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Abstract. The present knowledge of the structure of the exponential
function of a real Lie group is surveyed. The emphasis is on the image
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errors in the literature are pointed out, results are described, and some
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0. The basic definitions and introductory remarks

The Lie algebra of a Lie group G will be denoted by L(G) or more succinctly
by g if the context makes it clear what is meant.

Definition 0.1. Let G be a (real) Lie group, g its Lie algebra and expG: g→
G its exponential map. We set EG = {expG(X) : X ∈ g} = expG g and say that
G is exponential if EG = G , and that G is weakly exponential if EG = G , i.e., if
EG is dense in G .

For an arbitrary Lie group G and x ∈ G we define

indG(x) =

{
min{k ∈ N : xk ∈ EG} if this minimum exists,
∞ otherwise,

ind(G) = {indG(x) : x ∈ G}.

We say that indG(x) is the G -index of x and ind(G) the index set of G .
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Thus G is exponential if and only if ind(G) = {1} . We warn the reader
that this definition of ind(G) is different from the one which Lai adopted [46, 47]
and also used in [22]. A forerunner of the index appears to have been introduced
by Polishchuk in [72] who showed that for a semisimple complex Lie groups
there is a natural number n such that xn ∈ EG for all x ∈ G , and he exhibits
such numbers for complex simple Lie groups and their universal covering groups.
This paper appears to have either passed unnoticed or to have been forgotten
before the index was introduced by Goto and Lai as the least common multiple
of the numbers in ind(G) if it exists, or infinity, otherwise. Note that weakly
exponential groups are necessarily connected. We also alert the reader to the fact
that some authors [6, 43, 56] use the term “exponential group” in a different sense,
namely to denote the Lie groups G for which the exponential map expG: g→ G
is a diffeomorphism.

In a connected compact Lie group every point is contained in a maximal
torus; hence compact connected groups are exponential: a classical result. All
connected complex and all connected solvable Lie groups are weakly exponential
[39, 31, 71]. It is an elementary and well known fact that, for instance, if
G = SL(n,R), n ≥ 2, then EG 6= G , while x2 ∈ EG for all x ∈ G .

As is not uncommon in the structure theory of Lie algebras and Lie
groups, the substantial results on the structure of the exponential function
roughly fall into two classes: (A) Characterisation Theorems, and (B) Classi-
fication (or Catalog) Theorems. Characterisation Theorems specify necessary
and sufficient conditions for certain properties such as being weakly exponential
or for being exponential, while Catalog Theorems provide complete lists (usu-
ally within preassigned classes) of types of Lie algebras or connected Lie groups
whose exponential function has such properties. Catalog Theorems are sensible
in the context of special classes such as simple connected Lie groups where a full
classification of all types exists. Results pertaining to all Lie algebras and Lie
groups are likely to be Characterisation Theorems simply because a classification
of nilpotent, let alone solvable, connected Lie groups is out of the question in
general and because, the Levi-Malcev-Iwasawa Theorems on the semidirect
(near) splitting of the radical notwithstanding, (nearly) semidirect extensions are
not a trivial matter as regards the exponential function.

Acknowledgment. We wish to thank M. Moskowitz and E. B. Vinberg for
their encouragement and helpful suggestions.

1. The index set of classical groups

We recall an old result of J. Sibuya [74].

Proposition 1.1. Let K1, . . . , Km be real n by n matrices and let G be the
subgroup of GL(n,R) consisting of all invertible matrices X such that

X ′KiX = Ki, i = 1, . . . ,m;

where X ′ denotes the transpose of X . Then X2 ∈ EG for all X ∈ G , and
X ∈ EG for all those X ∈ G that have no real negative eigenvalues.
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For instance, G could be O(p, q), p+ q = n , or Sp(n,R) if n is even.

This result motivated L. Markus [52] to ask whether it applied to
certain other classes of groups, and he considered related questions. His results
include the following.

If G is an algebraic subgroup of GL(n,R) and x ∈ G , then there exists a k ∈ N
such that xk ∈ EG. If, in addition, G is abelian, k can be chosen independently
of x . He also shows that there is a connected and simply connected solvable Lie
subgroup G of GL(4,R) containing an element x such that xk 6∈ EG for all
nonzero integers k .

M. Goto [23] strengthened Markus’ result by showing

Proposition 1.2. For every algebraic subgroup G of GL(n,R) there exists a
k ∈ N such that xk ∈ EG for all x ∈ G .

The conclusion is also correct for each semisimple linear real or complex
Lie group as Gorbatsevich, Onishchik and Vinberg develop in their Ency-
clopedia article [22], p. 164. The pioneer of the idea of the G -index of a group
element and the index set of a Lie group was Lai beginning with his dissertation
written under the direction of M. Goto. However, the proof of the main result
in [46, 47] contained gaps. In a subsequent note [48] Lai tried to fill these gaps.
The key lemma of his note is

Lemma C. (Lai 1980) Let g be a complex semisimple Lie algebra and g1 be
a semisimple subalgebra of maximal rank. Let A ∈ g1 be a nilpotent element

which is regular in g1 . Then each element of the centralizer z(A, g)
def
= {x ∈ g :

[x,A] = 0} of A in g is nilpotent.

Although Lai’s note was published more than 15 years ago, it remained unnoticed
so far that Lemma C is false. Lemma C holds if g is of type G2, but it is false if g
is of type F4 , E6 , E7 , or E8 . A nilpotent element A ∈ g is called distinguished
if z(A, g) contains no nonzero semisimple elements (see [5, 8]) or if, equivalently,
all elements of z(A, g) are nilpotent. By using the tables in [20] and [5], Corollary
5.7.5, it is easy to verify that, for instance, if

g = F4, E6, E7, E8, and
g1 = 4A1, 3A2, 2A3 +A1, A7 + A1, respectively,

then the principal nilpotent element of g1 is not distinguished in g . Hence the
claims made by Lai [46, 47] concerning the sets ind(G) for almost simple complex
Lie groups G have to be re-examined (see Theorems 1.4 and 1.5 below).

For any Lie group G , we denote by G◦ its identity component. If G
is also an affine algebraic group over C , then G◦ coincides with the identity
component of G in the Zariski topology. We write Z(x,G) = {g ∈ G : gx = xg}
for the centralizer of x in G . The Jordan decomposition of an element x in an
affine algebraic group will be written x = xsxu where xs is the unique semisimple
factor and xu the unique unipotent one; recall xsxu = xuxs . We now have the
following result:
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Theorem 1.3. Let x = xsxu be the Jordan decomposition of an element in

an affine algebraic group G over C . If k is the order of x
def
= xZ(xu, G)◦ in the

quotient group Z(xu, G)/Z(xu, G)◦ , then indG(x) = k .

Proof. For any m ∈ N , the power xm has the Jordan decomposition xms x
m
u .

Since the Zariski closures of 〈xu〉 and 〈xmu 〉 coincide, we have Z(xmu , G) =
Z(xu, G). Theorem 3.2 of [15] is valid for arbitrary complex affine algebraic
groups because the hypothesis on the group to be reductive which was made
there was not used in the proof. Therefore we conclude that xm ∈ EG if and only
if xms (or, equivalently, xm ) belongs to Z(xmu , G)◦ = Z(xu, G)◦ . Consequently,
indG(x) = k.

This is a Characterisation Theorem, but it leads expeditiously to Cat-
alog Theorems. Indeed, when G is an almost simple complex Lie group of
exceptional type, then the groups Z(xu, G)/Z(xu, G)◦ have been computed by
Alekseevskĭı [1]. The cases where Z(xu, G) is not connected are also listed in
[15]. By consulting these tables we obtain the results tabulated below, where the
superscript ad denotes the adjoint group and sc the simply connected group.

Theorem 1.4. The indices of exceptional complex Lie groups are listed in the
following

Table of the index set ind(G).

Type of G

G2 1 2 3
F4 1 2 3 4
Ead

6 1 2 3
Esc

6 1 2 3 6
Ead

7 1 2 3
Esc

7 1 2 3 6
E8 1 2 3 4 5 6

In the last three cases (Ead
7 , Esc

7 , E8 ) these results do not agree with
those of Lai [46, 47] (see also [22], pp. 165–166). The following theorem is due
to Lai [44].

Theorem 1.5. For complex adjoint groups G of classical type the set ind(G)
is

1. {1} if G is of type An , n ≥ 1 ,

2. {1, 2} for types Bn , n ≥ 2 , Cn , n ≥ 3 , and Dn , n ≥ 4 .

Sketch of the Proof. In the case of An this follows from the commutativity
of the diagram

GL(n,C)
quot

−−−−−−−−−→ PSL(n,C)
expGL(n,C)

x
xexpPSL(n,C)

gl(n,C) −−−−−−−−−→
quot

sl(n,C)
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and the fact that expG is surjective for G = GL(n,C). For types Bn , Cn , and
Dn one can consult the article [13]. Indeed, since SO(2n + 1,C) is the adjoint
group of type Bn , in that case the claim follows from [13], Corollary 5.2. The
claim in the cases Cn and Dn can be easily derived from loc. cit., Theorems 8.1
and 6.3, respectively.

In a recent note [76], Wüstner observes that the simple complex cen-
terfree Lie group Sp(4,C)/Z2 ' SO(5,C) is not exponential, thus providing a
counterexample to the statement made by Moskowitz in [57] that all connected
semisimple complex centerfree Lie groups are exponential. Apparently neither
Wüstner nor Moskowitz were aware of the fact that Lai [44] and D– oković
(in [13], Corollary 5.2) had already stated that the groups SO(n,C), n ≥ 4, fail
to be exponential.

In [13] D– oković explicitly described the image EG of the exponential
function of complex and real classical groups G . With the aid of this description,
it is not hard to see which of these groups are exponential. For instance, by this
method, Nishikawa [68] has shown

Proposition 1.6. For the groups G = SO(p, q)◦ , p ≥ q ≥ 1 , the index set is
ind(G) = {1} if q = 1 , and ind(G) = {1, 2} otherwise.

Hence these groups are exponential if and only if q = 1. Note also that
Sibuya’s theorem implies that ind(G) ⊆ {1, 2} for each of the groups O(p, q)
and Sp(2n,R).

In his papers [66, 67, 68], Nishikawa studied the structure of the interior
and the closure of the image EG of the exponential function in G for the groups
GL(n,R), SL(n,R), and also for groups O(p, q) when p, q ≤ 3. Subsequently,
D– oković completely determined in [14] the interior and the closure of EG in G
for all complex and real classical Lie groups G .

2. Special subgroups of a real Lie group

In the characterisation theorems for the properties of being weakly exponential
and of being exponential we need the concepts of certain canonically defined sub-
groups of a real Lie group which are generally known and accepted for semisimple
connected Lie groups and for algebraic groups but which appear not to have been
commonly known in the general case—or at best in the form of folklore.

◦ Cartan Subgroups. (Cartan subgroups will be used in Theorem 3.1 on the
characterisation of weakly exponential Lie groups below.) A first and purely
group theoretical definition of a Cartan subgroup of an arbitrary group was
given by Chevalley [7]. We denote the normalizer of a subgroup S of a group
G by N(S,G).

Definition 2.1. According to Chevalley, a subgroup H of a group G is
called a Cartan subgroup of G if it is maximal among the nilpotent subgroups of
G and every normal subgroup S of H with |H/S| <∞ satisfies |N(S,G)/S| <
∞ .
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Since H ⊆ N(S,G) we note |N(S,G)/S| <∞ iff |N(S,G)/H| <∞ .

G∣∣
N(S,G)∣∣ }

finite
H∣∣ }

finite
S∣∣
{1}

Another definition has been given more recently by Hofmann [32], Definition
1.1.a, and Neeb [63], p.153 and [65], Definition I.1(c). (See also [37], Definition
5.1). The proof that for connected Lie groups this definition is equivalent to
Chevalley’s is nontrivial and was accomplished by Neeb [65]. In order to
record his result, let us recall that for any Cartan subalgebra h of a real Lie
algebra g we have a set Λ(gC, hC) of roots λ: hC → C of gC with respect to hC .
If G is a Lie group with Lie algebra g then we define a subgroup of G by

C(h)
def
= {g ∈ N(exp h, G) :

(
∀λ ∈ Λ(gC, hC)

)
λ ◦Ad(g)C|hC = λ}.

Theorem 2.2. For an arbitrary connected Lie group G and a closed subgroup
H , the following conditions are equivalent:

(1) H is a Cartan subgroup of G .

(2) There is a Cartan subalgebra h of g such that H = C(h) .

Condition (2) characterizes the elements of a Cartan subgroup by a centralizer-
like condition; it was this condition that served to define the concept of a Cartan
subgroup of an arbitrary Lie group in [32, 63, 65, 37]. Therefore, for reductive
groups this reduces to the more traditional concept of a Cartan subgroup as the
centralizer of exp h for some Cartan subalgebra h of L(G). Neeb’s Theorem
shows, in particular, that in a connected Lie group G , the subgroups C(h) are
maximal nilpotent. Every finite group, in particular every finite nilpotent group
is isomorphic to a subgroup of some U(n); the subgroup H of all diagonal
SO(3) matrices is a maximal abelian and maximal nilpotent subgroup of SO(3)
isomorphic to Klein’s four group which is not contained in any maximal torus.
Every proper subgroup S of H is cyclic and therefore is contained in a maximal
torus T . Thus S ⊆ 〈H ∪ T 〉 ⊆ N(S,G), and therefore H fails to satisfy
Chevalley’s condition.

◦ Near-Cartan Subalgebras and near-Cartan Subgroups. (Near-Cartan sub-
groups will be used in Theorem 4.2 on the characterisation of solvable expo-
nential Lie groups below, and in the formulation of certain conjecture concerning
exponential Lie groups.) Some generalisations are in order which are relevant for
a possible general characterisation of the property of a real Lie group of being
exponential. We observe that the vector subspaces of dimension rank g of a Lie
algebra g form a compact Grassmann manifold M containing the set H(g) of
Cartan subalgebras. Much more generally, the set of all closed subgroups of a
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locally compact group G is a compact Hausdorff space Σ(G) with respect to
a suitably chosen topology about which one may find relevant information in
Chapter IX of [40]. For a connected Lie group G , the set H(G) of all Car-
tan subgroups of G is a subspace of the space Σ(G). Hofmann proposed the
following definition in [31, 32].

Definition 2.3. (i) A member of H(g) ⊆ M ⊆ Σ(g) is called near-Cartan
subalgebra.

(ii) A member of H(G) ⊆ Σ(G) is called near-Cartan subgroup.

Every near-Cartan subalgebra of g is nilpotent and has rank g as dimen-
sion, and g =

⋃H(g). Every near-Cartan subgroup has a near-Cartan subalge-
bra as Lie algebra and G =

⋃H(G). An algebraic version of the concept of a
near-Cartan subalgebra is discussed in [4]; the relation between the two concepts
is not entirely clear yet but is under investigation [24].

◦ Borel subalgebras and Borel subgroups. (Borel subgroups occur below in
Theorem 4.5 on the characterisation of connected reductive complex linear groups
which are exponential.) A Borel subalgebra of a complex Lie algebra is a maximal
solvable subalgebra. A Borel subalgebra b of a real Lie algebra g is a subalgebra
whose complexification bC in the complexification gC is a Borel subalgebra.
Every Borel subalgebra is a maximal solvable subalgebra. But a maximal abelian
subalgebra t in a compact Lie algebra g is a maximal solvable subalgebra,
but is not a Borel subalgebra; hence g has no Borel subalgebras at all. Since
the sum of a solvable subalgebra and a solvable ideal is a solvable subalgebra,
any maximal solvable subalgebra b of g contains the radical r , and b/r is a
maximal solvable subalgebra of the semisimple algebra g/b . Thus the maximal
solvable subalgebras of g are the full inverse images of the maximal solvable
subalgebras of the semisimple g/r . The maximal solvable subalgebras of the
real forms of complex simple Lie algebras were classified by Matsumoto [53].
Every nilpotent subalgebra, hence every near-Cartan subalgebra is contained in
some maximal solvable subalgebra. Since the closure of a solvable subgroup
in a topological group is solvable, for each maximal solvable subalgebra b of
g the analytic subgroup 〈exp b〉 is closed and is a maximal solvable connected
subgroup. Conversely, if B is a maximal connected solvable Lie subgroup of G ,
then B is closed and L(B) is a maximal solvable subalgebra. The concept of a
Borel subgroup, common as it is in the area of algebraic groups is not commonly
defined for real Lie groups. The following definition therefore is tentative. A
subgroup B of a real Lie group G is called a Borel subgroup if it is of the form
B = 〈exp b〉 for a Borel subalgebra b . It is not clear at this stage of our knowledge
exactly which role Borel subgroups or maximal connected solvable subgroups will
eventually play in a more accomplished theory of exponential real Lie groups.

◦ Parabolic subgroups. (Minimal parabolic subgroups will emerge in Theorem
3.1 on the characterisation of weakly exponential Lie groups.)

If G is a semisimple real connected Lie group, consider an Iwasawa
decomposition G = KAN and let M = Z(A,K) denote the centralizer of A in

K . Then P
def
= MAN is called a minimal parabolic subgroup of G . A subgroup

P of a connected Lie group G is called a minimal parabolic subgroup of G if it
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contains the radical R of G and P/R is a minimal parabolic subgroup of the
semisimple group G/R .

In the context of the exponential function it is useful to record a fact on

◦ The Center. While the center Z(G) of a connected Lie group is not connected
in general, by a result of Hochschild’s [28] (p. 189, Theorem 1.2), it is neverthe-
less always contained in an analytic abelian subgroup. Therefore it is contained
in the image EG of the exponential function. For later reference we record:

Proposition 2.4. If G is a connected real Lie group, then Z(G) ⊆ EG .

3. Weakly exponential groups

The definition of “exponential” and “weakly exponential Lie groups” adopted in
Definition 0.1 was probably first proposed in [39] by Hofmann and Mukherjea
where a systematic study of these classes of groups was initiated. In particular
these authors showed that if N is a closed subgroup of a connected Lie group G,
then G is weakly exponential if and only if N and G/N are weakly exponen-
tial. Since connected solvable Lie groups are weakly exponential, the problem
of determination of weakly exponential Lie groups is thus reduced to the case
of semisimple Lie groups. The result due to A. Borel, that a connected real
semisimple group G is weakly exponential if and only if all Cartan subgroups of
G are connected, is only published in that paper [39], to the best of our knowl-
edge. The assertion remains intact for all connected reductive real Lie groups as
D– oković and Nguyen noted in [17]. Indeed this is true more generally. The
concept of a Cartan subgroup introduced in Section 2 will assist us in the formu-
lation of a general characterisation of weakly exponential groups. We also need
the concept of a regular element of a Lie group. Let Reg(G) denote the set of
those elements g ∈ G of a Lie group for which the dimension of the nilspace of
Ad(g)− idg equals rank g , the dimension of the Cartan subalgebras of g . This
set is always open and dense in G and an element expX ∈ EG is contained in
Reg(G) if and only if X is a regular element of g and exp is regular at X (see
e.g. [31], Lemma 4). A topological group G is called spacious [39], if there is a
nonempty open subset U ⊆ G such that Un ∩ Un+1 = Ø for all n ∈ N . These
concepts enter the following Characterisation Theorem in which the conditions
equivalent to (1) are taken from various sources: (2) from Hofmann [31] (Corol-
lary 18), (3) from Neeb [65], (4) and (5) from Jaworski [42] (Theorem 12), (6)
from Hofmann and Mukherjea [39].

Theorem 3.1. For a connected Lie group G the following statements are
equivalent:

(1) G is weakly exponential.

(2) Reg(G) ⊆ EG .

(3) All Cartan subgroups are connected.

(4) G is not spacious.

(5) The minimal parabolic subgroups are connected.

(6) G/Rad(G) is weakly exponential.



D– oković and Hofmann 179

Mittenhuber [55] calls a connected Lie group G completely spacious
if it contains an open subsemigroup S satisfying S ∩ EG = Ø. An example is
furnished by the simply connected covering group of SL(2,R). He shows that

a connected Lie group is completely spacious if the minimal parabolic subgroups
have infinitely many components.

An explicit identification of all weakly exponential semisimple Lie groups
has been achieved recently by D– oković and Nguyen [18] and by Neeb [65].
Specifically, we have the following information. Let us say with Neeb that a Lie
algebra g is weakly exponential if there is a weakly exponential Lie group G with
Lie algebra (isomorphic to) g (equivalently, if the adjoint group of g is weakly
expoential), and that it is completely weakly exponential if the simply connected
Lie group G with Lie algebra g is weakly exponential. Neeb offers the following
Catalog Theorem.

Theorem 3.2. Among the noncompact real forms of the complex simple Lie
algebras, only the ones listed below are weakly exponential; it is specified whether
or not they are completely weakly exponential:

(A I) sl(2,R) is not completely weakly exponential.

(A II) su∗(2n) ∼= sl(n,H) , n ≥ 2 , is completely weakly exponential.

(A III, IV) su(p, q) , 1 ≤ q ≤ p , is completely weakly exponential if and only if
q < p .

(B II, D II) so(n, 1) , n > 3 , is completely weakly exponential.

(C II) sp(p, q) , p ≥ q ≥ 1 , p ≥ 2 , is completely weakly exponential.

(D I) so(2p, 2) , p ≥ 3 , is not completely weakly exponential.

(D III) so∗(2n) , n ≥ 4 , is completely weakly exponential if and only if n
is odd.

(E III) e(6,−14) is completely weakly exponential.

(E IV) e(6,−26) is completely weakly exponential.

(E VII) e(7,−25) is not completely weakly exponential.

(F II) f(4,−20) is completely weakly exponential.

This theorem does not yet answer the question which semisimple con-
nected real Lie groups are weakly exponential. In [39] (2.2) it was already ob-
served that SL(2,R) × SL(2,C)/{(1,1), (−1,−1)} is weakly exponential while
SL(2,R) is not. In general, let G be a connected semisimple real Lie group and
g = L(G) = s1 ⊕ · · · ⊕ sn its Lie algebra with its unique simple ideals sj . Let

G̃ = S̃1× · · ·× S̃n be the simply connected covering group of G with the simply
connected Lie groups S̃j satisfying L(S̃j) = sj . The Cartan subalgebras of g
are of the form h = h1 ⊕ · · · ⊕ hn with Cartan subalgebras hj of sj , and the

Cartan subgroups of G̃ are of the form

H∗ = H∗1 × · · · ×H∗n, H∗j = Z(hj, S̃j), j = 1, . . . , n,

where, as is usual, for a subset h of the Lie algebra g of a Lie group G we write
Z(h, G) = {g ∈ G : (∀X ∈ h) Ad(g)(X) = X} . We may identify G with a

quotient G̃/D , where

D ⊆ Z(G̃) = Z(S̃1)× · · · × Z(S̃n),
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and accordingly we identify the Cartan subalgebras H of G with the quotients
H∗/D . If G is weakly exponential, then Ad(G) is weakly exponential, and,
accordingly, because of L

(
Ad(G)

) ∼= s1⊕ · · ·⊕ sn , all sj are weakly exponential

and thus have to come from the catalog of Theorem 3.2. If not all S̃j are weakly
exponential, some of the sj fail to be completely weakly exponential. D– oković
and Nguyen clarify the question of weak exponentiality of G in [18]. Their main
result is the following Classification Theorem in whose formulation we continue
the notation and the identifications just introduced; we observe first that every
semisimple real Lie algebra has maximally split Cartan subalgebras; these are
unique up to conjugacy.

Theorem 3.3. For a connected real semisimple Lie group G choose for each
j = 1, . . . , n a Cartan subalgebra hj of sj to be maximally split. Then the
following conditions are equivalent:

(i) G is weakly exponential.

(ii) All simple Lie algebras sj are weakly exponential and

Z(G̃) = D·
(
(Z(S̃1) ∩H∗1 )× · · · × (Z(S̃n) ∩H∗n)

)
.

For a connected real Lie group S with a simple Lie algebra s , and for a maximally
split Cartan subalgebra h of s , the group Z(S̃) ∩ Z(h, S̃) is an invariant of
s . These invariants were classified in [18] for all weakly exponential simple Lie
algebras s ; this is relevant for Condition 3.3(ii) above. We refer to this source
for further details.

4. Exponential Lie groups

Let G be a connected Lie group. Assume that expG is injective. Then G cannot
contain a circle subgroup and thus no compact nontrivial subgroup. Furthermore,
if z ∈ Z(G), then by 2.4, there is an X ∈ g such that expX = z . Then for
any g ∈ G , expX = z = gzg−1 = exp Ad(g)X , whence Ad(g)X = X by
the injectivity of exp. Hence X ∈ z(g). Thus the center Z(G) is connected.
This applies to every analytic subgroup, in particular to a Levi factor. Every
nontrivial semisimple analytic subgroup contains a three dimensional simple
analytic subgroup which must be center-free by what we saw. This leaves SO(3)
and PSL(2,R). Both of these contain a circle group, a contradiction. Therefore
G must be solvable and simply connected.

Consider the following solvable real Lie algebras:

(a) a has a basis of elements X,Y, Z such that [X,Y ] = Z , [X,Z] = −Y ,
and [Y, Z] = 0,

(b) b has a basis X,Y, Z, U such that [X,Y ] = Z , [X,Z] = −Y , [Y, Z] =
U ∈ z(b).

Proposition 4.1. For a simply connected solvable Lie group G with exponen-
tial function expG: g→ G the following conditions are equivalent:
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(1) expG is injective.

(2) expG is surjective.

(3) expG is bijective.

(4) expG is an analytic diffeomorphism.

(5) g does not contain isomorphic copies of a or b .

(6) g has no quotient with a subalgebra isomorphic to a .

(7) Each root of g is of the form (1 + iλ)·ω with a real number λ and a
linear form ω: g→ R .

(8) For all X ∈ g one has Spec adX ∩ i·R = {0} .

(9) For all g ∈ G one has Spec Ad(g) ∩ S1 ⊆ {1} .

(10) If X, Y ∈ g and if expGX and expG Y commute, then [X,Y ] = 0 .

These and further equivalent statements can be found in papers by Dixmier [12]
and Saito [73]; (see also Bourbaki [3], Chap. III, §9, Ex. 17). From Dixmier’s
results in [12] one can also derive that every connected solvable Lie group is
weakly exponential. The equivalence of Condition (10) with the other conditions
is due to Corwin and Moskowitz [9] and is much more recent. At the end of
the section we shall offer some additional comments on domains of injectivity of
the exponential function (see 4.7ff.).

The status of the theory of weakly exponential groups as summarized
in Section 3 is much more satisfactory than that of exponential groups. We do
not exactly know today in general terms how we should characterize the class of
exponential groups within the class of weakly exponential ones. Nevertheless,
substantial results on certain special subclasses are available. Let us begin
with solvable groups for which a complete characterisation of exponentiality is
available through the work of Wüstner [75, 78]. The concept of a near-Cartan
subalgebra enters the following Characterisation Theorem for the exponentiality
of solvable Lie groups.

Theorem 4.2. (Wüstner [75], IV.2.44) For a connected solvable real Lie
group G the following conditions are equivalent.

(1) G is exponential.

(2) For each Cartan subgroup H of G and each h ∈ H there is an X ∈ h ,
the Lie algebra of H , such that h = expX and exp is regular at X .

(3) For each Cartan subgroup H of G and each x ∈ G , the centralizer
Z(x,H) is connected.

(4) For each Cartan subgroup H of G and each ad-nilpotent X ∈ g , the
centralizer Z(X,H) = {h ∈ H : Ad(h)(X) = X} is connected.

(5) For each ad-nilpotent X ∈ g , the centralizer Z(X,G) = {g ∈ G :
Ad(g)(X) = X} is exponential.

(6) For each x ∈ G there is an X ∈ g such that x = expX and exp is
regular at X .

(7) The near-Cartan subgroups of G are connected.

Proposition 4.1 says (among other things) that, under the hypothesis of
simple connectivity of G , condition 4.1(10) is sufficient for G to be exponential.
In Theorem 4.2 it is shown without the hypothesis of simple connectivity of
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G that condition 4.2(3) (or 4.2(4)) is sufficient for G to be exponential. But
Condition 4.1(10) is quickly seen to imply conditions 4.2(3) and 4.2(4). In this
sense some implications of Wüstner’s Theorem 4.2 are stronger than similar
implications of 4.1.

Solvable connected Lie groups occupy one end of the spectrum of general
real connected Lie groups, the other one being settled by semisimple connected
Lie groups. A full theory is not yet available for these, but a good deal of
information on special classes is known.

In [75], Wüstner characterizes exponentiality in the class of splittable
linear complex Lie groups (which includes the class of affine complex algebraic
groups). Recall that a subgroup G of GL(V ) for a vector space over a field is
called splittable, if every element g ∈ G has a unique multiplicative Jordan
decomposition g = gsgu = gugs with a semisimple element gs ∈ G and a
unipotent element gu ∈ G .

Let K denote either the field R of real numbers or the field C of complex
numbers. Then the diagonal 2×2 matrix group over K with diagonal entries et ,
eπt , t ∈ K is splittable (over K) but is not an algebraic subgroup of GL(2,K).
Wüstner proves the following Characterisation-Classification Theorem.

Theorem 4.3. Let G be a connected complex Lie group and assume that G
is a splittable subgroup of GL(V ) for some complex vector space V . Then the
following conditions are equivalent:

(1) G is exponential.

(2) The centralizer Z(X,G) = {g ∈ G : Ad(g)(X) = X} of each nilpotent
X ∈ g is connected.

If, in addition, G is semisimple, then these conditions are equivalent to

(3) G ∼=
∏N
j=1 PSL(nj,C) for a suitable N -tuple (n1, . . . , nN ) of natural

numbers nj ≥ 2 .

Proof of the last assertion. (3)⇒(1): This follows from Theorem 1.5.
(1)⇒(3): Let x ∈ Z(G) be arbitrary and let u ∈ G be a regular unipotent

element. Then Z(u,G)◦ is a unipotent group. For x
def
= zu we have xs = z and

xu = u . Since G is exponential, Theorem 1.3 implies that z = xs ∈ Z(u,G)◦ .
Thus z is both semisimple and unipotent, and so z = 1.

Note that Theorems 1.4 and 1.5 imply immediately that an exponential
complex semisimple Lie group is an almost direct product of groups of type A.
Condition (3) above is more specific. The equivalence of (1) and (2) was proved
in the case of connected affine complex algebraic groups in [15], Theorem 3.2.
Since connected complex Lie groups are always weakly exponential, semisimple
complex Lie groups which are not isomorphic to those in 4.3(3) provide simple
examples of groups which are weakly exponential but not exponential. Other
examples will be given in 5.3 and 5.4; connected solvable Lie groups are always
weakly exponential and we know from 4.2 which among them are exponential;
each connected solvable Lie group which fails to satisfy the conditions of 4.2
provides an example as well.

In the case of real splittable groups, Wüstner shows the following
Characterisation Theorem [79].
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Theorem 4.4. Let G ⊆ GL(V ) be a splittable connected Lie group. Then the
following statements are equivalent:

(1) G is exponential.

(2) For each X ∈ g which is nilpotent on V and each gs ∈ Z(X,G) which is
semisimple on V there is an element Xs ∈ z(X, g) which is semisimple
on V with gs = expXs .

(3) For each element X ∈ g which is nilpotent on gl(V ) , the centralizer
Z(X,G) is weakly exponential.

The equivalence of (1) and (3) remains intact for any covering group of G ; con-
dition (2) need be appropriately modified (see [79], 4.1). Since every semisimple
Lie group has a splittable Lie algebra and therefore the associated adjoint group
is splittable, the equivalence of conditions (1) and (3) applies, in particular, to
all semisimple Lie groups.

In [17], Theorem 2.2, D– oković and Nguyen show the following result

Theorem 4.5. Let G be the identity component, with respect to the Euclidean
topology, of a real algebraic matrix group. Then the following conditions are
equivalent:

(1) G is exponential.

(2) For every unipotent element u ∈ G the centralizer Z(u,G) is weakly
exponential.

Moskowitz proves in [60] the following Characterisation Theorem:

Theorem 4.6. For a connected reductive complex linear algebraic group G
the following conditions are equivalent

(1) G is exponential.

(2) Every Borel subgroup is exponential.

Proof. It is instructive to have a quick independent proof. (2)⇒(1): Let B
be a Borel subgroup of G . Then G =

⋃
g∈G gBg

−1 . This implies the asserted
implication. (1)⇒(2): Let Z denote the center of G . Then G/Z◦ is semisimple
and is exponential by (1). Theorem 4.3 then gives the structure of G/Z◦ as in
4.3(3). The Borel subgroup of GL(n,C) is exponential (see Theorem 2.1 [11]).
Then the Borel subgroups of PSL(n,C) as well as those of G/Z◦ are exponential.
Let B be a Borel subgroup of G and let x ∈ B . Then there is an X ∈ L(B)
and a z ∈ Z◦ such that x = (expGX)z . Write z = expG Y with a Y in the Lie
algebra z = z(g) ⊆ b of Z . Hence x = expG(X + Y ) and X + Y ∈ b .

The exponentiality of solvable Lie groups, however, is accessible through
Wüstner’s Theorem 4.2. Moskowitz shows in [60], Theorem 11, that in any
exponential complex linear algebraic group which is either reductive or has a
semisimple Levi factor, the center is connected. He conjectures that this is true
in general. The remark on p. 28 saying that a connected noncompact simple Lie
group which is the group of real points of a complex algebraic group cannot be
exponential if it contains −1 in its center is incorrect. The group SL(n,H) is a
counterexample.
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In [17], D– oković and Nguyen recently addressed the special case of the
class Σ of real Lie groups G that occur as identity component of the group of
real points of an almost simple algebraic group defined over R and classified all
noncompact exponential members of Σ as in the following Catalog Theorem.

Theorem 4.7. The non-compact exponential groups in Σ are the groups listed
below and their quotients by finite central subgroups:

1. SL(n,H) , n ≥ 2 ,

2. PSU(p, p) = SU(p, p)/Z2p , p ≥ 1 ,

3. SU(p, q)/Zd , where p > q ≥ 1 , d is an odd divisor of n = p + q , and
every odd prime dividing d , respectively, n/d is ≤ n/(p−q) , respectively,
> n/(p− q) ,

4. Spin(2n, 1) , n ≥ 2 ,

5. Sp(p, q) , p ≥ q ≥ 1 ,

6. Spin(2n− 1, 1) , n ≥ 3 ,

7. PSO(2n− 2, 2)0 , n odd ≥ 3 ,

8. Spin(2n− 2, 2)/〈z〉 , n even ≥ 4 ,

9. Spin∗(2n) , n odd ≥ 3 ,

10. SO∗(2n) , n even ≥ 4 ,

11. Spin∗(2n)/〈z′〉 , n even ≥ 4 ,

12. G∗ of type E IV.

In 11.) above, z′ is one of the two central involutions that are mapped
to −1 by the double covering map Spin∗(2n) → SO∗(2n). As n is even, there
is no automorphism of Spin∗(2n) interchanging these two involutions. For the
precise definition of z′ see [16].

In 12.), G∗ denotes the group or real points of the simply connected
complex Lie group E6 with real structure of type E IV.

Information on the injectivity of the exponential function was reported in
Proposition 4.1. Additional information was provided by Lazard and Tits [51]
who determined for the exponential function exp: g → G of a real Lie group a
maximal open domain in g on which exp is injective regardless of the structure of
g or G . Specifically, if a norm ‖·‖ is selected on g such that ‖[x, y]‖ ≤ ‖x‖·‖y‖ ,
and if we consider the open balls Br = {x ∈ G : ‖x‖ < r} , then exp |Bπ is
injective regardless of the structure of g and G (and if G is simply connected,
then exp |B2π is injective). A similar but more elucidating approach was pointed
out by Hofmann through the following definition [30]:

Definition 4.8. Let g be a finite dimensional real Lie algebra. Define the
function σ: g→ R+ by

σ(x) = max{Im(λ) : λ ∈ Spec(adx)}.

If x is a compact element, i.e., if Spec(x) ∈ i·R , then σ(x) is the
spectral radius of adx . It is easy to see that (i) σ(x) = 0 iff Spec(adx) is
real, (ii) σ(r·x) = |r|σ(x), (iii) σ

(
α(x)

)
= σ(x) for all automorphisms α of g .
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Furthermore, (iv) if x and y are contained in some solvable subalgebra, then
σ(x+ y) ≤ σ(x) + σ(y), and (v) σ(x+ y) = σ(x) for all x ∈ g and all y in the
nilradical of g [30]. If sing exp denotes the set of all points x ∈ g at which exp
fails to be regular, then inf σ(sing exp) ≥ 2π . The following proposition is from
[30]:

Proposition 4.9. Let exp: g → G be the exponential function of a real Lie
group. Set U = {x ∈ g : σ(x) < π} and V = expU ⊆ G . Then the following
conclusions hold:

(i) U is an open neighborhood of 0 at all of whose elements exp is regular.

(ii) [−1, 1]·U = U , i.e., U is star shaped and symmetric.

(iii) U is invariant under all automorphisms of g and V is invariant under
all automorphism of G and thus is stable under conjugation.

(iv) U contains all x ∈ g such that Spec(adx) is real.

(v) If n denotes the nilradical of g , then U + n = U . In particular, U
contains the nilradical of g and V contains the nilradical of G .

(vi) exp |U :U → V is a diffeomorphism onto a symmetric neighborhood of
the identity of G .

(vii) If G is simply connected, and if the elements x, y ∈ g satisfy expx =
exp y and σ(x) + σ(y) < 2π , then x = y .

5. Special aspects and conjectures
on exponentiality in the general case

As soon as we leave the domain of special classes of Lie groups the information
we have on the surjectivity of the exponential function is not coherent yet,
and the literature is occasionally a bit shaky. Various authors have observed,
notably in the context of semisimple connected Lie groups, that the center plays
a role in characterizing exponentiality, but this aspect appears to be less clear
cut than was thought in the beginning. For solvable groups, the connectivity
of the center is a necessary condition for exponentiality. In [57] Moskowitz
clarifies various statements made in [58] regarding centerless groups and proves
that the centerless connected simple Lie groups SO◦(n, 1) are exponential. This
is a special case of Nishikawa’s Theorem 1.6 above, and it also follows from
the Catalog Theorem 4.6 of D– oković and Nguyen in whose list the simply
connected covering groups of these occur. Moskowitz also settles the issue of
exponentiality of all simple noncompact real rank one groups, all of which are
exponential safe the exceptional specimen. That the latter is not exponential
emerged from the work of D– oković and Thang in [17]. Moskowitz [57] uses
a geometric argument, taking into account the fact that a centerless rank one
simple real Lie group is the connected component of the isometry group of an
irreducible rank one symmetric space and studying this action. The articles [57]
and [58] should only be consulted jointly.

Information on mixed groups is sparse. But Moskowitz has elucidated
this aspect of exponentiality with the methods of [57, 58] on “generalized motion
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groups,” which exemplify some of the technical complications which one encoun-
ters in the mixed case, i.e., the case of connected real Lie groups which are
neither solvable nor semisimple—even under otherwise special conditions. So we
consider, by way of example, a connected real Lie group G whose radical R is a
vector group and whose semisimple factor group G/R is compact. By a theorem
of Iwasawa [41], every such Lie group G is isomorphic to V ×C where V is
n -dimensional real vector group, C a compact connected Lie group, and where
the multiplication in G is defined in terms of a representation ρ:C → GL(V ) by
(v, g)(w, h) = (v+ ρ(g)(w), gh). Moreover, every compact subgroup is contained
in a conjugate of {0} × C under an element of V × {1} (cf. [2], chap. VII, §3,
n 2, Proposition 3). For each element v ∈ V we define the isotropy group of C
at v to be Cv = {c ∈ C : ρ(c)(v) = v} = {c ∈ C : v ∈ ker(ρ(c)− idV )} . Note
V × Cv = Z

(
(v, 1), V × C)

)
.

Proposition 5.1. Let V be an n-dimensional real vector group and ρ:C →
GL(V ) a representation of a compact connected Lie group C on V . Set G

def
=

V ×C with multiplication (v, g)(w, h) = (v + ρ(g)(w), gh) . For v ∈ V set
Cv = {g ∈ C : ρ(g)(v) = v} . Then the following conditions are equivalent.

(i) G is exponential.

(ii) Cv is connected for all v ∈ V .

Proof. Every compact Lie group has a faithful real linear representation
π:C → GL(W ) and thus is a real algebraic matrix group (see [70], p. 133,
Theorem 5, p. 247, Theorem 12). The group G has a real algebraic matrix
representation α:G→ GL(W ⊕ V ⊕ R) given, in an obvious notation, by

α(v, g) =



π(g) 0 0

0 ρ(g) v
0 0 1


 .

The unipotent elements of G are exactly those of V × {1} ; the centralizer
Z
(
(v, 1), G

)
is V ×Cv . Every element g ∈ G has a unique multiplicative Jordan

decomposition g = gsgu with gs semisimple, commuting with gu unipotent.

(i)⇒(ii) Let v ∈ V ; we must show that Cv is connected. Let c ∈ Cv . Then
(v, c)s = (0, c) and (v, c)u = (v, 1). By (i) there is a one-parameter subgroup
t 7→

(
φ(t), f(t)

)
of G such that φ(1) = v and f(1) = c . Since

(
φ(t), f(t)

)

commutes with (v, c) and (v, 1) = (v, c)u , it follows that
(
φ(t), f(t)

)
and (v, 1)

commute, i.e., f(t) ∈ Cv . As f(0) = 1 and f(t) = c , the group Cv is connected.

(ii)⇒(i) Let g = (v, c) ∈ G . We want to show that g ∈ EG . Let g = gsgu be
the Jordan decomposition. Then gs is contained in some compact subgroup, and
by the conjugacy part of Iwasawa’s Theorem, gs has a conjugate in {0} × C .
Since EG is invariant under conjugation, we may assume that gs = (0, c). Now
gu = (v, 1) with c ∈ Cv . By (ii), the compact Lie group Cv is connected, hence
exponential. Thus g = (v, c) ∈ R·v ×Cv , and this direct product is exponential,
whence g ∈ EG . The proposition is proved.

We thank E. B. Vinberg for having directed us towards this direct
proof. Considering the conjugacy part of Iwasawa’s Theorem, the fact that
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the connected compact Lie group C is exponential, and the fact that EG is
invariant under conjugation, we observe that G \EG are exactly those elements
g of G \ V × {1} which fail to be contained in a compact subgroup, i.e., for
which 〈g〉 ∼= Z (by A. Weil’s Lemma saying that a cyclic subgroup of a locally
compact group is either relatively compact or is isomorphic to Z algebraically
and topologically).

Proposition 5.1 is also a consequence of Theorem 4.5. Indeed, if V ×Cv
is weakly exponential, then V × Cv is connected and thus Cv is connected.
Conversely, if Cv is connected, since V × {1} is contained in the radical of
V ×Cv , Condition (6) of Theorem 3.1 is satisfied and thus V ×Cv is weakly
exponential. Then the assertion follows from Theorem 4.5.

Proposition 5.1 shows, in particular, that the euclidean motion group
G = Rn× SO(n), n ≥ 2, is exponential. Indeed, all unit vectors in the euclidean
space Rn are conjugate under a rotation to v = (0, . . . , 0, 1); for this v we have(

SO(n)
)
v
∼= SO(n − 1) whence 5.1(ii) is satisfied. This is due to Moskowitz

[58]. All proper covering groups of G fail to satisfy 5.1(ii). The group

G
def
=







e2it 0 u
0 eit v
0 0 1


 , t ∈ R, u, v ∈ C





satisfies the general hypotheses of Proposition 5.1 with a faithful ρ , but G does
not satisfy 5.1(ii) and thus is not exponential. In connection with 5.2 and 5.3
below, the content of Proposition 5.1 and its ramifications illustrate quite well
some of the intricacies of the subject in circumstances which, on the surface,
appear to be very simple. The article [58] contains results on semidirect products
V ×C , where V is a 2-step nilpotent group and C is from a special class of
compact Lie groups; in [62] the Moskowitz and Wüstner present results which
are more special than Proposition 5.1 insofar as C is assumed to be a torus,
but which are more general in as much as V is replaced by any of a class of
connected solvable Lie groups including nilpotent and simply connected solvable
exponential Lie groups. Because of 5.2 and 5.3 below this is not a generalisation
of 5.1; however these results remain a useful tool for yielding potential sufficient
conditions for the exponentiality of connected real Lie groups containing such
subgroups; an example of such a situation follows in Proposition 5.2 below in the
form of the implication (ii)⇒(iii).

Proposition 5.2. Assume the general hypotheses of Proposition 5.1. Consider
the following three conditions:

(i) If T is a maximal torus of C then the subgroup V × T is exponential.

(ii) For each maximal torus T of C and each v ∈ V the group Tv = Cv ∩ T
is connected.

(iii) G is exponential.

Then (i)⇔(ii)⇒(iii) 6⇒(i).

Proof. (i)⇔ (ii): This is a special case of Proposition 5.1.

(ii)⇒(iii) Let T denote the set of maximal tori of C . In view of
C =

⋃ T we note Cv =
⋃{T ∩ Cv : T ∈ T } =

⋃{Tv : T ∈ T } . By (iii) all
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Tv are connected. Hence Cv is connected then Theorem 5.2 shows that G is
exponential.

(iii) 6⇒(ii) This requires an example which we discuss below in 5.3.

According to Propsition 5.2, the maximal tori of G cannot tell the full
story.

Both of the examples which follow belong to the context of the series
of Theorem 4.7.1, and both of them are quite instructive. Let H denote the
division ring of quaternions with identity 1. Let R , respectively C denote the
subfields of real, respectively, complex numbers and let S3 denote the group of
unit quaternions which is isomorphic to SU(2). Set S0 = S3∩R and S1 = S3∩C .
We set s3 = R·i + R·j + R·k . The multiplicative group H× = (H \ {0}, ·) is a
Lie group with Lie algebra (H,+, [·, ·]) and the standard exponential function
exp:H → H× , expx = 1 + x + 1

2! ·x2 + · · ·; then s3 = L(S3). For h ∈ H
let Z(h,H) = {x ∈ H : xh = hx} denote the centralizer of h ∈ H . If
h /∈ R there is a unique maximal commutative subfield Ch containing h , namely,
Ch = R·1 + R·h ∼= C . Then

Z(h,H) =

{
H if h ∈ R,
Ch ∼= C if h /∈ R.

For different Ch and Ch′ we have Ch ∩ Ch′ = R .

Example 5.3. We define

G =

{(
u h
0 u

)
∈ GL(2,H) : h ∈ H, u ∈ S3

}
,

g =

{(
s h
0 s

)
∈ gl(2,H) : h ∈ H, s ∈ s3

}
.

Let C consist of all diagonal matrices u·12 , 12 =

(
1 0
0 1

)
. Clearly C ∼= S3 .

Let N denote the normal subgroup of unitriangular matrices. Then N is a
vector group isomorphic to R4 . A quick calculation shows that for h ∈ H and

v =

(
1 h
0 1

)
we have

Cv = {u·12 : u ∈ S3 and hu = uh} ∼= Z(h,H) ∩ S3 =

{
S3 if h ∈ R,
Ch ∩ S3 ∼= S1 if h /∈ R.

This group is connected. Hence G is exponential by Proposition 5.1 and Con-
dition 5.2(iii) holds. A maximal torus of C is given by T = {eti·12 : t ∈ R} .
Then

Cv ∩ T ∼= Z(h,H) ∩ S1 =

{
S1 if h ∈ C,
S0 if h /∈ C.

Thus some isotropy groups of T acting on the vector group N are disconnected.
Hence the group NT is a maximal connected solvable subgroup of the exponen-
tial group G and NT is not exponential since condition 5.1(ii) is not satisfied.
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The element X
def
=

(
0 h
0 0

)
∈ g is ad-nilpotent. We compute its

centralizer Z(X,G) = {g ∈ G : Ad(g)X = X} in G as

{(
u x
0 u

)
: u ∈ Z(h,H) ∩ S3 and x ∈ H

}
∼= H×

{
S3 if h ∈ R,

Ch ∩ S3 ∼= S1 if h 6∈ R .

If h 6∈ C then Z(h,H) ∩ S3 is a maximal torus of S3 and thus is conjugate to
T , and then Z(X,G) is conjugate to NT ; therefore Z(X,G) is not exponential.
Hence there are ad-nilpotent elements X ∈ g such that Z(X,G) is not expo-
nential. On the other hand, Z(X,G) , being connected and solvable, is weakly
exponential.

Since G is exponential, the Cartan subgroups of G are connected by 3.1
and thus each of them is of the form exp h for a Cartan subalgebra h of g . One
Cartan subalgebra h and the Cartan subgroup it generates are given by

h =

{(
ti z
0 ti

)
: t ∈ R, z ∈ C

}
∼= R3,

H =

{(
eti z
0 eti

)
: t ∈ R, z ∈ C

}
= (H ∩N)T ∼= R2×S1.

If h /∈ C , then

Z(X,H) = (H ∩N)(Cv ∩ T ) ∼= R2 × S0.

Hence there exists a Cartan subgroup H and an ad-nilpotent X ∈ g such that
Z(X,H) is disconnected.

This example belongs to the circle of ideas of the following

Example 5.4. Let G = SL(n,H), n ≥ 2. This group is a real form of
the complex algebraic group SL(2n,C). The group G consists of all n × n
quaternionic matrices with Dieudonné determinant 1. By Theorem 4.6.1 all
groups G are exponential.

All Cartan subgroups of G are conjugate (see e.g. [16] or [53]). One of
them consists of all complex diagonal matrices whose determinant has absolute
value 1.

All minimal parabolic subgroups of G are conjugate. The group P
of upper triangular matrices in G is one of them. Let L be the reductive
subgroup consisting of all diagonal matrices in G and N the subgroup of all
upper unitriangular matrices. Then P = NL is a Levi decomposition and N is
the unipotent radical of P . Thus P is an example of a “mixed” group.

All maximal connected solvable subgroups of G are conjugate (see [53]).
One of them is the subgroup S of all upper triangular matrices with complex
diagonal entries. Then S is also a maximal connected solvable subgroup of P .
The center of S has order 2. Hence S is not exponential as a consequence of
Theorem 4.2.
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We are unable to decide whether or not P is exponential. This illustrates
the deficiencies of our knowlege of necessary conditions for the exponentiality of
mixed groups.

The preceding results lead to speculations on potential Characterisation
Theorems for exponential Lie groups. We formulate some of them in the form
of problems. The idea which is suggested by the classification Theorem 3.1 for
weakly exponential Lie groups, is to point out classes of subgroups (such as
Cartan subgroups or minimal parabolic subgroups) which might serve as test
for exponentiality. This is the reason why, apart from preparing for Theorem
3.1, we dwelled at some length on such classes in Section 2. Every element
of a connnected real Lie group is contained in a near-Cartan subgroup [32].
Every near-Cartan subgroup is nilpotent. Hence if all near-Cartan subgroups of
a connected real Lie group are connected then it is exponential. This leads to

Problem 5.5. Prove or disprove the following conjecture: If a connected real
Lie group G is exponential then all of its near-Cartan subgroups are connected.

Wüstner’s Theorems 4.2, 4.4 and Theorem 4.5 suggest

Problem 5.6. Prove or disprove the following conjecture: A connected real
Lie group G is exponential if an only if for each ad -nilpotent element X ∈ g the
centralizer Z(X,G) is weakly exponential.

Example 5.3 exhibits an exponential real Lie group G and an ad-
nilpotent element such that the centralizer Z(X,G) is weakly exponential but not
exponential, and it has a Cartan subgroup H such that Z(X,H) = Z(X,G)∩H
is disconnected.

Moskowitz’ Corollary 13 of [60] and Jaworski’s work suggest

Problem 5.7. Prove or disprove the following conjecture: A connected real
Lie group G is exponential if and only if minimal parabolic subgroups of G are
exponential.

Failing that one might start with the following special case.

Problem 5.7a. Prove or disprove that P in Example 5.4 is exponential.

All of these conjectures are supported by the case of solvable groups
through Theorem 4.2. The more speculative Conjecture in Problem 5.7 may be
somewhat supported by one equivalence for weak exponentiality in Theorem 3.1.

Theorem 4.6 shows that within special classes, Borel subgroups serve as
a good class of test subgroups. However, far reaching conjectures concerning
maximal connected solvable subgroups are inappropriate after Examples 5.3 and
5.4 where it is shown that exponential Lie groups can contain maximal connected
solvable subgroups which fail to be exponential.

Problem 5.8. Clarify the role played by maximal connected solvable sub-
groups in the context of the surjectivity of the exponential function.
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In view of our knowledge of the exponentiality of connected solvable Lie groups
through Theorem 4.2 any information in the direction of 5.8 would be welcome.

6. Divisibility and the exponential function

The algebraic concept of divisibility in a group is, on Lie groups, intimately
related with the exponential function.

Definition 6.1. An element g in a group G is called divisible if for each
natural number n ∈ N there is an x ∈ G such that xn = g . A group G itself is
called divisible if each g ∈ G is divisible.

This topic has been widely discussed in group theory and in the theory of
topological groups although definitive results in Lie groups are recent. Clearly the
additive group Q of rational numbers is divisible and is indeed a prototype. In a
divisible group G , for each element g ∈ G by an elementary argument of picking
successive roots one finds a homomorphism f :Q → G such that f(1) = g , and
conversely, if every element in G is so embeddable in a homomorphic image of
Q , then G is divisible. In particular, this applies to Lie groups. Thus every
exponential Lie group is clearly divisible. Consider the (additively written) free
abelian group F generated by the countable sequence of elements {e1, e2, . . .} ,
and let S be the subgroup generated by the subset {2·e2−e1, 3·e3−e1, . . .} . The

quotient group G
def
= F/S is an infinite abelian group which does not contain

any divisible subgroup, but it contains a nonzero element which is divisible,
namely, e1 + S ∈ G = F/S . Moreover, the factor group of G modulo its
torsion subgroup is isomorphic to Q . In SL(2,R), or alternatively, in the three
dimensional solvable group

{(
eit z
0 eit

)
: t ∈ R, z ∈ C

}
,

there is a sequence of elements xn converging to ∞ (i.e., eventually leaving every
compact subset) satisfying (xn)n = −1 . (Pictures illustrating the geometry of
one-parameter groups in the group of motions of the euclidean plane and its
covering groups as well as in SL(2,R) and its universal covering group may be
found in [40], Figures 2 (p. 16) and 4 (p. 18); another frequently useful picture
of SL(2,R) is reproduced in [26], p. 429, Figure 17.) As a consequence, in the
divisible group PSL(2,R) = SL(2,R)/{1,−1} we find a sequence of elements ξn
converging to ∞ such that (ξn)n = 1 . Thus one must reject the possible belief
that a sequence of higher and higher roots of an element in a Lie group would have
to cluster, let alone converge to the identity. However, while the example F/S
above shows that divisible elements need not be contained in divisible subgroups
even in the case of abelian groups, inside connected real Lie groups the situation
is much better, even though there may be no obvious reason visible at the outset.
Indeed McCrudden proved the following theorem.

Theorem 6.2. In a connected real Lie group, the set of divisible elements is
precisely EG = im exp .
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Put differently: An element in a connected real Lie group is divisible if
and only if it lies on a one-parameter subgroup. In particular, this shows that in
a weakly exponential but not exponential group the closure of the set of divisible
elements contains elements which fail to be divisible. As a consequence of
Theorem 6.2, a connected real Lie group is divisible if and only if it is exponential.
(This corollary permits easier proofs [35].) Moreover, McCrudden’s Theorem
allows us to understand the structure of homomorphic images of the group Q in
a connected Lie group; the following proposition is taken from [40].

Proposition 6.3. Let f :Q→ G be a group homomorphism into a connected
Lie group. Then f(Q) is singleton, or is a torus, or is isomorphic to the direct
product of a torus (possibly of dimension 0) and a line R . In particular, f(Q)
is connected.

Indeed every Lie group of the form Tn×Rd , d ∈ {0, 1} contains a dense
copy of Q . By 6.3, any homomorphic image of Q in a connected Lie group is
contained in EG . Therefore, the closure of a divisible subgroup of a connected
Lie group is weakly exponential and thus is, in particular, connected.

The question of passing one parameter subsemigroups through elements
having arbitrary roots originates, in spirit, from probability theory where it is
called the embeddability problem in the following sense: Probability measures on
a locally compact group G form a semigroup under convolution, whose identity
is the point mass at the identity. A probability measure µ on G is called
(infinitely) divisible if for each n ∈ N there is a probability measure ν such
that ν ∗ · · · ∗ ν︸ ︷︷ ︸

n times

= µ . It is called embeddable if there is a (weakly) continuous one

parameter semigroup t 7→ µt of probability measures with µ0 = δ1 , the point
mass in 1 , and µ1 = µ . Any Gauss measure on R is embeddable. Embeddability
implies divisibility trivially; the investigation of the converse implication has
vexed probabilists for a long time. It was shown by Dani and McCrudden that
on every connected Lie group which has a finite dimensional continuous linear
representation with a discrete kernel a divisible probability measure is embeddable
[10]. The embedding problem motivated McCrudden’s Theorem 6.2 in the first
place; for more references on the widely and throughly studied embeddability
problem in probability theory see e.g. [10].

7. The exponential function of subsemigroups of Lie groups

The theory of Lie semigroups, sometimes also called “Geometric Semigroup The-
ory,” has emerged in close connection with such fields of mathematics as geomet-
ric control theory, holomorphic representation theory, causality and chronogeom-
etry on pseudo-Riemannian manifolds (see e.g., [26, 27, 34, 36, 38, 64]). To every
closed subsemigroup S in a Lie group G there is attached a tangent object
W = L(S) in the Lie algebra g of G , defined by

L(S) = {X ∈ g | expR+·X ⊆ S}.



D– oković and Hofmann 193

Definition 7.1. A subsemigroup S of a Lie group G is called exponential,
respectively, weakly exponential if S = exp L(S), respectively, S = exp L(S).

This definition is a straightforward extension of Definition 0.1. In or-
der to properly distinguish subsemigroups from subgroups we shall say that a
subsemigroup is reduced if S does not contain a closed normal subgroup N
(which would allow us to pass to S/N ⊆ G/N ) and if S algebraically gener-
ates G . (Why this is not a restriction of generality is explained in [40].) In a
striking contrast with the group situation in which many questions remain open,
Hofmann and Ruppert completely classified reduced weakly exponential semi-
groups and showed that these are exponential. (Not true for weakly exponential
subsemigroups which are not reduced!) In order to discuss the essential aspects
of this result we need some background concepts.

The set L(S) is a so-called Lie wedge. Indeed, a wedge W , i.e., an
additively and topologically closed convex subset of g , is called a Lie wedge if

(A) (∀X ∈W ∩ −W ) eadXW ⊆W .

If S is a closed subgroup then L(S) is exactly the Lie algebra of S . We say
that a subsemigroup S of a Lie group G is a Lie semigroup if it is closed
and S = 〈exp L(S)〉 , i.e., the subsemigroup 〈exp L(S)〉 , which is algebraically
generated by the exponential image of L(S), is dense in S . It is an immediate
consequence of the definition that every Lie semigroup is connected. A subgroup
S of G is a Lie semigroup if and only if it is a closed connected Lie subgroup,
or, equivalently, a closed connected subgroup of G . A wedge W in a Lie algebra
g is called a Lie semialgebra if it satisfies the following condition.

(B) There is an open convex neighborhood B of 0 in g on which the
Campbell-Hausdorff-Dynkin multiplication ∗ is defined and satisfies
(W ∩B) ∗ (W ∩B) ⊆W .

Each Lie semialgebra is a Lie wedge. A wedge W in a Lie algebra g is called
invariant, if

(C) (∀X ∈ g) eadXW ⊆W .

All invariant wedges are Lie semialgebras. Invariant wedges have been charac-
terized and classified (cf. e.g. [21, 26, 27]). Suppose that the following condition
is satisfied for a wedge W :

(D) There is a hyperplane subalgebra h of g such that the boundary of W
is h .

Then W is a semialgebra, called halfspace semialgebra. Hyperplane subalgebras
are a classical theme; a final classification for the purpose of also classifying
all intersections of halfspace semialgebras was given by Hofmann in [29]. Lie
semialgebras have been classified [19, 34, 25]. In [19], Eggert showed that
every Lie semialgebra is an intersection of semialgebras belonging to one of the
two main types: invariant wedges and half-space semialgebras. It was shown in
a non-trivial process in [40] that the Lie wedge L(S) of any weakly exponential
reduced subsemigroup S of a Lie group G is a Lie semialgebra in L(G). This
emerged as a consequence of a complete classification. Not even every invariant
Lie wedge is the Lie wedge of an exponential Lie semigroup. In order to first
exhibit the structure of those Lie groups G which contain an exponential reduced
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subsemigroup, we say that a Lie algebra d is diagonally metabelian if [d, d] is
abelian and if there is a Cartan algebra h such that each of the operators adm ,
m ∈ h , is diagonalizable over the reals. The structure of diagonally metabelian
Lie algebras is completely known ([29]).

Theorem 7.2. If a connected Lie group G contains a weakly exponential
reduced subsemigroup then there are ideals sj , j = 1, . . . , k , all isomorphic to
sl(2,R) , a diagonally metabelian and centerfree ideal d , and a compact ideal k
such that g = s1 ⊕ · · · ⊕ sk ⊕ d⊕ k .

Conversely, if G is a simply connected Lie group whose Lie algebra g is
of this type then G contains a weakly exponential reduced subsemigroup.

We note that the radical of g is d ⊕ z(k) and that g has a unique Levi
complement s1⊕ · · ·⊕ sk ⊕ k′ , k′ denotes the commutator algebra [k, k] of k . All
subalgebras isomorphic with sl(2,R) are contained in the ideal s1 ⊕ · · · ⊕ sk ∼=(
sl(2,R)

)k
. Once more, this emphasizes the very special role of sl(2,R) in Lie

theory.

Once the structure of g is known we can formulate the Classification
Theorem on the Lie wedges of exponential reduced subsemigroups of real Lie
groups.

Theorem 7.3. Let G be a connected Lie group containing a reduced weakly
exponential subsemigroup S with Lie wedge W . Then S = expW and, in the
notation of Theorem 7.2, the following conclusions hold:

(i) W = (s1 ∩W ) ⊕ · · · ⊕ (sk ∩W ) ⊕W0 , where the intersections sj ∩W
are intersection algebras, and W0 = W ∩ (d⊕ k) .

(ii) W0 is described as follows:
Set Winv = W0 + d′ . Then the wedge Winv is the smallest invariant
wedge containing W0 . There is an intersection algebra Wsec containing
k′ such that W0 = Winv ∩Wsec .

(iii) W ∩ −W is a metabelian subalgebra of g with W ∩ −W ∩ k = {0} .
More specifically, W ∩−W = a⊕m , where a is an abelian subalgebra of
s1 ⊕ s2 ⊕ · · · ⊕ sk , and m is a subalgebra of d⊕ z(k) .

(iv) The group of invertible elements in S is exponential, that is, S ∩ S−1 =
exp(W ∩ −W ) .

Let p: G̃→ G be the universal covering homomorphism of G and S̃ = exp
G̃
W .

Theorem 7.4. Under the hypotheses of Theorem 7.3, the set S̃ is a closed
exponential semigroup and S = p(S̃) .

In other words, exponential closed subsemigroups of G can be lifted to
the universal covering group G̃ , a fact which a priori is not clear at all. In many
discussions concerning exponential semigroups this permits us to assume that G
is simply connected. For a detailed discussion see [40].
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Example 7.5. The universal covering group G of the group of euclidean mo-
tions may be realized as C×R , (c, r)(d, s) = (c + eird, r + s). The half- space

subsemigroup G+
def
= C × R+ , R+ = [0,∞[ is weakly exponential but not ex-

ponential. It is not reduced, because it contains the normal subgroup C× {0} .
Other fairly natural closed proper subsemigroups of G+ are described in [26],
p. 409, Example V.4.14. These are not weakly exponential, the subsemigroup
generated by their one parameter subsemigroups is dense.

Problem 7.6. Describe the structure of a (not necessarily reduced) weakly
exponential and exponential closed subsemigroup S of a connected real Lie group
G .

One may, of course, assume that G = 〈S ∪ S−1〉 , and one has a largest
closed normal subgroup N of G contained in S . Then S/N ⊆ G/N is the
reduced situation described in the structure theorems 7.2, 7.3, and 7.4. But
example 7.5 illustrates that other phenomena occur in the general situation which
are not covered by the existing theory.
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D– oković and Hofmann 199

[74] Sibuya, Y., Note on real matrices and linear dynamical systems with
periodic coefficients, J. Math. Anal. Appl. 1 (1960), 363–372.
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