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Abstract. In the articles “Ciatti, P., Scalar products on Clifford modules
and pseudo-H -type Lie algebras, Ann. Mat. Pura Appl., to appear” and

“Ciatti, P., Solvable extensions of pseudo-H -type algebras, Boll. Un. Mat.

It., to appear,” a class of solvable pseudo-Riemannian harmonic manifolds
was constructed. Now spherical distributions on such manifolds are investi-

gated. A notion of radiality for distributions is introduced with the aid of
a technique due to J. Faraut (Faraut, J., Distributions sphérique sur les es-

paces hyperboliques, J. Math. Pures Appl., (1979), 369–444). The spherical

distributions are the radial eigendistributions of the Laplace-Beltrami oper-
ator. They span a space which, depending on the signature of the metric,

may have dimension one or two.

0. Introduction

A pseudo-Riemannian manifold M with Laplace-Beltrami operator ∆ is said to
be harmonic if for all functions f(x) on M which depend only on the geodesic
distance d(x, x0) from a fixed point x0 , ∆f(x) also depends only on d(x, x0),
(see [14, 15]).

In 1944 A. Lichnérowicz showed that, when the dimension is less than or
equal to 4, the harmonic Riemannian spaces are symmetric spaces of rank one.
In 1950 Lichnérowicz conjectured that the same holds true for all dimensions.
Recently Z. Szabó has showed that the conjecture is true for compact manifolds
with finite fundamental group, (see [15]).

In 1992 E. Damek and F. Ricci have exhibited counterexamples to the
conjecture of Lichnérowicz, (see [7], see also [1]). These counterexamples consist
of one-dimensional solvable extensions of the H-type groups defined in [11].

The more general setting of pseudo-riemannian harmonic spaces is more
complicated. In fact, on the one hand in 1944 A. Lichnérowicz and A. G. Walker
showed that every harmonic space with a Lorentz metric (i.e., a metric with
signature (dimM−1, 1) or (1, dimM−1)) is symmetric, actually it has constant
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curvature. On the other hand T. J. Willmore has proved that the so called
recurrent spaces are non-symmetric harmonic spaces with metric of signature
(p, q) with p, q ≥ 2, (see for instance [14]). In [6] we provide a new class
of pseudo-Riemannian solvable harmonic spaces, applying the construction of
Damek and Ricci to the class of pseudo-H -type Lie groups, which have been
previously defined in [5]. We summarize biefly here this construction:

Let n be a two-step nilpotent real Lie algebra endowed with a scalar
product 〈 · , · 〉 . Assume that the sum of the center z of n with v = z⊥ is direct
and equal to n .

Define for all Z ∈ z a map JZ : v→ v by

〈JZX,Y 〉 = 〈Z, [X,Y ]〉

for X,Y ∈ v .

Definition 0.1. We will call n a pseudo-H-type Lie algebra if

〈JZX, JZX〉 = −〈Z,Z〉 〈X,X〉

for all Z ∈ z and for all X ∈ v . In particular we will say that n is a (p, q)-H-type
algebra if 〈 · , · 〉 has signature (p, q) (see [5]).

Let n = dim z = p + q . We will often denote by n̄ the integer part of
n
2

. We assume n ≥ 1, excluding the trivial case. It follows that the dimension
of v is even, so we set dimension of v = 2m [5]. Since we know from [5] that m
must be even for n > 1, we do not consider the case p = 1, q = 0 and m odd.
Hence, we assume that m is even.

We also assume p ≥ 1, excluding from what follows the case of Euclidean
H-type algebras which have been introduced in 1980 by A. Kaplan (see [11]) and
have been extensively studed in the literature (see for istance [12], [3], [4], [7]). It
necessarily follows from the last assumption that the signature of the restriction
of 〈 · , · 〉 to v is (m,m) (see [5]).

As in [6] we construct the Damek-Ricci one dimensional solvable exten-
sion of n , taking a derivation H of n such that

H|v =
1

2
Iv and H|z = Iz,

where Iv and Iz are respectively the identity endomorphisms of v and z , setting
a = RH , and defining s to be the semi-direct sum of n and a .

We denote by S the connected, simply connected, Lie group with Lie
algebra s , and by A the multiplicative group (R+, �) with Lie algebra a . In
particular any connected rank one symmetric space belongs to this class of
manifolds which provide a general framework in which rank one symmetric spaces
can be analyzed in a unified way ([3], [4]).

The map
(X,Z, a) 7→ exp(X + Z) exp(log aH)

from v× z× R+ onto S defines a global chart.



Ciatti 3

We endow S with the left invariant pseudo-Riemannian metric g induced
by the following scalar product on s

〈(X,Z, tH), (X ′, Z ′, t′H)〉 = 〈(X,Z), (X ′, Z ′)〉n − tt′.

There exists a geodesic arc connecting the identity e = (0, 0, 1) of S to
(X,Z, a) if and only if the function R : S 7→ R defined by

R(X,Z, a) =
(
1 + a− 1

4
〈X,X〉

)2 − 〈Z,Z〉
4a.

(0.1)

is non-negative in (X,Z, a). If this is the case the geodesic distance, d(X,Z, a),
of (X,Z, a) from e is a function of R(X,Z, a) (see [6]).

The pseudo-Riemannian manifold (S, g) is harmonic (for the definition
see [1, 2, 14, 15]). This means that if f is defined in a neighborhood of e and
depends only on d(X,Z, a), then also ∆f is a function of d(X,Z, a), where

∆ = div grad

is the Laplace-Beltrami operator on S . More precisely, if Φ is a C2 function of
R(X,Z, a)

∆Φ(R) = R (1− R) Φ′′(R) +

(
n

2
+

1

2
− (1 + n+m) R

)
Φ′(R), (0.2)

(see [6]). The left Haar measure on S , dmL(X,Z, a), is

dmL(X,Z, a) = a−1−m−n d2mX dnZ da, (0.3)

where d2mX , dnZ , and da are Lebesgue measures on v , z , and A respectively.

We will denote by D(R) the space of C∞ -functions with compact sup-
port on the real line and by D(S) the space of C∞ -functions on S with compact
support. Let η1, . . . , ηk be a set of functions on the real line, and let F be any
space of functions on R , we will write

f ∈ F + η1 ×F + · · ·+ ηk × F ,

if there exist f0, f1, . . . , fk ∈ F such that f = f0 + η1 f1 + . . .+ +ηk fk .

The spherical distributions on a pseudo-Riemannian symmetric space of
rank-one X = G/H have been defined by J. Faraut [9], as the H -invariant dis-
tributions on X which are eigendistributions of the Laplace-Beltrami operator.
Since in our case S is not a quotient of groups, we replace the H -invariance of
distributions with the condition of being constant on the level sets of the function
R in (0.1). Decomposition of the Haar measure on S with respect to the coordi-
nate R leads to the notion of an averaging operator M , obtained by integrating
functions in D(S) on the level sets of R . We call H(p,q,m)) the image of D(S)
under M .
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Then H(p,q,m)) is a space of functions on the real line. In the first section
we prove that H(p,q,m) can be described as follows

H(p,q,m) = D (R) + η0 ×D (R) + η1 ×D (R) ,

where the functions η0 and η1 are defined in the following table

p (mod 2) q (mod 2) η0 η1

0 0 R
n−1

2
+ (R− 1)

n−1
2 +m

+

1 0 R
n−1

2 log |R| (R− 1)
n−1

2 +m log |R− 1|

0 1 R
n−1

2
+ (R− 1)

n−1
2 +m

+

1 1 R
n−1

2
− (R− 1)

n−1
2 +m
−

where n = p+ q is the dimension of z and m is the dimension of v , and tk+ and
tk− are the functions defined by

tk+ = tk Y (t), tk− = tk Y (−t), Y (t) =

{
0 if t < 0
1 if t ≥ 0

.

In the second section, following the approach of A.Tengstrand and J. Fa-
raut, we endow H with a topology with respect to which M becomes a continu-
ous mapping. Then we define radial distributions those distributions on S which
are image of H′(p,q,m) under M ′ . Finally, in the third section, we determine,
among radial distributions, those which are eigendistributions of the Laplace-
Beltrami operator. These results extend the work of J. Faraut and M. Kosters
for the symmetric case [9, 13].

The determination of the spherical distributions on this class of harmonic
spaces is the first step toward the Plancherel formula which we will obtain in a
forcoming paper.

1. The space H(p,q,m)

We shall prove that we can associate to any function φ in D(S) a function Mφ
with compact support on the real line such that, given a function f in C(R),

∫

S

f (R(X,Z, a)) φ(X,Z, a) dmL(X,Z, a) =

∫

R

f(t)Mφ(t) dt. (1.1)

The function Mφ is smooth except at most in 0 and 1 which are the critical
values of R . The critical value R = 1 corresponds to the isolated critical point
(0, 0, 1). The signature of the Hessian matrix of the function R at this point
is (p + m, q + m). The critical value R = 0 is not isolated, it corresponds to a
non degenerate critical submanifold Σ of dimension 2m . The signature of the
Hessian matrix to the subspace in the tangent space normal to Σ has signature
(p, q).
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Theorem 1.1. Let φ ∈ D(S) . Then Mφ ∈ H(p,q,m) .

The proof of the theorem requires the preliminaries and the lemmas
which follow.

From the proof of Lemma 4.3 of A. Tengstrand [16] we extract the
following technical lemma which will be used repeatedly in course of the section:

Lemma 1.2. Let f ∈ D(R2) , then the function Nf defined by

Nf(t) =

∫ +∞

|t|
f(s, t) (s+ t)

p−1
2 (s− t)

q−1
2 ds,

belongs to the space D(R) + λ×D(R) , with λ given by

(I) λ(t) = t
p+q

2 −1
+ if p and q are both even,

(II) λ(t) = t
p+q

2 −1 log |t| if p and q are both odd,

(III) λ(t) = t
p+q

2 −1
+ if p is odd and q is even,

(IV) λ(t) = t
p+q

2 2−1
− if p is even and q isodd.

Furthermore N is a surjective map from D(S) onto D(R) + λ×D(R) .

We will also need the following lemma of Tengstrand [16], Lemma 3.1:

Lemma 1.3. Let f be a function on R with compact support which is C∞

except at a point t0 , and let λ be as in Lemma 1.2; then the following are
equivalent:

1. The function f belongs to the space f ∈ D(R) + λ(t− t0)×D(R);

2. There exists a sequence
{
ε

(0)
j

}
such that for all N ∈ N , the function

f(t)− λ(t− t0)
N∑
j=0

ε
(0)
j (t− t0)j is of class Cr in some neighborhood of

t0 for all non-negative integers r < N + p+q
2

.

Lemma 1.4. Let f
(
x2, R

)
be a function in D

(
R2
)

, even in x . If k is a
positive integer then:

I1(R) =

+∞∫

0

(
x2 − R

)k−1

+
f
(
x2, R

)
dx ∈ D(R) + R

k− 1
2

+ ×D(R),1.

I2(R) =

+∞∫

0

(
x2 − R

)k− 1
2

+
f
(
x2, R

)
dx ∈ D(R) + Rk log |R| × D(R),2.

I3(R) =

+∞∫

0

(
x2 − R

)k− 1
2

− f
(
x2, R

)
dx ∈ Rk+ ×D(R),3.

I4(R) =

+∞∫

0

(
x2 − R

)k−1
log
∣∣x2 − R

∣∣ f
(
x2, R

)
dx4.

∈ D(R) + R
k− 1

2
− ×D(R).
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Proof. (1) We write

I1(R) =

+∞∫

0

(
x2 − R

)k−1
f
(
x2, R

)
dx− Y(R)

√
R∫

0

(
x2 − R

)k−1
f
(
x2, R

)
dx.

The first term in the sum is a C∞ -function of R with compact support. For the
second term, setting x = w

√
R we find

Y(R)

√
R∫

0

(
x2 − R

)k−1
f
(
x2, R

)
dx

= R
k− 1

2
+

1∫

0

(
w2 − 1

)k−1
f
(
Rw2, R

)
dw ∈ Rk−

1
2

+ ×D(R).

Hence,

I1(R) ∈ D(R) + R
k− 1

2
+ ×D(R).

(2) In this case we find

I2(R) =

+∞∫

0

(
x2 − R

)k−1
2

+
f
(
x2, R

)
dx

=





+∞∫
0

(
x2 − R

)k−1
2 f

(
x2, R

)
dx, if R < 0,

+∞∫
√
R

(
x2 − R

)k−1
2 f

(
x2, R

)
dx, if R ≥ 0.

We aim to study I2(R) when |R| is small since I2 ∈ C∞ for R 6= 0 and
vanishes when |R| is big. So we assume |R| < 1

2 and write

I2 (R) = I21(R) + I22(R),

where

I21(R) =

1∫

0

(
x2 − R

)k− 1
2

+
f
(
x2, R

)
dx,

and

I22(R) =

+∞∫

1

(
x2 − R

)k− 1
2 f

(
x2, R

)
dx.

Clearly I22 is a C∞ -function of R for |R| < 1
2 . To deal with I21 we take the

Taylor expansion of f centered at 0 in the variable x2 ,

f
(
x2, R

)
=

l∑

j=0

1

j!
∂j1 f(0, R)x2j +R(l)(x

2, R),
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where R(l) is the remainder which satisfies

lim
u→0

R(l)(u,R)

ul
= 0, lim

u→0

R(j)
(l) (u,R)

ul−j
= 0, (1.2)

uniformly in R for all j in {0, . . . , l} . We obtain

I21(R) =
l∑

j=0

1

j!
∂j1 f(0, R)

1∫

0

x2j
(
x2 −R

)k− 1
2

+
dx

+

1∫

0

(
x2 − R

)k− 1
2

+
R(l)(x

2, R) dx.

By the Lebesgue Dominated Convergence Theorem, formula (1.2) implies
that the integral with the remainder term is of class Ck+l . In fact, when R < 0
replacing x2 by t we obtain

1∫

0

(t−R)
k− 1

2
R(l)(t, R)

2
√
t

dt.

By Leibniz’s rule we find

(
d

dR

)r 1∫

0

(t− R)
k− 1

2
R(l)(t, R)

2
√
t

dt

=
r∑

j=0

(−1)j
(
r

j

) 1∫

0

(t− R)
k−j− 1

2

R(r−j)
(l) (t, R)

2
√
t

dt.

Since the remainder is a C∞ -function of R this procedure is allowed for r < l+k ,
because for r ≥ k + l the integral does not tend to a finite limit as R → 0. A
similar argument works for R ≥ 0. It is a matter of computation to show that

1∫

0

(
x2 − R

)k− 1
2

+
x2j dx = gj(R) + (−1)k+1 (2 k − 1)!! (2 j − 1)!!

2k+j+1 (k + j)!
Rk+j log |R|,

(1.3)
where gj is C∞ in a neighborhood of 0. Hence, expanding ∂j1 f(0, R) in powers
of R about 0 we find a sequence {ci} such that

I21(R)− Rk log |R|
l∑

j=0

cj R
j ∈ Ck+l.

It follows from Lemma 1.3 that

I2 ∈ D(R) + Rk log |R| × D(R).
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(3) We remark that I3(R) = 0 if R < 0. Thus we assume R ≥ 0 and
set x = u

√
R obtaining

I3(R) = Rk+

1∫

0

(
1− u2

)k− 1
2 f

(
Ru2, R

)
du ∈ Rk+ ×D(R).

(4) We assume |R| < 1
2 and write

I4(R) = I41(R) + I42(R),

where

I41(R) =

1∫

0

(
x2 − R

)k−1
log
∣∣x2 − R

∣∣ f(x2, R) dx,

and

I42(R) =

+∞∫

1

(
x2 −R

)k−1
log
∣∣x2 −R

∣∣ f(x2, R) dx.

We immediately see that I42 is C∞ with compact support in the domain con-
sidered. To deal with I41 , just as we did for I21 we take the Taylor expansion
of f about 0 in the variable x2 ,

I41(R) =
l∑

j=0

1

j!
∂j1 f(0, R)

1∫

0

x2j
(
x2 − R

)k−1
log
∣∣x2 −R

∣∣ dx

+

1∫

0

(
x2 −R

)k−1
log
∣∣x2 −R

∣∣ R(l)(x
2, R) dx, (1.4)

where R(l) is the remainder.

From Lebesgue dominated convergence theorem it follows immediately
that the last term is a function of class Ck−1+l with compact support. The
behavior as R → 0 of the first term in (1.4) depends on the side from which R
approaches zero. In fact, there exists two C∞ -functions gj and hj such that
when R ≤ 0 the integrals are given by

1∫

0

x2 j
(
x2 −R

)k−1
log
(
x2 − R

)
dx = gj(R) + hj(R) |R|k+j−1

2 , (1.5.a)

and when R > 0 the integrals are given by

1∫

0

x2 j
(
x2 − R

)k−1
log
∣∣x2 − R

∣∣ dx = gj(R). (1.5.b)
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Expanding ∂j1 f(0, R) in power of R about 0 in (1.4), and using (1.5),
we see that there exists a sequence {dj} such that for all non-negative integers l

I41 −Rk−
1
2

−

l∑

j=0

dj R
j

is of class Ck−1+l in a neighborhood of 0. Therefore from Lemma 1.3 it follows
that

I4(R) ∈ D(R) + R
k− 1

2
− ×D(R).

Lemma 1.5. Let f ∈ D
(
R2
)

, and j and k non-negative integers, then:

1.

+∞∫

0

tk (t+ R)
j
2
± f (t, R) dt ∈ D(R) + R

j
2+k+1

± ×D(R),

2.

+∞∫

0

tk (t+ R)
j
2 log |t+ R| f (t, R) dt ∈ D(R) + R

j
2 +k+1 log |R| × D(R).

We omit the proof which is similar to that of Lemma 1.4, but considerably easier.

Proof of Theorem 1.1. First of all with some transformation we reduce the
integral on the left hand side of (1.1) to a simpler form.

Let Z1, . . . , Zn be an orthonormal basis of z , i.e. such that

〈Zµ, Zν〉 = εµ(p, q) δµν µ, ν = 1, . . . , n,

where δµν is the Kronecker delta, and

εµ(p, q) =

{
1, for µ = 1, . . . , p,
−1, for µ = p+ 1, . . . , p+ q.

Let also X1, . . . , X2m be an orthonormal basis of v such that

〈Xi, Xj〉 = εi(m,m) δij i, j = 1, . . . , 2m.

If (X,Z, a) is a generic element of S we can write

X =

2m∑

i=1

xiXi and Z =

n∑

µ=1

zµ Zµ.

We introduce bi-spherical coordinates on z and v as follows. On z we set

p∑

µ=1

zµ Zµ = (r + s)
1
2 ωp and

p+q∑

µ=p+1

zµ Zµ = (r − s) 1
2 ωq,
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where ωp belongs to the (p− 1)-dimensional sphere, Sp−1 , and ωq ∈ Sq−1 . On
v we set

m∑

i=1

xiXi = (u+ v)
1
2 ωm and

2m∑

i=m+1

xiXi = (u− v)
1
2 ω′m,

where ωm, ω
′
m ∈ Sm−1 . Therefore,

〈Z,Z〉 = r + s− (r − s) = 2s, and 〈X,X〉 = u+ v − (u− v) = 2v.

We observe that the function R defined in (0.1), depends only on (v, s, a),

R(v, s, a) =

(
1 + a− 1

2v
)2 − 2s

4a
.

The integral on the left hand side of (1.1) in the new coordinates becomes

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

|v|

du

+∞∫

−∞

ds

+∞∫

|s|

dr f (R(v, s, a)) Ωφ(u, v, r, s, a)

× a−Q−1 (r + s)
p−1

2 (r − s) q−1
2 (u2 − v2)

m−1
2 (1.6)

with

Ωφ(u, v, r, s, a) =∫

S

φ
(

(r + s)
1
2ωp, (r− s)

1
2ωq, (u+ v)

1
2ωm, (u− v)

1
2ω′m

)
dωpdωqdωmdω

′
m,

S = Sp−1 × Sq−1 × Sm−1 × Sm−1,

where dωk is the surface element on the sphere Sk−1 . It follows immediately
from Lemma 4.1 of [16] that Ωφ(u, v, r, s, a) is a C∞ -function with compact
support of all its variables.

Applying Lemma 1.2 (I) to the variables (u, v), the integral in (1.6)
becomes

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

−∞

ds

+∞∫

|s|

dr f (R(v, s, a))

×
(
α(v, r, s, a) + vm−1

+ β(v, r, s, a)
)

(r + s)
p−1

2 (r − s) q−1
2 (1.7.0)

when m is even, and

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

−∞

ds

+∞∫

|s|

dr f (R(v, s, a))

×
(
α(v, r, s, a) + vm−1 log |v| β(v, r, s, a)

)
(r + s)

p−1
2 (r − s) q−1

2 (1.7.1)
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when m is odd. We have included the factor a−1−Q in the functions α and
β , noticing that for what concerns the variable a , the supports of α and β are
compact in (0,+∞). Moreover, we observe that α, β ∈ D(R3 × R+).

However, only the formula (1.7.0) occurs when n > 1. In fact, we know
from [5] that m must be even for n > 1. As anticipated in the introduction we
do not consider the case p = 1, q = 0 and m odd, we can therefore assume that
m is even. Replacing the coordinate s with R = R(v, s, a) and calling

s̃(v,R, a) =
1

2

(
1 + a− v

2

)2

− 2 aR,

the integral (1.7.0) becomes

+∞∫

−∞

dR f (R)

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

|s̃(v,R,a)|

dr
(
α̃(v,R, r, a) + vm−1

+ β̃(v,R, r, a)
)

× (s̃(v,R, a) + r)
p−1

2 (r − s̃(v,R, a))
q−1

2 ,

where α̃(v,R, r, a) = α (v, s̃(v,R, a), r, a) is a C∞ -function with compact support
in R3 × R+ and the same for β̃(v,R, r, a). Comparing the last formula with (1.1)
we obtain

Mφ(R) =

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

|s̃(v,R,a)|

dr
(
α̃(v,R, r, a) + vm−1

+ β̃(v,R, r, a)
)

× (r + s̃(v,R, a))
p−1

2 (r − s̃(v,R, a))
q−1

2 . (1.8)

It is clear that s̃(v,R, a) > 0 when R < 0. When R ≥ 0 we see that
s̃(v,R, a) ≥ 0 if and only if

v ≤ 4
(

1 + a− 2
√
aR
)

or v ≥ 4
(

1 + a+ 2
√
aR
)
.

We set
v = 2 (y + a+ 1) ,

from which it follows

ŝ(y,R, a) = s̃ (v(y,R, a), R, a) = 1

2 (y2 − 4aR) .

In the new variables Mφ can be written as

Mφ (R) = J1(R) + J2(R),

with

J1(R) =

+∞∫

0

da

+∞∫

−∞

dy

+∞∫

|y2−4 aR|
2

dr α̂(y,R, r, a)

×
(
r +

y2 − 4 aR

2

) p−1
2
(
r − y2 − 4 aR

2

) q−1
2

,
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and

J2(R) =

+∞∫

0

da

+∞∫

−∞

dy

+∞∫

|y2−4 aR|
2

dr (y + a+ 1)
m−1
+ β̂(y,R, r, a)

×
(
r +

y2 − 4 aR

2

) p−1
2
(
r − y2 − 4 aR

2

) q−1
2

.

Since the transformation is linear α̂ and β̂ are still C∞ -functions with compact
support. Considering J1 we split the function α̂ into the sum of its even and
odd parts,

α̂(y,R, r, a) =
1

2
α̂0(y2, R, r, a) +

1

2
y α̂1(y2, R, r, a),

and we replace r with a t , and y with 2
√
a x , obtaining

J1(R) =

+∞∫

0

da

+∞∫

0

dx

+∞∫

2 |x2−R|

dt α̃
(
x2, R, t, a

) (
t+ 2

(
x2 − R

)) p−1
2

×
(
t− 2

(
x2 − R

)) q−1
2 .

Since the transformation is C∞ and proper on the support of the function α̂0 ,
the function α̃ is still C∞ with compact support.

Finally, executing the integration in a we obtain

J1(R) =

+∞∫

0

dx

+∞∫

2 |x2−R|

dtA
(
x2, R, t

) (
t+ 2

(
x2 − R

)) p−1
2

×
(
t− 2

(
x2 − R

)) q−1
2 . (1.9)

where

A
(
x2, R, t

)
=

+∞∫

0

α̃
(
x2, R, t, a

)
da

is a C∞ -function with compact support.

The computations which follow depend on the parity of the two integers
(p, q), we denote by n̄ the integer part of half the dimension n = p+ q of z .

(1) When p and q are both even we obtain from (1.9) by Lemma 1.2 (I)

J1(R) =

+∞∫

0

(
A1

(
x2, R

)
+A2

(
x2, R

) (
x2 −R

)n̄−1

+

)
dx, (1.10)

Since A1 and A2 are C∞ -functions with compact support from Lemma 1.4 it
follows that

J1(R) ∈ D(R) + R
n̄− 1

2
+ ×D(R).
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(2) When p and q are both odd we obtain from (1.9) by Lemma 1.2 (IV)

J1(R) =

+∞∫

0

(
A1

(
x2, R

)
+ A2

(
x2, R

) (
x2 − R

)n̄−1
log
∣∣x2 −R

∣∣
)
dx.

Here also A1 and A2 are C∞ -functions with compact support, therefore Lemma
1.4 implies that

J1(R) ∈ D(R) + R
n̄− 1

2
− ×D(R).

(3) In the same way when p is even and q is odd we obtain

J1(R) ∈ D(R) +Rn̄+ ×D(R).

(4) Finally, for p odd and q even we obtain

J1(R) ∈ D(R) + Rn̄ log |R| × D(R).

We now turn our attention to J2 . To study J2 near 0, we write

J2(R) = J21(R)− J22(R),

where

J21(R) =

+∞∫

−∞

dy

+∞∫

0

da

+∞∫

|y2−4 aR|
2

dr (y + a+ 1)
m−1

×
(
r +

y2 − 4 aR

2

) p−1
2
(
r − y2 − 4 aR

2

) q−1
2

β̂ (y,R, r, a) ,

and

J22(R) =(−1)m−1

+∞∫

−∞

dy

+∞∫

0

da

+∞∫

|y2−4 aR|
2

dr (y + a+ 1)
m−1
−

×
(
r +

y2 − 4 aR

2

) p−1
2
(
r − y2 − 4 aR

2

) q−1
2

β̂ (y,R, r, a) ,

When R is near 0 the considerations developed for J1 hold for J21 if one
replaces the function α̂(y, a, r, R) with (y + a+ 1)

m−1
β̂ (y,R, r, a). It follows

that J2 produces at R = 0 a singularity of the same type as J1 . We also notice
that in 0 the function J22 is C∞ since on the domain of integration the argument
of the integral is C∞ with compact support.
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We study now the behavior of J2 near R = 1. We replace first y with
2
√
Rx and r with 2Rt

J2(R) =

+∞∫

−∞

dx

+∞∫

0

da

+∞∫

|x2−a|

dt
(

2
√
Rx+ a+ 1

)m−1

+

×
(
t+ x2 − a

) p−1
2
(
t− x2 + a

) q−1
2 β̃ (x,R, t, a) ,

where β̃ is C∞ with compact support for R ≥ 1
2 . Recalling that β̃ (x,R, t, a) = 0

for a ≤ 0, we extend the integral in a to (−∞,+∞). We replace a with
ξ = 2

√
Rx+ a+ 1, and then x with z = x+

√
R ; finally, observing that only the

even part of β̄ with respect to z gives contribution to the integral, we obtain

J2(R) =

+∞∫

−∞

dz

+∞∫

−∞

dξ ξm−1
+

+∞∫

2 |z2+1−R−ξ|

dt
(
t+ z2 −R+ 1− ξ

)p−1
2

×
(
t− z2 + R− 1 + ξ

) q−1
2 β̄ (z, R, t, ξ)

=

+∞∫

0

dz

+∞∫

0

dξ ξm−1

+∞∫

2 |z2+1−R−ξ|

dt
(
t+ z2 −R+ 1− ξ

)p−1
2

×
(
t− z2 + R− 1 + ξ

) q−1
2 β̄0

(
z2, R, t, ξ

)
(1.11)

Since these transformations are proper maps and C∞ on the domain of the
integral the function β̄0 is C∞ with compact support in [0,+∞)×R2×

(
1
2
,+∞

)
.

We noticed above that, at the point zero, J2 produces the same type of
singularity as does J1 , therefore we pass to the study of J2 about 1.

(1) When p and q are both even (1.11) gives by Lemma 1.2 (I)

J2(R) =

+∞∫

0

dz

+∞∫

0

dξ ξm−1

×
(
B1

(
z2, R, ξ

)
+ B2

(
z2, R, ξ

) (
z2 −R+ 1− ξ

)n̄− 1
2

+

)
,

where B1 and B2 are C∞ -functions with compact support. Interchanging now
the order of integration we see that the internal integral becomes one of the same
type as I1 . So from Lemma 1.4 (1) it follows that

+∞∫

0

(
B1

(
z2, R, ξ

)
+ B2

(
z2, R, ξ

) (
z2 −R+ 1− ξ

)n̄− 1
2

+

)
dz

= B1(R, ξ) + B2(R, ξ) (R− 1 + ξ)
n̄− 1

2
+ ,

where B1 and B2 are C∞ -functions with compact support. Hence,
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J2(R) =

+∞∫

0

ξm−1
(
B1(R, ξ) + B2(R, ξ) (R− 1 + ξ)

n̄− 1
2

+

)
dξ, (1.12)

and by Lemma 1.5 (1) we find

J2(R) ∈ D(R) + R
n̄− 1

2
+ ×D(R) + (R− 1)

n̄+m− 1
2

+ ×D(R).

The same argument applies to the other cases giving:

(2) For p and q both odd

J1(R) ∈ D(R) + R
n̄− 1

2
− ×D(R) + (R− 1)

n̄+m− 1
2

− ×D(R).

(3) For p even and q odd

J2(R) ∈ D(R) +Rn̄+ ×D(R) + (R− 1)n̄+m
+ ×D(R).

(4) For p odd and q even

J2(R) ∈ D(R) + Rn̄ log |R| × D(R) + (R− 1)n̄+m log |R− 1| × D(R).

Collecting together the results concerning J1 and J2 we get the theorem.

We conclude the section with the following theorem:

Theorem 1.6. The map M : D(S)→ H(p,q,m) defined by (1.1) is linear and
onto.

Proof. We have showed that if φ ∈ D(S) then Mφ ∈ H(p,q,m) . It is also clear
that M is linear, so it remains only to show that it is onto. To fix the ideas we
will assume that p and q are even; the other cases can be handled in a similar
way. Since

H(0,0) =
{
f = f0 + η0 f1 + η1 f2

∣∣ f0, f1, f2 ∈ D(R)
}
,

given f0, f1, f2 ∈ D(R), to prove the surjectivity of M it is enough to exhibit
φ0, φ1, φ2 ∈ D(S) such that

Mφ0 = f0, Mφ1 = g0 + η0 f1, Mφ2 = h0 + η0 h1 + η1 f2,

where g0, h0, h1 ∈ D(R). We will show only that there exist φ0 and φ1 with the
required properties, the proof in the remaining case is similar.

We first find, in each case, A1, A2 such that the integral in (1.10) gives
the desired result. For f0 , let U ∈ D(R) be such that

+∞∫

0

U
(
x2
)
dx = 1.
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Choosing
A1

(
x2, R

)
= U

(
x2
)
f0(R) and A2 = 0,

we find

f0(R) =

+∞∫

0

A1

(
x2, R

)
dx.

For f1 , we take g ∈ D(R) such that

Λg(R) = 2

1∫

0

g
(
Ru2

) (
u2 − 1

)n̄−1
dx 6= 0 if R ∈ suppf1 .

We define

F1(R) = − f1(R)

Λg(R)
,

clearly suppF1 = suppf1 and F1 ∈ C∞ . We set

A2

(
x2, R

)
= g

(
x2
)
F1(R).

We find with the usual computations

+∞∫

0

(
x2 − R

)n̄−1

+
A2

(
x2, R

)
dx = F1(R)

+∞∫

0

(
x2 − R

)n̄−1

+
g
(
x2
)
dx

= F1(R)

+∞∫

0

(
x2 −R

)n̄−1
g
(
x2
)
dx− F1(R)Y (R)

√
R∫

0

(
x2 − R

)n̄−1
g
(
x2
)
dx

= g0(R)− F1(R)R
n̄− 1

2
+

1∫

0

(
u2 − 1

)n̄−1
g
(
Ru2

)
du = g0(R) +R

n̄−1
2

+ f1(R),

with g0 ∈ D(R).

Once we have determined A1 and A2 , we apply Lemma 1.2 to find
A
(
x2, R, t

)
in D

(
R3
)

such that

+∞∫

0

dx

+∞∫

2 |x2−R|

dtA
(
x2, R, t

) (
t+ 2

(
x2 − R

)) p−1
2
(
t− 2

(
x2 − R

)) q−1
2

=

+∞∫

0

(
A1

(
x2, R

)
+A2

(
x2, R

) (
x2 −R

)n̄−1

+

)
dx.

Now let H ∈ D ((0,+∞)) be such that

∫ +∞

0

H(a) da = 1.
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Setting

α̂ (y,R, t, a) =
1

2
A
(
y2

4 a
,R, t

)
H(a),

we find

+∞∫

0

da

+∞∫

−∞

dy

+∞∫

|y2−4 aR|
2

dr α̂(y,R, r, a)

(
r +

y2 − 4 aR

2

) p−1
2
(
r − y2 − 4 aR

2

) q−1
2

=

+∞∫

0

dx

+∞∫

2 |x2−R|

dtA
(
x2, R, t

) (
t+ 2

(
x2 − R

)) p−1
2
(
t− 2

(
x2 − R

)) q−1
2 .

Composing the function α̂ with the transformations

s̃(v,R, a) =
1

2

(
1 + a− v

2

)2

− 2 aR, and r = a t,

we obtain a function α(v, r, s, a) which lies in D
(
R3 × R+

)
.

Given α , it follows from Lemma 1.2 that there exists ψ ∈ D
(
R4 × R+

)

such that for any f ∈ D(R)

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

|v|

du

+∞∫

−∞

ds

+∞∫

|s|

dr f (R(v, s, a)) ψ(u, v, r, s, a)

× a−Q−1 (r + s)
p−1

2 (r − s) q−1
2 (u2 − v2)

m−1
2

=

+∞∫

0

da

+∞∫

−∞

dv

+∞∫

−∞

ds

+∞∫

|s|

dr f (R(v, s, a)) α(v, r, s, a) (r+ s)
p−1

2 (r − s) q−1
2 .

Finally, from Lemma 4.1 of [16] we immediately see that the map
Ω : D(S)→ D

(
R4 × R+

)
defined for φ ∈ D(S) by Ωφ(u, v, r, s, a) =

∫

S

φ
(

(r + s)
1
2ωp, (r − s)

1
2ωq, (u+ v)

1
2ωm, (u− v)

1
2ω′m

)
dωpdωqdωmdω

′
m,

S = Sp−1 × Sq−1 × Sm−1 × Sm−1 , is onto, and this completes the proof.

2. Radial distributions on S

In this section and in the next we will briefly write H for H(p,q,m) . We fix once
for all two functions χ0 and χ1 in D(R) which are 1 in a neighborhood of 0
and 1 respectively and have disjoint supports. If f is a function in H there are
f0, f1, f2 ∈ D(R) such that f = f0 + η0 f1 + η1 f2 . We write

f = f0 + η0 f1 + η1 f2 = f0 +χ0 η0 f1 +
(
1− χ0

)
η0 f1 +χ1 η1 f1 +

(
1− χ1

)
η1 f2,
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and set
f̃0 = f0 +

(
1− χ0

)
η0 f1 +

(
1− χ1

)
η1 f2,

η̃0 = χ0 η0 η̃1 = χ1 η1.

Hence, we decompose a generic function f in H as

f = f̃0 + η̃0 f1 + η̃1 f2, (2.1)

where f̃0, f1, f2 ∈ D(R), and the singular parts χ0 η0 f1 , χ1 η1 f2 have disjoint
supports about 0 and 1.

With this decomposition at hand we define the following linear functional
on H

〈θ0
k, f〉 = (−1)kf̃

(k)
0 (0), 〈θ1

k, f〉 = (−1)k f̃
(k)
0 (1), (2.2.a)

〈εk, f〉 = (−1)k f
(k)
1 (0), 〈ε1

k, f〉 = (−1)k f
(k)
2 (1), (2.2.b)

where k = 0, 1, . . ., and f (k) denotes the k -th derivative of f . Even though the
decomposition (2.1) is not unique, it is easy to see that the above sequences are
uniquely determined by f (see [16] (3.3)).

We define the topology on H as follows. For any r > 0, we endow the
space

Hr = {f ∈ H : suppf ⊂ (−r, 1 + r)} ,
with the following semi-norms:

‖f‖N,j = sup
t

∣∣∣∣∣

(
d

dt

)j (
f(t)− η̃0(t)

N−n̄∑

k=0

〈ε0
k, f〉 tk1.

−η̃1(t)
N−n̄∑

k=0

〈ε1
k, f〉 (t− 1)k

)∣∣∣∣∣ , for all N ∈ N and all j ≤ N ;

‖f‖(k) =
∣∣∣〈ε0

(k), f〉
∣∣∣ , ‖f‖1(k) =

∣∣∣〈ε1
(k), f〉

∣∣∣ , for all k ∈ N.2.

These semi-norms define a Fréchet space topology on Hr . We provide
the space H with the strict inductive limit topology. From these definitions we
immediately obtain the following:

Lemma 2.1. 1. D(R) is a topological subspace of H , that is the injection
ι : D(R)→H is a homeomorphism onto its image.

2. The maps

υ(0) : f 7→ η0 f, and υ(1) : f 7→ η1 f,

are continuous from D(R) into H .

The topological dual H′ of H is described by the following proposition
which can be immediately deduced from Lemma 3.3 of [16].
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Proposition 2.2. Given T in H′ , there exist a unique T̃ ∈ D′(R) and two
sets of constants {ck : k = 0, . . . , r},

{
c1k : k = 0, . . . , s

}
such that for f ∈ H

〈T, f〉 =
〈
T̃ , f − η̃0 P 0

l−n̄ − η̃1 P 1
l−n̄−m

〉
+

r∑

k=0

c0k 〈ε0
k, f〉+

s∑

k=0

c1k 〈ε1
k, f〉, (2.3)

where:

1. T̃ ∈ D′(R) has order l on the union of the supports of χ(0) and χ(1) ,

2. for j ∈ N

P 0
j (t) =

{
0 if j < 0,∑j
k=0〈ε0

k, f〉 tk if j ≥ 0,

P 1
j (t) =

{
0 if j < 0,∑j
k=0〈ε1

k, f〉 (t− 1)k if j ≥ 0.

Conversely, given T̃ ∈ D′(R) and two sets of constants {ck : k = 0, . . . , r} and{
c1k : k = 0, . . . , s

}
, the linear functional defined by (2.3), with l equal to the

order of T̃ on the union of the supports of η̃(0) and η̃(1) , is in H′ .

Remark 2.3. The linear functionals defined by (2.2.a) and (2.2.b) belong to
H′ .

From Proposition 2.2 and Remark 2.3 we immediately obtain the follow-
ing

Corollary 2.4. Any F ∈ H′ with support in {0} ∪ {1} is a finite linear
combination of the functionals θ0

k, θ
1
k, ε

0
k, ε

1
k.

Remark 2.5. It follows from Lemma 2.1 that the restriction to D(R) of an
element of H′ is a distribution, i.e. if S ∈ H′ then S ◦ ι ∈ D′(R).

Definition 2.6. Let F ∈ H′ be given by (2.7), the order of F is equal to
max(l, r, s), with the convention that the zero functional has order −1.

The transpose map M ′ : H′ 7→ D′(S) of M is defined as usual by

〈M ′T, φ〉 = 〈T,Mφ〉,

with T ∈ H′ and φ ∈ D(S).

As it has been showed by Faraut in [9] and Kosters in [13] in the case of a
rank-one symmetric space X = G/H , a distribution F ∈ D′(X) is H -invariant
if and only if it is the M ′ -image of some T ∈ H′ . More generally we give the
following

Definition 2.7. A distribution F on S is called radial if there exists T ∈ H′
such that

F = M ′T. (2.4)
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3. Spherical distributions on S

Definition 3.1. We say that a distribution F on S is spherical if (a) it is
radial, and (b) it is an eigendistribution of the Laplace-Beltrami operator, i.e.

∆F = λF,

with λ ∈ C .

Remark 3.2. The index κ will refer to the critical values 0 and 1 of the
function R and will correspondingly take the values 0 and 1. We denote by I0

the open interval (−∞, 1), and by I1 the open interval (0,+∞). We also set

µ0 =
n− 1

2
and µ1 =

n− 1

2
+m. (3.1)

The operator M ′ discussed in the previous sections intertwines the
Laplace-Beltrami operator ∆ on S with the second order ordinary differential
operator

L = t (1− t) d2

dt2
+

(
n

2
+

1

2
− (1 + n+m) t

)
d

dt
. (3.2)

Therefore, the radial solutions of ∆F = λF are of the form M ′T , where T ∈ H′
(with the notations of Section 2) is a solution of

LT = λT. (3.3)

The operator L − λ is hypergeometric. It has three regular singular
points (see [14] sec. 10.3): 0, 1,+∞ . The characteristic exponents in 0 and 1
are given respectively by

(0,−µ0) and (0,−µ1) .

The Frobenius theory of ordinary differential equations with singular co-
efficients shows that the classical solutions of the equation (3.3) behave differently
near the singular points according to whether the characteristic exponents are
integers or not. So we distinguish between two cases, which depend on the parity
of n = dim z :

(1) n even. On the open half line I0 = (−∞, 1) the solution of the equation
(L− λ)u = 0 are the linear combinations of

Φ0(t), Ψ0(t) = |t| 12−n2 Ψ0(t)

where Φ0 and Ψ0 are analytic on (−∞, 1) and can be chosen so that Φ0(0) =
Ψ0(0) = 1. Similarly, on the open half line I1 = (0,+∞) the space of classical
solutions of (3.3) is generated by two functions

Φ1(t), Ψ1(t) = |t− 1| 12−n2−m Ψ1(t),
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where Φ1 and Ψ1 are analytic on (0,+∞) and such that Φ1(1) = Ψ1(1) = 1.

(2) n odd. On (−∞, 1) the space of functions which are solution of (3.3) has
a basis given by

Φ0(t), Ψ0(t) = A0 Φ0(t) log |t|+ t
1
2−n2 Ψ0(t),

where A0 is a constant, and Φ0 and Ψ0 are as in (1). In the case n = 1 the
constant A0 is equal to 1.

On (0,+∞) the space of classical solutions of (3.3) is generated by

Φ1(t), Ψ1(t) = A1 Φ1(t) log |t− 1|+ (t− 1)
1
2−n2−m Ψ1(t),

where Φ1 and Ψ1 are as before and A1 is a constant.

In looking for the solutions of (3.3) in H′ it is useful to deal only with
one singularity at a time, so we introduce the following open subsets of S

S0 =
{

(X,Z, a) ∈ S
∣∣ R(X,Z, a) < 1

}
,

and
S1 =

{
(X,Z, a) ∈ S

∣∣ R(X,Z, a) > 0
}
.

Correspondingly we consider

H0 =
{
Mφ

∣∣ φ ∈ D(S0)
}
,

and
H1 =

{
Mφ

∣∣ φ ∈ D(S1)
}
.

Consequently the support of the functions in H0 is contained in (−∞, 1) and
the support of functions in H1 is contained in (0,+∞).

Let Pfε↓0 denote the Hadamard finite part of the integral (see for in-
stance [10], p. 70). The solutions of (3.3) in the required space are described in
terms of the following linear functionals.

1. For f ∈ H0 , we define

〈S(0,+), f〉 = Pfε↓0

1∫

ε

Φ0(t) f(t) dt, 〈S(0,−), f〉 = Pfε↓0

−ε∫

−∞

Φ0(t) f(t) dt, (3.4.a)

〈T(0,+), f〉 = Pfε↓0

1∫

ε

Ψ0(t) f(t) dt, 〈T(0,−), f〉 = Pfε↓0

−ε∫

−∞

Ψ0(t) f(t) dt.

2. For f ∈ H1 , we define

〈S(1,+), f〉 = Pfε↓0

+∞∫

1+ε

Φ1(t) f(t) dt, 〈S(1,−), f〉 = Pfε↓0

1−ε∫

0

Φ1(t) f(t) dt, (3.4.b)

〈T(1,+), f〉 = Pfε↓0

+∞∫

1+ε

Ψ1(t) f(t) dt, 〈T(1,−), f〉 = Pfε↓0

1−ε∫

0

Ψ1(t) f(t) dt.
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3. When n is odd we also define for f ∈ H0

〈U0, f〉 = Pfε↓0 {εΨ0(ε) f(ε)} , (3.4.c)

and for f ∈ H1

〈U1, f〉 = Pfε↓0,ε′↓1 {(ε′ − 1) Ψ1(ε) f(ε)} , (3.4.d)

Remark 3.3. Clearly S(κ,+) , S(κ,−) , T(κ,+) , T(κ,−) , and Uκ are in H′κ for
κ = 0, 1.

Remark 3.4. We notice that if n is odd and f ∈ D(R)

〈U0, f〉 = Pfε↓0
{
ε1−n̄ Ψ0(ε) f(ε)

}
=

1

(n̄− 1)!

(
d

dt

)n̄−1 (
Ψ0(t) f(t)

)
t=0

=

n̄−1∑

k=0

u(0,k) 〈θk, f〉,

with

u(0,k) =
(−1)k

k! (n̄− k)!

(
d

dt

)(n̄−1−k)

Ψ0

∣∣
t=0

.

Analogously we find

〈U(1), f〉 =
1

(n̄+m− 1)!

(
d

dt

)n̄+m−1 (
Ψ1(t) f(t)

)
t=1

.

We also notice that
〈Uκ, ηκ f〉 = 0.

In the rest of the section we will prove the following theorem:

Theorem 3.5. The subspace of solutions of (3.3) is generated:

1. by
{
S(κ,+) + S(κ,−), T(κ,−)

}
when p, q ≡ 0 (mod 2) .

2. by
{
S(κ,+) + S(κ,−), T(κ,+) + T(κ,−)

}
when p ≡ 1 (mod 2) and q ≡ 0

(mod 2) .

3. by
{
S(κ,+), S(κ,−)

}
when p ≡ 0 (mod 2) and q ≡ 1 (mod 2) and

n = 1 , and by
{
Aκ S(κ,+) + Uκ, S(κ,+) + S(κ,−)

}
when p ≡ 0 (mod 2)

and q ≡ 1 (mod 2) and n > 1 .

4. by
{
S(κ,+) + S(κ,−), T(κ,+)

}
when p, q ≡ 0 (mod 2) .

The formal adjoint of L , denoted by L∗ , is defined for a C2 function f
by

L∗f =
d2

dt2
(t (1− t) f(t))− d

dt

((
n

2
+

1

2
− (1 + n+m) t

)
f(t)

)
.

Solving (3.3) in the space Hκ′ is equivalent to looking for elements D of Hκ′
which satisfy

0 = 〈(L− λ)D, f〉 = 〈D, (L∗ − λ) f〉 for all f ∈ Hκ . (3.5)

By Lemma 2.2 D (Iκ) and ηκ × D (Iκ) with κ = 0, 1 are topological subspaces
of Hκ . It follows that D ∈ H′κ satisfies (3.5), if and only if the kernel of
D contains the spaces (L∗ − λ) D (Iκ) and (L∗ − λ) (ηκ ×D (Iκ)). To find the
functionals in H′κ with this property we need the action of D on (L∗ − λ) D (Iκ)
and on (L∗ − λ) (ηκ ×D (Iκ)) with κ = 0, 1. These actions are described by the
following lemma, the proof can be found in Appendix A.3 of [9].
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Lemma 3.6. 1. When p, q ≡ 0 (mod 2) we have

(L− λ) Sκ± = ±µκθκ, (L− λ) T κ+ = −µκεκ, (L− λ) T κ− = 0.

2. When p ≡ 1 (mod 2) and q ≡ 0 (mod 2) we have

(L− λ) S0
± =

{
∓ε0 if n = 1,
±µ0 θ

0 if n > 1,
(l − λ) s1

± = ±µ1θ
1,

(L− λ) T 0
± =

{±
(
θ0 − ε0

)
if n = 1,

±
(
F 0 − ε0

)
if n > 1,

(L− λ) T 1
± = ±

(
F 1 − ε1

)
, (L− λ) Uκ = µκ (εκ − Aκ θκ) .

3. When p ≡ 0 (mod 2) and q ≡ 1 (mod 2) we have

(L− λ) Sκ± = ±µκ θκ, (L− λ) T 0
+ =

{
θ0 + ε0 if n = 1,
F 0 − µ0 ε

0 if n > 1,

(L− λ) T 1
+ = F 1 − µ1 ε

1, (L− λ) T 0
− =

{
−θ0 if n = 1,
−F 0 if n > 1,

(L− λ) T 1
− = −F 1, (L− λ) Uκ = −µκAκ θκ.

4. When p, q ≡ 1 (mod 2) we have

(L− λ)Sκ± = ±µκθκ, (L− λ)T κ+ = 0, (L− λ)T κ− = µκε
κ.

Here µκ is given by (3.1) and F κ = µκ θ
κ+ lower order terms for n > 1 and

odd.

Since the operator L− λ is elliptic on (−∞, 0) ∪ (0, 1) ∪ (1,+∞) every
distribution which satisfies (3.5) actually is a C∞ -function on each of these
intervals and can be written as a linear combination of the corresponding Φκ

and Ψκ . Hence, any solution D of (3.3) in D′ (Iκ) has the form

D = c1 S(κ,+) + c2 S(κ,−) + c3 T(κ,−) + c4 T(κ,+) +Eκ,

where c1, c2, c3, c4 are complex constants, and E(κ) is a distribution with support
in κ , i.e.

E(κ) = a0 δκ + a1 δ
(1)
κ + . . .+ ak δ

(k)
κ ,

where δκ is the Dirac mass in κ , k is a non-negative integer, and a0, a1, . . . , ak ∈
R . It follows from Lemma 2.2 that the solution of (3.3) in Hκ′ have the form

D = c1 S
(κ)
+ + c2 S

(κ)
− + c3 T

(κ)
+ + c4 T

(κ)
− + E

(κ)
, (3.6)

where, by Corollary 2.4,

E
κ

= a0 θ
κ + a1 θ

κ
1 + . . .+ ak θ

κ
k + b0 ε

κ + b1 ε
κ

1 + . . .+ bl ε
κ
l,

with b0, b1, . . . , bl ∈ R .



24 Ciatti

Lemma 3.7. In Hκ′ the following relations hold

Lθκ(j) =
n− 2 j − 3

2
θκ(j+1) + +

j∑

i=0

aj θ
κ

(j), (3.7.a)

and

Lεκ(j) = (j + 1)

(
j +

n+ 1

2

)
εκ(j+1) +

j∑

i=0

bj ε
κ

(j). (3.7.b),

where a1, . . . , aj, b1, . . . , bj are constants.

Proof. We only prove (3.7.a). We have

〈Lθκ(j), f〉 = (−1)j 〈θκ, (L∗f)
(j)〉 =

(−1)j

〈
θκ,

(
t (1− t) f ′′ +

(
(n+m− 3) t+

3− n
2

)
f ′ + (n+m− 1) f

)(j)
〉

= (−1)j

〈
θκ, t (1− t) f (j+2) +

(
j (1− 2 t) + (n+m− 3) t+

3− n
2

)
f (j+1)

+ (−j (j − 1) + j (n+m− 3) + n+m− 1) f (j)

〉

= (−1)j
〈
θκ,

(
j +

3− n
2

)
f (j+1) +

(
(j + 1) (n+m)− j2 − 2 j − 1

)
f (j)

〉

=

〈
−
(
j +

3− n
2

)
θκ(j+1) + (j + 1) (n+m− j − 1) θκ(j), f

〉
.

Hence,

Lθκ(j) =
n− 2 j − 3

2
θκ(j+1) + (j + 1) (n+m− j − 1) θκ(j).

Let D be given by (3.6). According to the classification made in
Lemma 3.6 we have the following cases:

1. When p ≡ 0 (mod 2) and q ≡ 0 (mod 2)

(L− λ)D = µκ (c1 − c2) θκ − c3 µκ εκ + (L− λ)E
κ
. (3.8.a)

2. When p ≡ 0 (mod 2) and q ≡ 1 (mod 2)

(L− λ)D =





(c3 − c4) θκ + c3 ε
κ + (L− λ)E

κ
, if n = 1,

µκ (c1 − c2) θκ + (c3 − c4) Fκ − µκ c3 εκ
+(L− λ)E

κ
, if n > 1.

(3.8.b)

3. When p ≡ 1 (mod 2) and q ≡ 0 (mod 2)

(L− λ)D

=

{
(c3 − c4) θκ + (c3 − c4 − c1 + c2) εκ + (L− λ)E

κ
, if n = 1,

µκ (c1 − c2) θκ + (c3 − c4) (Fκ − εκ) + (L− λ)E
κ
, if n > 1.

(3.8.c)
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4. When p ≡ 1 (mod 2) and q ≡ 1 (mod 2)

(L− λ)D = µκ (c1 − c2) θκ + c4 µκ ε
κ + (L− λ)E

κ
. (3.8.d)

In any case we see that if D is a solution of (3.3) then (L − λ)E has support
in the set {κ} and order less than or equal to the minimum between 0 and the
order of F , that is at most 0 in the case when n is even, and at most n−1

2
when

n is odd.

From Lemma 3.7 it follows that

(L− λ)E
κ

=
n− 2 k − 3

2
ak θ

κ
(k+1) + (l+ 1)

(
l +

n+ 1

2

)
bl ε

κ
(l+1)

+ lower order terms. (3.9)
This relation means that (L−λ)E

κ
has order equal to max(k+ 1, l+ 1) for any

k not equal to n−3
2 .

Lemma 3.8. When p, q ≡ 0 (mod 2) the space of solutions of (3.3) consists
of linear combinations of

{
S(κ,+) + S(κ,−), T(κ,−)

}
.

Proof. Since n is even we see from (3.9) that (L − λ)E has order greater
than or equal to 1. Whence, from (3.8.a) D is solution of (3.3) if only if E

κ
= 0,

c1 = c2 and c3 = 0.

Analogously we get:

Lemma 3.9. When p, q ≡ 1 (mod 2) the space of solutions of (3.3) consists
of linear combinations of

{
S(κ,+) + S(κ,−), T(κ,+)

}
.

The situation when n is odd is a bit more complicated:

Lemma 3.10. The solutions of (3.3) when p ≡ 0 (mod 2) and q ≡ 1
(mod 2) are linear combinations of:

1.
{
S(κ,+), S(κ,−)

}
if n = 1 ,

2.
{
Aκ S(κ,+) + Uκ, S(κ,+) + S(κ,−)

}
if n > 1 .

Proof. (1) We see from (3.8.b) that the order of (L− λ)E is 0, hence (3.9)
implies E = 0. Therefore, from (3.8.b) c3 = c4 = 0 and c1 = c2 .

(2) When n is odd and greater than 1 Lemma 3.6 (2) shows that
F = ±(L − λ)T± is of order n−1

2 . On the other hand, we know from (3.9)

that when E
κ

has order k then (L− λ)E
κ

has order k+ 1 unless k is equal to
n−3

2 . If this is the case then (L− λ)E
κ

has order n−3
2 . In any case (L− λ)E

κ

cannot be of order n−1
2 . Thus (L − λ)E

κ
has order 0, and c3 equals c4 . We

have two possibilities still: E
κ

= 0, or E
κ

has order n−3
2

.

The functional Uκ defined by (3.4.c) has order n−3
2 . Let c be the non-

zero constant such that E
κ − c Uκ is of order strictly less than n−3

2 . We see

from the paragraph above and Lemma 3.6(2) that (L− λ)
(
E
κ− cUκ

)
has order

zero. ThereforeE
κ − c Uκ = 0. Using this relation and c3 = c4 in (3.8.b) we get

c3 = c4 = 0 and cA0 = c1 − c2 .

Similarly we obtain:
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Lemma 3.11. The solutions of (3.3) when p ≡ 1 (mod 2) and q ≡ 0 (mod 2)
are linear combinations of

{
S(κ,+) + S(κ,−), T(κ,+) + T(κ,−)

}
.

The linear functionals acting on H0 and H1 defined by (3.4) give rise to
radial distributions with support in S0 and S1 respectively. Correspondingly,
Theorem 3.5 gives a list of radial eigendistributions of the Laplace-Beltrami
operator supported in S0 and S1 . In order to obtain the radial eigendistributions
of ∆ in D′(S) we extend the linear functionals S(0,+) , S(1,−) , T(0,+) , and T(1,−)

on H0 to linear functionals on the whole H by setting, for f ∈ H ,

〈S(0,+), f〉 = Pfε↓0

1−ε∫

ε

Φ0(t)f(t) dt,

〈T (0,+), f〉 = Pfε↓0

1−ε∫

ε

Ψ0(t) f(t) dt,

(3.10.a)

〈S(1,−), f〉 = Pfε↓0

1−ε∫

ε

Φ1(t)f(t) dt,

〈T (1,−), f〉 = Pfε↓0

1−ε∫

ε

Ψ1(t)f(t) dt.

(3.10.b)

On the open interval (0, 1) both the sets of functions Φ0 , Ψ0 and Φ1 , Ψ1

generate the space of the solutions of (3.3). Therefore, there are constants
α, β, γ, δ and α, β, γ̄, δ̄ such that

Φ1 = αΦ0 + βΨ0, Ψ1 = γΦ0 + δΨ0, and

Φ0 = α̃Φ1 + β̃Ψ1, Ψ0 = γ̃ Φ1 + δ̃Ψ1.

Hence, we obtain the following lemma, whose proof is similar to that of Lemma
3.6.

Lemma 3.12. 1. When p, q ≡ 0 (mod 2) we have

(L− λ) S
0

+ = µ0 θ
0 − α̃ µ1 θ

1

(L− λ) T̃ 0
+ = −µ0 ε

0 − γ̃ µ1 θ
1.

2. When p ≡ 0 (mod 2) and q ≡ 1 (mod 2) we have

(L− λ) S
1

− =

{−α ε0 + β
(
θ0 − ε0

)
− ε1 if n = 1,

αµ0 θ
0 + β

(
F 0 − ε0

)
− µ1 θ

1 if n > 1,

(L− λ) T 1
− =

{−γ ε0 + δ
(
θ0 − ε0

)
− θ1 + ε1 if n = 1,

γ µ0 θ
0 + δ

(
F 0 − ε0

)
− F 1 + ε1 if n > 1.
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3. When p ≡ 1 (mod 2) and q ≡ 0 (mod 2) we have

(L− λ) S
1

− = αµ0 θ
0 + β

(
F 0 − µ0 ε

0
)
− µ1 θ

1,

(L− λ) T 1
− = γ µ0 θ

0 + δ
(
F 0 − µ0 ε

0
)
− µ1 F

1.

4. When p, q ≡ 1 (mod 2) we have

(L− λ)S
1

− = −µ1θ
1 + αµ0θ

0

(L− λ)T
1

− = µ1ε
1 + γµ0θ

0.

We denote by H′(p,q,m;λ) the space
{
F ∈ H′(p,q,m) : LF = λF

}
. From Lemma

3.6 and Lemma 3.12 we obtain the following theorem:

Theorem 3.13. 1. When p, q ≡ 0 (mod 2) for any λ ∈ C{
S(0,−) + S(0,+) + α̃S(1,+), T(0,−)

}
is a basis of H′(p,q,m;λ) .

2. When p ≡ 1 (mod 2) and q ≡ 0 (mod 2) for any λ ∈ C{
αS(0,−) + βT(0,−) + S(1,−) + S(1,+), γS(0,−) + δT(0,−) + T (1,−) + T(1,+)

}
is a

basis of H′(p,q,m;λ) .

3. When p ≡ 0 (mod 2) and q ≡ 1 (mod 2) for any λ ∈ C not equal
to k (n + m − k) , the set

{
A1 S(1,+) + U(1)

}
is a basis of H′(p,q,m;λ) . If λ =

k (n + m − k) with k = 1, 2, 3, . . . a basis of H′(p,q,m;λ) is given by αS(0,−) +

β T(0,−) + S(1,−) + S(1,+) .

4. When p, q ≡ 1 (mod 2) for any λ ∈ C{
αS(0,−) + S(1,−) + S(1,+), T(1,+)

}
is a basis of H′(p,q,m;λ) .

Proof. The only point which needs some explanation is (3). From Lemma 3.6
(3) we see that A1 S(1,+) + U(1) is an eigenvector of L for any λ . On the other
hand from Lemma 3.11 we see that

(L− λ)
(
αS(0,−) + β T(0,−) + S(1,−) + S(1,+)

)
= −β µ0 ε

0.

It follows that αS(0,−) +β T(0,−) +S(1,−) +S(1,+) is eigenvector of L if and only
if Φ1 is regular in 0, and from the general theory of the hypergeometric equation
(see [8] pag. 68) we know that this happens precisely when λ = k (n + m − k)
with k = 1, 2, 3, . . . ∈ N .
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