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Hardy spaces on two–sheeted covering semigroups
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Abstract. In this paper we study the minimal complex Lie semigroups

associated with three classical series of groups by using a holomorphic con-
tinuation of a certain Cayley transform for the group. In particular we show,

that for the symplectic group the odd part of the Hardy space on the double

cover is isomorphic to the classical Hardy space on the Siegel upper half
space corresponding to the symplectic group of twice the rank of the given

group.

0. Introduction

In this paper we shall give a detailed description of the minimal complex Lie
semigroups associated with three of the four classical series of groups with an
Hermitian symmetric space. These were found by Ol’shanskĭı ([21]) as were the
associated Hardy spaces on these semigroups ([22]), and recently there has been
much interest in analysis of this type of function space (see [3], [4], [7], [8],
[14], [15], [18], [19], [20] and [23]). In particular one would like to calculate
the Cauchy–Szegö kernel explicitly, and to compare these new Hardy spaces
with those for classical bounded domains (see [3], [18], [19] and [23]). By
using a natural Cayley transform, which might be thought of as a holomorphic
continuation of a causal compactification of the Lie group, we show that for
the symplectic group the odd part of the Hardy space on the double cover is
indeed isomorphic to the classical Hardy space on the Siegel upper half space
corresponding to the symplectic group of twice the rank of the given group. One
of the main technical points in this work is the actual construction of the double
cover semigroup, isomorphic to Howe’s oscillator semigroup (see [12] and [16]),
via a choice of square root of a certain Jacobian; this is close in spirit to the
construction of the Riemann surface for

√
z . Thus for the metaplectic group we

obtain an explicit formula for the Cauchy–Szegö kernel as well as the branching
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law for the classical Hardy space with respect to the product of two metaplectic
groups. For the two remaining series of groups the Cayley transform goes into
the tube domains for the Jordan algebras of complex resp. quaternion Hermitian
matrices; in the first case the Ol’shanskĭı Hardy space is never isomorphic to the
classical one, and in the second case we show that even after a necessary passage
to the double cover the classical Hardy space is strictly contained in the odd
part of the Hardy space on the double cover. This is due to a decay condition at
infinity in the complex semigroup which holds on the classical space but not on
all of the semigroup Hardy space.

It should be interesting to pursue this line of investigation for other
groups and symmetric spaces which admit holomorphic discrete series represen-
tations and Hardy spaces. First, one would like to find the analogue of the
Cayley transform studied here; second one should use this to calculate Cauchy–
Szegö kernels and to compare to classical Hardy spaces. For the first problem
there has been recent interesting progress in a quite general setting by Wolfgang
Bertram ([1]) and Frank Betten ([2]) (independently). For the second the Cayley
type spaces were treated by Mohamed Chadli ([3]) and Ólafsson–Ørsted ([20])
(independently).

In the first section we recall the Ol’shanskĭı Hardy spaces and their de-
composition as highest weight modules and in section 2 we describe the contrac-
tion semigroup for the classical series we consider: U(p, q), Sp(r,R) or SO∗(2l).
Also here we construct the relevant Cayley transform. In section 3 we parametrize
the scalar-valued holomorphic discrete series and its analytic continuation for the
conformal group G[ , where G[ is SU(n, n), Sp(2r,R) or SO∗(4l) respectively
in our three cases. Here n = p+ q , and the large group G[ acts by local order-
preserving transformations on the smaller one G . One way to look at our study
is that we consider the spectrum of G in certain unitary highest weight repre-
sentations of G[ , in particular the Hardy space (the classical one) on the tube
domain for G[ ; this we begin in section 4, and in section 5 we give, first for the
metaplectic group, the explicit construction of the double cover semigroup. This
is only abstractly isomorphic to Howe’s oscillator semigroup, and we need the
present construction in terms of geometrically defined cocycles. This section in
particular contains the formula for the Cauchy-Szegö kernel for the odd part of
the Ol’shanskĭı Hardy space on Howe’s oscillator semigroup, namely:

Kodd(γ1, γ2) = Det(J − γ∗2Jγ1)−(r+1/2)

where the right-hand side is the usual matrix determinant. The square root is
exactly well-defined because of our double covering. Finally sections 6 and 7
contain the last two series; and in none of these cases does the spectrum of G
coincide for the classical and for the Ol’shanskĭı Hardy space. In the SO∗(2l)
case a double cover similar to the metaplectic case is constructed, perhaps of
independent interest. The results of this paper were announced in [19].
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1. The Ol’shanskĭı Hardy spaces

Let g be a simple Lie algebra over the reals R , and g = k ⊕ p a Cartan
decomposition of g . Let t ⊂ k be a Cartan subalgebra of k . We shall suppose
that k has a non–zero center z ; then z is one dimensional and t is also a Cartan
subalgebra of g .

Let GC be the simply connected complex Lie group corresponding to
gC := g + ig , and let G , K and T be the connected subgroups in GC corre-
sponding to g , k and t , respectively. By the Kostant–Paneitz–Vinberg Theorem
([25]), there are non–trivial regular cones C in ig which are Ad(G)− invariant,
where regular means, convex, closed, pointed (C ∩ −C = {0}) and generating
(C − C = ig). Let ConeG (ig) be the set of all regular Ad(G)− invariant cones
in ig .

For such a cone C in ConeG (ig), Ol’shanskĭı associates a semigroup
Γ(C) := G exp(C) in GC , and for this semigroup he associates a “non-commut-
ative” Hardy space H2(Γ(C)) which is the set of holomorphic functions f on
the complex manifold Γ(C)◦ = G exp(C◦), the interior of Γ(C), such that

sup
γ∈Γ(C)◦

∫

G

|f(γg)|2 dg <∞.

Note that sometimes the order of g and γ is interchanged in this integral; we use
this convention here - they are of course equivalent. For any γ ∈ Γ(C)◦ the linear
functional f 7−→ f(γ) is continuous on H2(Γ(C)), which is a Hilbert space, see
for example [15]. Therefore by the Riesz representation theorem, there exists a
vector Kγ ∈ H2(Γ(C)) such that (f,Kγ) = f(γ). The reproducing kernel K
which is called the Cauchy–Szegö kernel is defined by

K(γ1, γ2) = Kγ2
(γ1).

It is Hermitian, holomorphic in γ1 and anti–holomorphic in γ2 .

Let ∆ = ∆(gC, tC) be the set of roots of gC relative to tC . Let ∆+ ⊂ ∆
be the set of positive roots relative to some order (namely the one where the
center of k comes first), ∆+

k and ∆+
p the set of positive compact and non-

compact roots, respectively. Put tR := it ⊂ tC . We identify tR with its own dual
via the Cartan–Killing form. Then we can consider ∆ ⊂ tR . Let P ⊂ t∗R ' tR
be the set of weights relative to T and let R be the set of all highest weights
relative to ∆+

k ,

(1.1) R = {λ ∈ P | (∀α ∈ ∆+
k ) 〈λ, α〉 ≥ 0}.

Let ρ be the half sum of all positive roots. Then by Harish–Chandra ([9], [10],
[11]) the holomorphic discrete series representations for the group G are those
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irreducible unitary representations of G that are square–integrable with a highest
weight λ belonging to

(1.2) R′ = {λ ∈ R | (∀β ∈ ∆+
p ) 〈λ+ ρ, β〉 < 0}.

We will say that λ ∈ R satisfies the Harish–Chandra condition if

(1.3) 〈λ+ ρ, β〉 < 0, ∀β ∈ ∆+
p .

By Vinberg ([25]), there exists in ConeG (ig) a unique (up to multipli-
cation by −1) maximal cone Cmax , such that

Cmax ∩ tR = cmax := {X ∈ tR | (∀α ∈ ∆+
p ) 〈X,α〉 ≥ 0},

and a unique minimal cone Cmin = C∗max , such that Cmin ∩ tR = cmin is the
convex cone spanned by all α in ∆+

p .

A unitary representation π of G in a Hilbert space H is said to be
C−dissipative if for all X ∈ C and all ξ ∈ H∞ , the space of C∞ vectors in H ,

(π(X)ξ|ξ) ≤ 0.

We can now state the Theorem B of Olshanskĭı ([22]) on the non–commutative
Hardy spaces

Theorem 1.1. The Hardy space H2(Γ(C)) is a non–trivial Hilbert space for
any C ∈ ConeG (ig) .

The representation of G in H2(Γ(C)) can be decomposed into a direct sum of
irreducible unitary representations of G . The components of this decomposition
are precisely all the holomorphic discrete series representations of G which are
C−dissipative.

The group G×G acts on H2(Γ(C)) via left and right regular represen-
tations. Therefore

(1.4) H2(Γ(C)) =
⊕

λ∈(C∗∩tR)∩R′
πλ ⊗ π∗λ,

where πλ is the contraction representation of Γ(C) corresponding to a unitary
highest weight representation of G with highest weight λ . Recall here the
correspondence as in [21] between holomorphic contraction representations of the
semigroup and admissible unitary highest weight representations of the group.
In particular, Γ(C) acts by contractions on the Hardy space, and this action is
holomorphic on the interior Γ(C)◦ . Morever, the corresponding function of the
Cauchy–Szegö kernel K of H2(Γ(C)) can be written on Γ(C)◦ as follows

(1.5) K(γ) := K(γ, e) =
∑

λ∈(C∗∩tR)∩R′
dλtr(πλ(γ)),

where dλ denotes the formal dimension of the representation πλ . The series for
K converges uniformly on compact subsets in Γ(C)◦ .
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Remark 1.2. Whenever C is the minimal cone the decompositions (1.4) and
(1.5) are over all the holomorphic discrete series, namely over λ ∈ R′ .

One of the most important problems in this area is to give an explicit
formula for the function K(γ).

2. The contraction semigroup in GC and the Cayley transform

From now on we assume that G is one of the classical groups U(p, q), Sp(r,R)
or SO∗(2l). Let σ be an involution on gC such that

g = {X ∈ gC | σ(X) = −X}.
Then

σ(X) = JX∗J,

where X∗ is the adjoint matrix and

for g = u(p, q) J =
(
−Ip 0

0 Iq

)

for g = sp(r,R) J =
(
−Ir 0

0 Ir

)

for g = o∗(2l) J =
(
−Il 0
0 Il

)
.

Remark 2.1. U(p, q) is not a simple Hermitian Lie group. Since

U(p, q) '
(
U(1)× SU(p, q)

)
/Zp+q,

the holomorphic discrete series representations of U(p, q) are the holomorphic
discrete series representations of the circle times the Hermitian group SU(p, q)
which are trivial on (ζ, ζ−1In ) where n = p+ q and ζn = 1. Therefore one can
easily generalize the results of section 1 to the reductive group U(p, q); details
will be given in section 7.

Let C be the regular cone in ig defined by

(2.1), C := {X ∈ ig | JX ≤ 0}
and let Γ(C) := G exp(C) be the corresponding Ol’shanskĭı semigroup. An
element γ of GC is said to be a J−contraction (resp. a strict J−contraction) if
J − γ∗Jγ ≥ 0 (resp. J − γ∗Jγ � 0).

Proposition 2.2. The semigroup Γ(C) is the J−contraction semigroup,

Γ(C) = {γ ∈ GC | J − γ∗Jγ ≥ 0},
and Γ(C)◦ is the semigroup of strict J−contractions,

Γ(C)◦ = {γ ∈ GC | J − γ∗Jγ � 0}.

Proof. The case G = U(p, q) is done by Hilgert and Neeb in [13]. For G =
Sp(r,R), ΓSp(r,R) = GC∩ΓU(r,r) and for G = SO∗(2l), ΓSO∗(2l) = GC∩ΓU(l,l) .
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Let V be one of the Jordan algebras Herm(n,C), Sym(2r,R) or
Herm(l,H) and let Ω be the corresponding symmetric cone. Then Ω = V +

is the set of positive definite matrices in V . The tube domain TΩ := V + iΩ
is a Hermitian symmetric space isomorphic to G[/K[ , where G[ is SU(n, n),
Sp(2r,R) or SO∗(4l) respectively and K[ the corresponding maximal compact
subgroup, i.e. S

(
U(n)× U(n)

)
, U(2r) or U(2l) respectively.

Let C be the Cayley transform defined by

(2.2) C(Z) := (Z − iJ)(Z + iJ)−1

whenever the matrix (Z + iJ) is invertible.

Proposition 2.3. The Cayley transform C is a biholomorphic bijection from
an open subset of the tube domain TΩ onto the complex manifold Γ(C)◦ . More
precisely, if Σ denotes the hypersurface Σ = {Z ∈ TΩ | det(Z + iJ) = 0} ,
then

(2.3) C(TΩ \ Σ) = Γ(C)◦.

Proof. We use the similar arguments as in the proof of Lemma 1.1 in [18].
Here “det” denotes the Koecher norm in the Jordan algebra VC (cf. [5]).

A crucial point in this paper is to compare holomorphic functions on the
tube domain with their pull-backs on the semigroup via the Cayley transform,
and vice versa. In particular, it will be important to know the rate of growth of
the functions near the singularity Σ above. Assuming γ = C(Z) we have that

Z + iJ = 2(I − γ)−1iJ

so that to approach the singularity in the Z variable, means that det(I−γ) tends
to infinity in the γ variable. Clearly this condition is invariant under conjugation
with G , so we may reduce the question of the growth near the singularity to a
question on the compact Cartan subspace. Suppose the holomorphic functions
f and F are related by

f(Z) = det(I − γ)pF (γ)

so that F is holomorphic on Γ(C)◦ and f therefore holomorphic on TΩ \ Σ.
Then for f to admit a holomorphic continuation to all of TΩ it is necessary
and sufficient that it stays bounded as the determinant factor tends to infinity,
i.e. that F satisfies a decay condition related to p . This is what we shall make
precise in the following.
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Lemma 2.4. Given the correspondence as above between f and F and suppose
F is a matrix coefficient of a holomorphic representation of the semigroup rela-
tive to an orthonormal basis v0, v1, .., of weight vectors for the compact Cartan
subspace tR such that γvi = γbivi and on exp(C◦ ∩ tR) we have that γb0 ≥ γbi

for all i . Then the singularity of f can be removed provided det(I−γ)pγb0 stays
bounded when the determinant factor tends to infinity along exp(C◦ ∩ tR) .

Proof. By Vinberg [25] each element of C◦ is conjugate to an element of tR ,
so to look at an arbitrary matrix coefficient along the compact Cartan subspace
is sufficient to decide the removability of the singularity. Namely, we have

(γ
∑

i

aivi,
∑

i

aivi) ≤ γbo(
∑

i

aivi,
∑

i

aivi)

which shows the assertion, namely that the rate of growth in the direction of the
singularity is controlled by b0 .

3. The holomorphic discrete series for G[

All definitions and results in this section are taken from [5] and [24].

Let N and R be the dimension and the rank of the Jordan algebra
V . For a complex manifold M we denote by O(M) the space of holomorphic
functions on M .

The group G[ acts on TΩ via

g · Z = (AZ + B)(CZ +D)−1, g =
(
A B
C D

)
,

and the scalar–valued holomorphic discrete series representations of G[ are
(
Uλ(g)f

)
(Z) = det(CZ +D)−λf(g−1 · Z), g−1 =

(
A B
C D

)

for λ ≥ 2N
R

, which all are unitary and irreducible in the Hilbert spaces

Hλ(TΩ) := {f ∈ O(TΩ) |
∫

TΩ

|f(X + iY )|2det(Y )λ−2NR dXdY <∞}.

Morever the reproducing kernel of Hλ(TΩ) is given by

KTΩ

λ (Z,W ) = det
(Z −W ∗

2i

)−λ
.

The classical Hardy space H2(TΩ) on TΩ is defined as the space of
holomorphic functions f on TΩ such that

sup
Y ∈Ω

∫

V

|f(X + iY )|2 dX <∞.

Proposition 3.1. The Hardy space H2(TΩ) may be thought of as the space
Hλ(TΩ) for λ = N

R
, and the Cauchy–Szegö kernel of TΩ is given by

(3.1) K(Z,W ) = det
(Z −W ∗

2i

)−N/R
.
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We list here the groups G and the corresponding group G[ , Jordan
algebra V , its rank R , its dimension N , and the Koecher norm det :

G G[ V N R det

Sp(r,R) Sp(2r,R) Sym(2r,R) r(2r + 1) 2r Det

SO∗(2l) SO∗(4l) Herm(l,H) l(2l− 1) l Det1/2

U(p, q) SU(n, n) Herm(n,C) n2 n Det

4. The conformal image of the holomorphic discrete series for G[

As in [18], we wish to make a correspondence between holomorphic functions on
TΩ and holomorphic functions on Γ(C)◦ . First, we can easily extend Proposition
1.5 in [18] to any Euclidean Jordan algebra.

Proposition 4.1. Let f ∈ O(TΩ \ Σ) such that

∫

TΩ

|f(Z)|2det(Y )λ−2NR dXdY <∞,

for λ ≥ 2NR . Then f is actually holomorphic on all of TΩ .

Let λ ≥ 2 N
R and introduce the Hilbert space

Hλ(Γ(C)) =
{
F ∈ O(Γ(C)◦) |

∫

Γ(C)◦
|F (γ)|2dνλ(γ) <∞

}
,

where dνλ is the Lebesgue measure of GC restricted to Γ(C)◦ times the density

det(J − γ∗Jγ)λ−2 N
R .

The Cayley transform γ = C(Z) gives as in Lemma 2.4 a correspondence
between O(TΩ \ Σ) and O(Γ(C)◦), namely,

(4.1) f = Cλ(F ) : f(Z) = det(Z + iJ)−λF (γ).

Theorem 4.2. Let λ ≥ 2 N
R

. If F belongs to Hλ(Γ(C)) , then the function
f = Cλ(F ) belongs to Hλ(TΩ) and the map Cλ is a unitary linear isomorphism
from Hλ(Γ(C)) onto Hλ(TΩ) . Furthermore, Hλ(Γ(C)) is a reproducing kernel
Hilbert space with the kernel

Kλ(γ1, γ2) = det
(
J − γ∗2Jγ1

)−λ
.

Proof. This is just like Theorem 1.7 in [19], using the above Proposition.
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5. The Hardy space of the metaplectic semigroup

In this section we assume that G = Sp(r,R). Then the Hardy parameter is
N
R = r+ 1

2 ∈ Z+ 1
2 and the Koecher norm “det” coincides with the usual matrix

determinant “Det” . This suggests that the operator CN
R

= Cr+ 1
2

,

(5.1) f = Cr+ 1
2
(F ) : f(Z) = Det(Z + iJ)−(r+ 1

2 )F (γ)

may be an intertwining operator between H2(TΩ) and the odd part of the Hardy
space H2(Γ(C)2) on the double covering Γ(C)2 of Γ(C).

The appearance of a square root in (5.1) means that we have to consider
double coverings defined in terms of the determinant function on the right-hand
side of (5.1). This is another main point of this paper. We shall use the following
two general principles:

Principle 1. Suppose G ×M → M is a holomorphic action of a Lie
group G on a simply connected complex manifold M , and that there is given
a non-vanishing cocycle λ : G ×M → C∗ which is holomorphic in the second
variable and satisfies

λ(g1g2, z) = λ(g1, g2 · z)λ(g2, z)

for all g1, g2 ∈ G, z ∈M . Then we can define

G2 := {(g, ω(g, ·)) | g ∈ G, ω(g, ·)2 = λ(g, ·)}

where z → ω(g, z) is holomorphic on M . Since we are on a simply connected
space, this holomorphic square root is well-defined up to a sign change. G2 is a
double covering of G , and it is a Lie group endowed with the product

(g1, ω(g1, z))(g2, ω(g2, z)) = (g1g2, ω(g1, g2 · z)ω(g2, z))

with z on both sides viewed as a holomorphic variable. Note that this product
is well-defined, since on the right-hand side we indeed have a holomorphic square
root of λ(g1g2, z). The same construction applies to Lie semigroups. This
product is associative, since for either position of the parentheses the ω part
of the element becomes

ω(g1, g2g3 · z)ω(g2, g3 · z)ω(g3, z)

so (h1h2)h3 = h1(h2h3) where h1 = (g1, ω(g1, z)) etc. This principle is also
to be applied in (5.3). Note finally that ω defines a cocycle for G2 , namely
ω(g̃, z) = ω(g, z) where g̃ = (g, ω(g, z)). By definition of the product in G2 this
satisfies the cocycle relation, similar to the one for λ above.

Principle 2. Let N be a complex manifold (not necessarily simply
connected) and φ a nowhere vanishing holomorphic function on N . Then we
can define

N2 := {(z, w) | z ∈ N,w ∈ C, w2 = φ(z)}



254 Koufany and Ørsted

which will be a holomorphic double cover of N . By construction, φ(z)1/2 is a
well-defined holomorphic function on N2 .

An abstract construction of double (and universal) covering semigroups
can be found in much detail in [13]. For the open subset Γ(C)2

◦ we have a new
and explicit construction; but first we recall (in a way suitable to our choices)
how to obtain the double cover G2 of G , based on a slight modification via the
Cayley transform of Principle 1 above:

Let J [ =
(
J 0
0 J

)
and let G[ := Sp(2r,R) be the group of all matrices in

Sp(2r,C) satisfying
g∗J [g = J [.

We imbed G in a natural way in G[ as follows :

g 7−→
(
g 0
0 I2r

)
.

We also view the Cayley transform C as the element of G[C given by the matrix

C =
1√
2

(
I2r −iJ
I2r iJ

)
.

Our precise definition of G2 is to be the set of all pairs (g, ω(gc, ·))
with g ∈ Sp(r,R), gc = C−1 g C =

(
A B
C D

)
, ω(gc, ·)2 = Det(C · +D)−1 and

Z −→ ω(gc, Z) is holomorphic on TΩ . Note that this is analogous to the
definition of the double cover of SU(1, 1), where we take all pairs (g,

√
cz + d)

with g =

(
a b
c d

)
∈ SU(1, 1) and

√
cz + d a holomorphic choice of square

root of the non-zero function cz + d on the unit disc. Indeed, it sometimes is
convenient to think in terms of such multivalued functions when doing practical
calculations, but of course, the precise definition is behind this. We also recall
the more informal definition of G2 as follows:

Take again Z ∈ TΩ and g ∈ Sp(r,R) such that C−1 g C =
(
A B
C D

)
. A

determination on TΩ of the square root Det(CZ+D)−
1
2 is completely determined

by its value on Z = iI . For each g ∈ Sp(n,R) we choose a determination of

Det(CZ+D)−
1
2 as in Principle 1, noting that this is a global determination. We

consider here Z as a variable, since the group (and indeed all contractions) acts
on the tube domain, and we consider the function

(5.2) Z 7−→ ω(gc, Z) := Det(CZ +D)−
1
2

from TΩ into C\{0} , where gc = C−1 g C . We read ω as “a holomorphic choice
of square root of the determinant”. It follows from Principle 1 that ω may be
viewed as a cocycle for G2 , and it gives a choice of square root at the product
of two elements as follows:

ω(gc
1g

c
2 , Z) = ω(gc

1 , g
c
2 · Z)ω(gc

2 , Z).
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This equation is to be understood as an equation for the two-valued function ω ;
it does not hold for any single-valued function. More generally, assuming the
determinant to be non-zero, we let

ω2(
(
A B
C D

)
, Z) := Det(CZ +D)−1

and correspondingly ω(
(
A B
C D

)
, Z) a choice of one of the two square roots of

this, either (as here) global and holomorphic, or (as below) local, i.e. at the fixed
point Z . Then we may consider our double covering group to be

G2 := {g̃ := (g, ω(gc, ·)) | g ∈ Sp(r,R)},
endowed with the group law

(5.3)
(
g1, ω(gc

1 , Z)
) (
g2, ω(gc

2 , Z)
)

=
(
g1g2, ω(gc

1 , g
c
2 · Z)ω(gc

2 , Z)
)
.

G2 is a two–sheeted covering group of G , since we are considering both choices
of square root. G2 is called the metaplectic group.

Now we wish to apply Principle 2 to give another (and by Lemma 5.2
isomorphic) version of the double covering construction. Here N will be the
open semigroup, realized as a subset of the tube domain as in Proposition 2.3.
For Z ∈ TΩ \ Σ and for a choice of a local determination of Det(Z + iJ)−

1
2 we

note that up to a constant

Det(Z + iJ)−
1
2 = ω(C, Z).

This is again an identity between two-valued functions. Hence at each fixed point
Z we make a choice between the two possible values of the square root, so here
the notation does not consider Z as a variable. Note that we may extend our
cocycle to the complexified group in the natural way. Therefore, the complex
manifold

Γ(C)◦2 := {γ̃ = (γ, ω(C, Z)) | γ ∈ Γ(C)◦, γ = C(Z), Z ∈ TΩ \ Σ},
is a two–sheeted covering of the semigroup Γ(C)◦ . As before, we consider both
choices of square root here, and corresponding to the modern point of view, the
more precise definition is as follows:

Γ(C)◦2 = {γ̃ = (γ, w) ∈ Γ(C)◦ × C | γ = C(Z), Z ∈ TΩ \ Σ, w2 = Det(Z + iJ)−1}.
In particular, w is just a complex number.

Lemma 5.1. The group G2 acts on the right on the manifold Γ(C)◦2
Proof. We define the action at the same time: Indeed, letting Z ′ satisfy
g−1γ = C · Z ′ , which implies that Z = gc · Z ′ ,

(
γ, ω(C, Z)

)
·
(
g, ω(gc, ·)

)
=
(
g−1γ, ω(C, Z)ω(gc, Z ′)

)
by definition

=
(
g−1γ, ω(Cgc, Z ′)

)

=
(
g−1γ, ω(gC, Z ′)

)

=
(
g−1γ, ω(g,C · Z ′)ω(C, Z ′)

)

=
(
g−1γ, ω(C, Z ′)

)

because ω2(g,C · Z ′) = 1.
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In this calculation, Z and Z ′ are fixed points, and the cocycles indicate
choices of square roots at the relevant points. Indeed, the same calculation holds
for ω2 instead, and the ω then is a complex number with the relevant square.
To see that we have indeed defined a group action, we note that the two sides of
the equation checking that we have an action both have as ω part

ω(C, Z)ω(gc
1 , g

c
2 · Z ′′)ω(gc

2 , Z
′′)

where gc
2 · Z ′′ = Z ′ and Z = gc

1 · Z ′ . To show that Γ(C)◦2 is a semigroup we
consider just like for G2 the following manifold

Γ(C)◦2
′
:= {

(
γ, ω(γc, ·)

)
| γ ∈ Γ(C)◦}.

It is clear that Γ(C)◦2
′

is a double covering of Γ(C)◦ and has a semigroup
structure with respect to the law (5.3). See Principle 1 and the remark following
(5.3).

Consider the map ϕ from Γ(C)◦2
′

to Γ(C)◦2 defined by

(
γ, ω(γc, ·)

)
7−→

(
γ, ω(C, Z)

)
, where γ = C(Z) ∈ Γ(C)◦.

This is to be understood as using the relation (up to a constant)

ω2((−γ)c, Zo) = Det(I − γ)−1

where Zo = 0 and γ ∈ Γ(C)◦ . Hence a choice of global square root corresponds
to a choice of local square root in a one-to-one way, since a global choice is
determined by its value at a single point. Thus we have

Lemma 5.2. ϕ is a homeomorphism from Γ(C)◦2
′

onto Γ(C)◦2 .

Remark 5.3. The semigroup Γ(C)◦2 is isomorphic to the interior of the meta-
plectic semigroup or the Howe oscillator semigroup. We call it the open meta-
plectic semigroup.

The Hardy space H2(Γ(C)2) on the metaplectic semigroup Γ(C)2 is the
space of holomorphic functions F ∈ O(Γ(C)◦2) such that

sup
γ̃∈Γ(C)◦2

∫

G2

|F (γ̃ g̃)|2 d g̃ <∞.

The maximal compact subgroup K of G = Sp(r,R) is isomorphic to
U(r) and the maximal split abelian subalgebra

tR =
{(

X 0
0 −X

)
∈ M(r × r,R) | X =

(
x1

.. .
xr

)}
,
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can be identified with Rr . Let ε1, . . . , εr be the canonical basis of t∗R = tR = Rr .
Then the root system ∆ = ∆(gC, tC) is of type Cr :

∆ = {±(εi ± εj) (1 ≤ i < j ≤ r) , ±2εi (1 ≤ i ≤ r)}
∆+ = {εi ± εj (1 ≤ i < j ≤ r) , 2εi (1 ≤ i ≤ r)}
∆+

k = {εi − εj (1 ≤ i < j ≤ r)}
∆+

p = {εi + εj (1 ≤ i ≤ j ≤ r)}
ρ = rε1 + (r − 1)ε2 + . . .+ εr

' (r, r − 1, . . . , 1).

Furthermore P is the lattice Zr , the set of highest weights relative to ∆+
k is

given by
R = {λ = (λ1, . . . , λr) ∈ Zr | λ1 ≥ . . . ≥ λr},

and λ ∈ R satisfies the Harish–Chandra condition if

−r > λ1 ≥ . . . ≥ λr,

which gives the set R′ .
Let K2 ⊂ G2 , resp. T2 ⊂ K2 be the corresponding covering of K and

T . Then the corresponding P2 , R∈ and R′∈ are given by

P2 = Zr ∪ (Zr +
1

2
) = P ∪ (P +

1

2
) = P2,even ∪ P2,odd,

R2 = {λ ∈ P2 | (∀α ∈ ∆+
k ) 〈λ, α〉 ≥ 0}

= {λ = (λ1, . . . , λr) ∈ Zr ∪ (Zr +
1

2
) | λ1 ≥ . . . ≥ λr},

= R2,even ∪R2,odd

R′∈ = {λ ∈ R2 | 〈λ+ ρ, β〉 < 0, ∀β ∈ ∆+
p },

= {λ = (λ1, . . . , λr) ∈ Zr ∪ (Zr +
1

2
) | −r > λ1 ≥ . . . ≥ λr},

= R′2,even ∪R′2,odd,

where 1
2 stands for the tuple ( 1

2 , . . . ,
1
2 ). The holomorphic discrete series repre-

sentations for the metaplectic group G2 are those irreducible unitary represen-
tations πλ of G2 that are square–integrable with a highest weight λ ∈ R′2 =
R′2,even ∪R′2,odd . Therefore

(5.4) H2(Γ(C)2) =
⊕

λ∈(C∗∩tR)∩R′2

πλ ⊗ π∗λ.

The cone C is the minimal one in ig , so the above summation is over R′2 and
the Hardy space H2(Γ(C)2) splits into two parts, namely, even and odd part,

H2(Γ(C)2) = H2
even(Γ(C)2)⊕H2

odd(Γ(C)2)

=
( ⊕

λ∈R′2,even

πλ ⊗ π∗λ
)
⊕
( ⊕

λ∈R′
2,odd

πλ ⊗ π∗λ
)
.
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Remark 5.4. The even part

H2(Γ(C)2)even =
⊕

λ∈R′2,even

πλ ⊗ π∗λ

=
⊕

(λ1,...,λr)∈Zr
−r>λ1≥...≥λr

πλ ⊗ π∗λ

coincides with the Hardy space H2(Γ(C)) on the semigroup Γ(C). For this
space Olshanskĭı (cf. [23]) gives an explicit formula for the Cauchy–Szegö kernel
using a Littlewood-type combinatorial formula : for γ ∈ Γ(C)◦ with eigenvalues
x1, . . . , xr, x

−1
1 , . . . , x−1

r where |x1|, . . . , |xr| < 1,

L(γ) = K(γ, e) =
r∏

i=1

xr+1
i

(1 + xi)(1− xi)2r+1
.

Our goal in this section is to identify the odd part

H2(Γ(C)2)odd =
⊕

λ∈R′
2,odd

πλ ⊗ π∗λ

=
⊕

(λ1,...,λr)∈Zr+ 1
2

−(r+ 1
2 )≥λ1≥...≥λr

πλ ⊗ π∗λ

with the classical Hardy space H2(Sp(2r,R)/U(2r)).

Theorem 5.5. The operator Cr+ 1
2

given by (5.1) induces a unitary isomor-
phism

H2(Γ(C)2)odd ' H2(Sp(2r,R)/U(2r)).

Proof. From (5.1), C−1
r+ 1

2

imbeds the classical Hardy space into H2(Γ(C)2)odd .

This is because the multiplier factor in the transformation is chosen as the square
root of the Radon-Nikodym derivative, i.e. the L2 norms on the respective Shilov
boundaries agree. The image is inside the odd functions because Det(Z+iJ)−1/2

is a well-defined odd function (with respect to the group Z2 of deck transforma-
tions) and F (γ) is even – hence the product is an odd function. It suffices then
to prove that C−1

r+ 1
2

is onto. For this we will show that for every representation of

the odd part of the holomorphic discrete series for G2 the corresponding matrix
coefficients extend to the tube domain TΩ .

We shall use Lemma 2.4 to find the necessary and sufficient condition for
the removal of singularities i.e. to estimate the growth of the function f pulled
back from a matrix coefficient. This turns out below as exactly Harish-Chandra’s
condition for the holomorphic discrete series.

Let πλ be among these representations with the highest weight λ =
(λ1, . . . , λr) ∈ Zr + 1

2
, λ1 ≥ . . . ≥ λr and let vλ be a corresponding normalized

highest weight vector. Take
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γ̃ ∈ Γ(C)2 , with γ ∈ exp(Cmin ∩ tR). Then γ is of the form

γ =

(
es1

.. .
esr

)
, si ≥ 0

and
F (γ̃) := (πλ(γ̃)vλ, vλ) = γ̃λ = es1λ1 · · · esrλr .

Then the corresponding function on TΩ is given (up to a constant factor) by

f(Z) = Det(I − γ)r+
1
2F (γ̃)

=
(

(1− es1)r+
1
2 · · · (1− esr )r+ 1

2

)(
es1λ1 · · · esrλr

)

= es1(λ1+r+ 1
2 ) · · · esr(λr+r+ 1

2 ) + · · ·
∼

s1,...,sr→+∞
es1(λ1+r+ 1

2 ).

Thus, to remove the singularity of the holomorphic function on TΩ we need to
take

−(r +
1

2
) ≥ λ1

and this is exactly the Harish-Chandra condition for G2 we gave above. The
sufficiency of this condition comes from Lemma 2.4.

Corollary 5.6. Under the action of Mp(r,R) ×Mp(r,R) the Hardy space
H2(TΩ) can be decomposed into a direct sum of the ‘odd’ holomorphic discrete
series representations of Mp(r,R) , i.e.

H2(Sp(2r,R)/U(2r))|Mp(r,R)×Mp(r,R) =
⊕

λ∈R′
2,odd

πλ ⊗ π∗λ.

Corollary 5.7. Let Kodd be the kernel corresponding to H2(Γ(C)2)odd . Then
for every γ̃1, γ̃2 ∈ Γ(C)2

Kodd(γ̃1, γ̃2) = Det(J − γ∗2Jγ1)−(r+1/2).

Proof. This is a simple application of (3.1) and the isomorphism in Theorem
5.5.

Corollary 5.8. On the interior of the metaplectic semigroup the holomorphic
function Det(I − γ)−(r+1/2) has the following expansion

Det(I − γ)−(r+1/2) =
∑

λ∈R′
2,odd

dλtr(πλ(γ)),

where dλ is the formal dimension of πλ .

The Bergman space on Γ(C) is H2r+1(Γ(C)) and its reproducing kernel
is given by

KB(γ1, γ2) = Det(J − γ∗2Jγ1)−(2r+1).
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Corollary 5.9. The Bergman kernel KB on the semigroup Γ(C) is the square
of the odd part Kodd of the Cauchy-Szegö kernel for Γ(C)2 .

6. The case of G = SO∗(2l)

Let G = SO∗(2l) realized as a subgroup of U(l, l),

G = {g ∈ SO∗(2l,C) | g∗Jg = J}, J =

(
−Il 0
0 Il

)
.

The Hardy parameter in this case is N/R = l(2l−1)/l = 2l−1 and the Koecher

norm “det” is the square root of the usual determinant “Det” (det = Det1/2 ).
Thus the operator CN

R
= C2l−1 ,

(6.1) f = C2l−1(F ) : f(Z) = Det(Z + iJ)−(l−1/2)F (γ)

provides an equivariant embedding of the classical Hardy space
H2(SO∗(4l)/U(2l)) into the odd part of the Hardy space H2(Γ(C)2)odd on the
double covering semigroup Γ(C)2 of the minimal semigroup

Γ(C) = {γ ∈ SO∗(2l,C) | J − γ∗Jγ ≥ 0}

(because of the square root in Det(Z + iJ)(l−1/2) ). This is just like the sym-
plectic case; again the power of the determinant is chosen so that L2 norms
are preserved. We will identify the maximal compact subgroup with U(l) as in
the above section. The determinanat factor is again exactly the Jacobian to a
power such that we have preservation of L2−norms on the respective boundaries.
Then tR is given by the same formula as in Sp(r,R) case. Let ε1, ε2, . . . , εl be
the canonical basis of t∗R = tR = Rl . The root system ∆ = ∆(gC, tC) is of type
Dl :

∆ = {±εi ± εj | 1 ≤ i < j ≤ l},
∆+ = {εi ± εj | 1 ≤ i < j ≤ l},
∆+

k = {εi − εj | 1 ≤ i < j ≤ l},
∆+

p = {εi + εj | 1 ≤ i < j ≤ l},
ρ = (l − 1)ε1 + (l− 2)ε2 + . . .+ εl−1

' (l − 1, l− 2, . . . , 1, 0).

The set of highest weights relative to the positive roots of SO∗(2l) is

R = {λ = (λ1 . . . , λl) ∈ Zl | λ1 ≥ . . . ≥ λl},

and λ ∈ R satisfies to the Harish-Chandra condition if and only if

(6.2) −2l + 3 > λ1 + λ2.

Therefore, the odd holomorphic discrete serie representations of the double cov-
ering group G2 of SO∗(2l) are those irreducible unitary representations πλ ,
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square-integrable with a highest weight λ = (λ1, . . . , λl) ∈ Zl − 1
2 such that

0 ≥ λ1 ≥ . . . ≥ λl and satisfying

(6.3) −2l + 2 ≥ λ1 + λ2.

Let R′2,odd denotes the set of these λ ’s. The Hardy space H2(Γ(C)2) on the
minimal cone Γ(C)2 has then the following decomposition

(6.4) H2(Γ(C)2)odd =
⊕

λ∈R′
2,odd

πλ ⊗ π∗λ.

Theorem 6.1. The classical Hardy space H2(SO∗(4l)/U(2l)) is a proper in-
variant subspace of the “non–classical” Hardy space H2(Γ(C)2)odd ⊂ H2(Γ(C)2) .

Proof. With the same arguments as in the proof of Theorem 5.5, we prove
that a unitary irreducible representation πλ of G2 continue to the tube domain
SO∗(4l)/U(2l) if and only if −(l − 1/2) ≥ λ1 , which is different from (6.3).

Corollary 6.2. The representation of SO∗(2l)× SO∗(2l) in the Hardy space
H2(Γ(C)) cannot be obtained by a restriction of a representation of the holomor-
phic discrete series of SO∗(4l) nor any continuation of this, such as the Hardy
space.

Let H2(Γ(C)) the conformal image of H2(SO∗(4l)/U(2l)) via the oper-
ator C2l−1 .

Corollary 6.3. H2(Γ(C)) is a reproducing kernel Hilbert space and its repro-
ducing kernel K is the pre-image of the Cauchy–Szegö kernel of

H2(SO∗(4l)/U(2l)), i.e.,K(γ1, γ2) = Det(J − γ∗2Jγ1)−(l−1/2).

Corollary 6.4. On Γ(C)◦ the holomorphic function Det(I − γ)−(l−1/2) has
the following expansion

Det(I − γ)−(l−1/2) =
∑

−l+1/2≥λ1≥...≥λl
dλtr(πλ(γ)),

where dλ is the formal dimension of πλ .

7. The case of G = U(p, q)

In this section we fix G = U(p, q) realized by

G = U(p, q) = {g ∈ GL(n,C) | g∗Jg = J}, J =

(
−Ip 0

0 Iq

)

where n = p + q . In this case the Hardy parameter is N/R = n2/n = n and
the Koecher norm “det” is the usual determinant “Det”. Therefore the operator
CN
R

given by

(7.1) f = Cn(F ) : f(Z) = Det(Z + iJ)−nF (γ)
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may be an intertwining operator between the Hardy space

H2(SU(n, n)/S
(
U(n)× U(n)

)
and the Hardy space H2(Γ(C))

over the semigroup

Γ(C) = {γ ∈ GL(n,C) | J − γ∗Jγ ≥ 0}.

To study unitary representations of G = U(p, q) we identify it with (U(1) ×
SU(p, q))/Zp+q . Thus the unitary irreducible representations of G are those
of U(1) × SU(p, q) that are trivial on (ζ, ζ−1In) as in Remark 2.1, where In
is the identity matrix and ζn = 1. Therefore, the holomorphic discrete series
representations of G that we are interested in are

(7.2) πλ,k(eiθg) = eikθπλ(g) , g ∈ SU(p, q), θ ∈ R

where k ∈ Z and πλ are the holomorphic discrete series representations of
SU(p, q), realized on D = SU(p, q)/S

(
U(p) × U(q)

)
, for example in the scalar

case:

(
πλ(g)f

)
(Z) = Det(CZ +D)−λf

(
(AZ + B)(CZ +D)−1

)
, g−1 =

(
A B
C D

)
,

with λ an integer, and in general λ = (λ1, . . . , λn) ∈ Zn . There will an
underlying parity condition to make the representations trivial on Zn as above;
for example in the scalar case we must have that k − qλ is divisible by n .

Let t ⊂ k be a Cartan subalgebra consisting of diagonal matrices with
purely imaginary values and tR = it . Then the root system ∆ = ∆(gC, tC) is of
type An−1 :

∆ = {εi − εj | 1 ≤ i 6= j ≤ n},
∆+ = {εi − εj | 1 ≤ i < j ≤ n},
∆+

k = {εi − εj | 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n},
∆+

p = {εi − εj | 1 ≤ i ≤ p and p+ 1 ≤ j ≤ n},
2ρ = (n− 1)ε1 + (n− 3)ε2 + . . .− (n− 3)εn−1 − (n− 1)εn

' (n− 1, n− 3, n− 5, . . . ,−n+ 3,−n+ 1),

where ε1, . . . , εn is the canonical basis of t∗R ' tR ' Rn . Then the holomorphic
discrete series representations of SU(p, q) are the above representations πλ with
λ = (λ1, . . . , λn) ∈ Zn satisfying

λi − λi+1 ≥ 0, i 6= p, 1 ≤ i ≤ n− 1,

and the Harish-Chandra condition

λn − λ1 > n− 1.
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Let πλ,k be an irreducible unitary representation of G with highest weight (λ, k),
λ = (λ1, . . . , λn). Then according to (7.2), its highest weight character is given
by

χλ,k(eiθg) = eikθχλ(g)

where χλ is the character of the representation πλ of SU(p, q). The cone C ∩ tR
consists of all matrices of rank (n× n),

(
−T 0
0 S

)

where T is the diagonal matrix with diagonal entries t1 ≤ 0, . . . , tp ≤ 0 and
S the diagonal matrix with diagonal entries sp+1 ≤ 0, . . . , sn ≤ 0. Take γ ∈
exp(C ∩ tR). Then γ is of the form γ =

(
e−T 0

0 eS

)
with

(
−T 0
0 S

)
∈ C ∩ tR .

Therefore, if Det(γ) = 1,

χλ,k(γ) = χλ(γ) = e−t1λ1 · · · e−tpλpesp+1λp+1 · · · esn−1λn−1 .

Thus in this case the C−dissipativity condition is

0 ≥ λ1 ≥ . . . ≥ λp, λp+1 ≥ . . . ≥ λn ≥ 0.

On the other hand if Det(γ) 6= 1 we put

c = (Det(γ))1/n = e−(t1+...+tp)/ne(sp+1+...+sn)/n,

hence

χλ,k(γ) = χλ,k
(
c

(
e−T /c 0

0 eS/c

))
,

= ckχλ
(( e−T /c 0

0 eS/c

))
,

= e−k(t1+...+tp)/nek(sp+1+...+sn)/n

· eλ1

(
−t1+(t1+...+tp)/n−(sp+1+...+sn)/n

)

...

· eλp
(
−tp+(t1+...+tp)/n−(sp+1+...+sn)/n

)

· eλp+1

(
sp+1+(t1+...+tp)/n−(sp+1+...+sn)/n

)

...

· eλn
(
sn+(t1+...+tp)/n−(sp+1+...+sn)/n

)
,

= et1
(

[λ]−k
n −λ1

)
· · · etp

(
[λ]−k
n −λp

)
esp+1

(
k−[λ]
n +λp+1

)
· · · esn

(
k−[λ]
n +λn

)
,

where [λ] = λ1 + . . .+ λn . So, in this case, the C−dissipativity condition is

(7.3) [λ]− nλn ≤ k ≤ [λ]− nλ1.
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Therefore, πλ,k is a C−dissipative representation of the holomorphic discrete
series if and only if (λ, k) belongs to the set Rdiss

Rdiss = {(λ1, . . . , λn, k) ∈ Zn+1 |





λn − λ1 > n− 1
0 ≥ λ1 ≥ . . . ≥ λp, λp+1 ≥ . . . ≥ λn ≥ 0

[λ]− nλn ≤ k ≤ [λ]− nλ1

}.

Hence the Hardy space on the semigroup Γ(C) has the following decomposition

(7.4) H2(Γ(C)) =
⊕

(λ,k)∈Rdiss

πλ,k ⊗ π∗λ,k.

Theorem 7.1. The classical Hardy space H2
(
SU(n, n)/S

(
U(n)× U(n)

))
is

a proper invariant subspace of the “non–classical” Hardy space H2(Γ(C)) .

Proof. We just compare those two Hardy spaces according to the transforma-
tion Cn given in (7.1). Let πλ,k be a representation of the holomorphic discrete
series of G = U(p, q). The matrix coefficient χλ,k(γ) = (πλ,k(γ)vλ,k, vλ,k) is a
holomorphic function on the semigroup Γ(C)◦ (vλ,k is the highest weight vector
of highest weight (λ, k)). Put F := Det(I − γ)nχλ,k(γ). Again, we use Lemma
2.4 - recall the argument: F is holomorphic on Γ(C)◦ , so it is determined by its
restriction to exp(C◦). Since each X ∈ C◦ is conjugate to an element of tR (see
Vinberg [25]), to find the decay condition at infinity in the semigroup to ensure
a removal of the singularities on Σ of the holomorphic function F it suffices to
check it on exp(C◦ ∩ tR). This is because any other matrix coefficient will have
a better decay at the singularity than the highest one above, and by conjugation
it is enough to check the removal of singularity on the compact Cartan subspace.

Let γ

(
e−T 0

0 eS

)
∈ exp(C◦ ∩ tR), then

Det(I − γ)nχλ,k(γ) = (1− e−t1)n . . . (1− e−tp)n(1− esp+1)n . . . (1− esn)n

· et1
(

[λ]−k
n −λ1

)
· · · etp

(
[λ]−k
n −λp

)
esp+1

(
k−[λ]
n +λp+1

)
· · · esn

(
k−[λ]
n +λn

)

∼
t1,...,sn→−∞

et1(−n−λ1+
[λ]−k
n ) · · · etp(−n−λp+

[λ]−k
n )

· esp+1(n+λp+1+
k−[λ]
n ) · · · esn(n+λn+

k−[λ]
n ).

Therefore the decay condition is

[λ]− n(λn + n) ≤ k ≤ [λ]− n(λ1 + n),

which is different from the dissipativity condition in (7.3).

Corollary 7.2. The representation of S
(
U(p, q) × U(p, q)

)
in the Hardy

space H2(Γ(C)) cannot be obtained by a restriction of a representation of the
holomorphic discrete series of SU(n, n) nor any analytic continuation of this,
such as the Hardy space.

Note that this should be taken in the strong sense, that for no choice of
cone C do the spaces coincide. This is seen by noting that a larger cone will
impose dissipativity conditions which only make the spectral overlap smaller.
Let H2(Γ(C)) be the conformal image of H2

(
SU(n, n)/S

(
U(n) × U(n)

))
via

the operator Cn .
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Corollary 7.3. H2(Γ(C)) is a reproducing Hilbert space and its reproducing
kernel K is the pre-image of the Cauchy-Szegö kernel of H2

(
SU(n, n)/S

(
U(n)×

U(n)
))

, i.e.

K(γ1, γ2) = Det(J − γ∗2Jγ1)−n.

Corollary 7.4. On Γ(C)◦ the holomorphic function Det(I − γ)−n has the
following expansion

Det(I − γ)−n =
∑

(λ,k)∈Rdecay

dλ,ktr(πλ,k(γ)),

where dλ,k is the formal dimension of πλ,k and

Rdecay = {(λ1, . . . , λn, k) ∈ Zn+1 |





λn − λ1 > n− 1
0 ≥ λ1 ≥ . . . ≥ λp, λp+1 ≥ . . . ≥ λn ≥ 0
[λ]− n(λn + n) ≤ k ≤ [λ]− n(λ1 + n)

}

8. Remarks and conjectures

Our geometric construction of the double cover semigroup could naturally be
extended to the n− fold cover by choosing n ’th roots of the Jacobian ; similarly
a choice of logarithm could yield the universal cover. Hence we could compare,
again via the Cayley transform, modules in the analytic continuation of the
scalar holomorphic discrete series for G[ with function spaces on the covering
semigroup. For example we saw in [18] how the wave equation representation
of SU(2, 2) naturally lives on U(1, 1) (and the semigroup), solving the wave
equation here.

Another aspect for the further work is to extend to the remaining groups
and symmetric spaces of Hermitian type. We conjecture that in many cases
will the non–commutative Hardy spaces be different from their natural classical
counterpart, and that in some cases, the double cover will be necessary and indeed
natural. We also conjecture that in the bad case the difference between the two
Hardy spaces may be a (sum of) non–commutative Hardy space(s) of lower rank.
For example in [18], we prove, using the Cauchy–Szegö kernel, that the difference
between the classical Hardy space of SU(2, 2) and the non–commutative Hardy
space of U(1, 1) is the non–commutative Hardy space of SU(1, 1) studied by
Gel’fand and Gindikin in [6]. Hence several of the goals aimed in this paper,
and especially that of calculating Cauchy–Szegö kernels, remain open problems
in general.
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