such that Ad(G) acts trivially on the corresponding quotient
algebra. On the other hand, (G,G0) is the least G -invariant algebraic subgroup
of G0 such that G acts trivially on the corresponding quotient group. Hence gG
is the tangent algebra of (G,G0) or, which is the same, of (G,G). The equality
(12) follows, since

dim gG + dim gG = dim g.

14. Structure of quasi-finite morphisms

We recall the structure of quasi-finite morphisms given by the principal Zariski
theorem.

Any quasi-finite morphism ψ:X → Y of irreducible algebraic varieties
admits a decomposition

(13) ψ = ψ1ψ0,

where ψ0:X → Z is an open embedding and ψ1:Z → Y a finite morphism. If X
is normal, one may assume Z to be normal as well, and under this condition the
decomposition (13) is unique. Moreover, for any other decomposition ψ = ψ̃1ψ̃0

of type (13) we have
ψ̃0 = νψ0, ψ1 = ψ̃1ν,

where ν:Z → Z̃ is a normalization, whose restriction to ψ0(X) is an open
embedding.

Suppose now that X is an affine variety. Then S0 = Z \ ψ0(X) is a
divisor in Z . Moreover, if ψ (and hence ψ1 ) is dominant, S = ψ1(S0) is a
divisor in Y . It follows from the above description of all decompositions of type
(13) that the divisor S does not depend on the choice of such a decomposition
(that is, we need not suppose Z to be normal). We shall call S the singular
divisor of ψ .

For our purposes it is convenient to extend this definition to reducible
varieties. Let X be an unmixed normal affine variety (the normality means, in
particular, that the irreducible components of X do not intersect), and ψ:X →
Y a quasi-finite dominant morphism. We define the singular divisor of ψ as the
union of the singular divisors of the induced morphisms

ψi:Xi → ψ(Xi),

where Xi runs over the irreducible components of X .
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Let X , Y , ψ be as above, and X ′ an unmixed normal closed subvariety
of X . Then the induced morphism

ψ′:X ′ → Y ′ = ψ(X ′)

is also quasi-finite and dominant. Denote by S ′ its singular divisor.

Lemma 11. S′ ⊂ S .

Proof. If suffices to consider the case when X and X ′ are irreducible. In this
case, any decomposition ψ = ψ1ψ0 of type (13) gives rise to a decomposition
ψ′ = ψ

′
1ψ
′
0 ,where ψ

′
0:X ′ → Z ′ = ψ0(X ′) and ψ

′
1:Z ′ → Y ′ are the restrictions of

ψ0 and ψ1 , respectively. Obviously, ψ
′
0 is an open embedding and ψ

′
1 a finite

morphism. It follows that

S′ = ψ
′
1(Z ′ \ ψ′0(X ′)) ⊂ ψ1(Z \ ψ0(X)) = S.

15. Proof of Theorem 1

Since the restriction of a finite morphism to any closed subvariety is also finite,
it suffices to prove the theorem for sufficiently large p . In particular, we may
(and shall) assume that p > 2.

In view of Corollary 8a to Proposition 8, Hp is the disjoint union of
(closed) subsets F̃ p , where F runs over the subgroups of finite index in H .
Consequently, it suffices to prove that for any reductive sugroup H ⊂ G the
natural morphism

ψ̃: H̃p//H → H̃p//G

is finite. We already proved in Section 3 that it is quasi-finite. Let Sp ⊂ H̃p//G
denotes its singular divisor (see the preceding section). We are to prove that
Sp = ∅ .

Since the group Γp naturally acts on all the involved varieties, the divisor
Sp is Γp -invariant.

Suppose that Sp 6= ∅ , and take any irreducible component T of Sp . Let
K = k(T ) and K̄ be the algebraic closure of K . We shall think of elements of
K̄ as of algebraic functions on T .

Let t be the K -point of H̃p//G defined by the restriction of functions
to T . Take any semisimple point

f(t) = (f1(t), . . . , fp(t)) ∈ Gp(K̄),

projecting to t . Let F (t) be the (reductive) subgroup of G(K̄) generated by
f(t). According to Proposition 8 there exists a reductive subgroup F ⊂ G such
that F (t) is conjugate to F (K̄) in G(K̄). It follows that

t ∈ F̃ p(K̄)//G(K̄) = (F̃ p//G)(K̄),
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whence
T ⊂ F̃ p//G.

According to Corollary 13a of Proposition 13, Γq -orbit of πG(K̄)(f(t)) is

dense in (F̃ q//G)(K̄) for sufficiently large q . Since πG(K̄)(f(t)) ∈ Sp(K̄) ⊂ Sq(K̄)

and Sq(K̄) is Γq -invariant, we get

(F̃ q//G)(K̄) ⊂ Sq(K̄),

which implies that

(14) F̃ q//G ⊂ Sq ⊂ H̃q//G.

In particular, F is approximated by H , and

F̃ p//G ⊂ H̃p//G.

If F̃ p//G contains an irreducible component of H̃p//G , then it contains

a point of the form πG(h), where h ∈ H̃p generates H . Since the Γq -orbit of

such point is dense in H̃q//G for sufficiently large q , we get F̃ q//G = H̃q//G ,

which contradicts (14). Hence, F̃ p//G is a divisor in H̃p//G , that is

(15) dim F̃ p//G = dim H̃p//G− 1.

By formula (8) we have

dim H̃p//G = (p− 1) dimH + dimZ(H),

dim F̃ p//G = (p− 1) dimF + dimZ(F ).

Note that dimZ(F ) 6 rkG . Therefore, if p > rkG + 3, the equality (15)
is impossible, unless dimF = dimH . But Lemma 10 shows that (15) is also
impossible if dimF = dimH . We came to a contradiction, which proves that
Sp = ∅ .

Corollary 1 of Theorem 1. Let H and F be reductive subgroups of a
reductive group G . The subgroup F is approximated by H iff it is conjugate
to a subgroup of H intersecting all connected components of H .

Proof. The ”if” part is clear due to Corollary 1 to Proposition 8.

Assume now that F ≺ H , and let f = (f1, . . . , fp), p > 2, be a

generating set of F . Then Theorem 1 shows that πG(f) ∈ πG(H̃p). This means

that f is conjugate to a p -tuple of H̃p , and hence F is conjugate to a subgroup
of H , projecting onto H/H0 .

16. Varieties of characters of finitely generated groups

One can look at Theorem 1 from another point of view. A p -tuple g =
(g1, . . . , gp) ∈ Gp can be identified with the representation Fp → G taking the
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i -th generator of Fp to gp . In such a way the variety R(Fp, G) of all represen-
tations of Fp into G is identified with Gp . If Γ is any group with p generators,
one can consider Γ as a quotient group of Fp , and thereby the variety R(Γ, G)
of representations of Γ into G is identified with a closed G -invariant subvariety
of R(Fp, G).

The quotient X(Γ, G) = R(Γ, G)//G is called the variety of G -characters
of Γ. It is naturally identified with a closed subvariety of X(Fp, G). In view
of the description of invariants for the action SLn(k): SLn(k)p (see the intro-
duction) the elements of X(Γ, SLn(k)) are interpreted as the usual characters of
(unimodular) n -dimensional linear representations of Γ. (In the case of GLn(k),
one should consider the inverse determinant of the representation together with
its character.)

It is just a reformulation of Theorem 1 that, for a reductive subgroup
H ⊂ G , the natural morphism X(Fp, H)→ X(Fp, G) is finite. Moreover, since
the restriction of a finite morphism to a closed subvariety is finite as well, we
obtain

Corollary 2 of Theorem 1. Let Γ be a finitely generated group, and H a re-
ductive subgroup of a reductive group G . Then the natural morphism X(Γ, H)→
X(Γ, G) is finite. In particular, for any reductive subgroup H ⊂ SLn(k) the set
of characters of representations of Γ into H is closed in X(Γ, SLn(k)) .
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