
Journal of Lie Theory
Volume 7 (1997) 61–99
C©1997 Heldermann Verlag

Regular infinite dimensional Lie groups

Andreas Kriegl and Peter W. Michor

Communicated by W. A. F. Ruppert

Abstract. Regular Lie groups are infinite dimensional Lie groups with

the property that smooth curves in the Lie algebra integrate to smooth
curves in the group in a smooth way (an ‘evolution operator’ exists). Up

to now all known smooth Lie groups are regular. We show in this paper

that regular Lie groups allow us to push surprisingly far the geometry of
principal bundles: parallel transport exists and flat connections integrate to

horizontal foliations as in finite dimensions. As consequences we obtain that
Lie algebra homomorphisms integrate to Lie group homomorphisms, if the

source group is simply connected and the image group is regular.
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1. Introduction

On the one hand the theory of infinite dimensional Lie groups and Lie alge-
bras is very rich: Kac-Moody algebras and the Virasoro algebra have a rich and
important theory of representations and many applications, and subgroups of
diffeomorphism groups play an extremely important role in differential topology,
differential geometry, and general relativity. On the other hand classical Lie the-
ory carries over to them only in rare pieces: There are (even Banach) Lie algebras
without Lie groups, see [3] and [7], and the exponential mapping in general is
not surjective onto any neighborhood of the identity. The most surprising result
in this direction is [5], where it is shown that in the diffeomorphism group of any
manifold of dimension at least 2 one can find a smooth curve of diffeomorphisms
starting at the identity such that the points of this curve form a set of generators
for a free subgroup of the diffeomorphism group which meets the image of the
exponential mapping only in the identity.

In view of these difficulties the theory of infinite dimensional Lie groups
and Lie algebras can be pushed surprisingly far: Exponential mappings are
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unique if they exist, and then one can give a formula for their derivatives, see [6]
and 5.9 below.

In [14] and [15] the notion of a ‘regular Fréchet Lie group’ was intro-
duced in an attempt to find conditions which ensure the existence of exponential
mappings: certain product integrals were required to converge. Their main re-
sult was that the invertible Fourier integral operators form a regular Fréchet Lie
group with the space of pseudo differential operators as Lie algebra, see [19],
and also [1] for a more general group of Fourier integral operators, but without
regularity. In [13] Milnor weakened this to the assumption that smooth curves
in the Lie algebra integrate to smooth curves in the group in a smooth way (an
‘evolution operator’ exists), and it is this notion which we take up in this paper,
except that we introduce it for general Lie groups modelled on locally convex
spaces, where we use the convenient calculus from [4]. Up to now nobody has
found a non-regular Lie group.

We show in this paper that for regular Lie groups one can push surpris-
ingly far the geometry of principal bundles: parallel transport exists and flat
connections integrate to horizontal foliations as in finite dimensions. As con-
sequences we obtain that Lie algebra homomorphisms intergrate to Lie group
homomorphisms, if the source group is simply connected and the image group is
regular.

The actual development is quite involved. We start with general infinite
dimensional Lie groups in Section 3. For a detailed study of the evolution
operator of regular Lie groups (cf. 5.3) we need in 5.9 the Maurer-Cartan equation
for right (or left) logarithmic derivatives (cf. 5.1) of mappings with values in the
Lie group, and this we can get only by looking at principal connections. Thus
Section 4 treats principal bundles, connections, and curvature as far as we shall
need them. In Section 5 we then prove the above mentioned strong existence
results and discuss regular Lie groups. Principal bundles with regular structure
groups are treated in Section 6. The last section develops rudiments of Lie theory
for regular Lie groups as sketched above.

These results were obtained in a systematic study of properties of regular
Lie groups for the book in preparation [11], where also many of the known Lie
groups are treated and shown to be regular.

2. Calculus of smooth mappings

The traditional differential calculus works well for finite dimensional vector spaces
and for Banach spaces. For more general locally convex spaces a whole flock of
different theories were developped, most of them rather complicated and not
really convincing. The main difficulty is that the composition of linear mappings
stops to be jointly continuous at the level of Banach spaces, for any compatible
topology. We shall use in this paper the calculus in infinite dimensions as
developed in [4].

2.1. Convenient vector spaces. Let E be a locally convex vector space. A
curve c : R→ E is called smooth or C∞ if all derivatives exist and are continuous
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— this is a concept without problems. Let C∞(R, E) be the space of smooth
functions. It can be shown that C∞(R, E) does not depend on the locally convex
topology of E , but only on its associated bornology (system of bounded sets).

E is said to be a convenient vector space if one of the following equivalent
conditions is satisfied (called c∞ -completeness):

(i) For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0
c(t)dt exists in E .

(ii) A curve c : R→ E is smooth if and only if λ◦c is smooth for all λ ∈ E ′ ,
where E′ is the dual consisting of all continuous linear functionals on
E .

(iii) Any Mackey-Cauchy-sequence (i.e., tnm(xn − xm)→ 0 for some tnm →
∞ in R) converges in E . This is visibly a weak completeness require-
ment.

The final topology with respect to all smooth curves is called the c∞ -
topology on E , which then is denoted by c∞E . For Fréchet spaces it coincides
with the given locally convex topology, but on the space D of test functions with
compact support on R it is strictly finer.

2.2. Smooth mappings. Let E and F be locally convex vector spaces, and
let U ⊂ E be c∞ -open. A mapping f : U → F is called smooth or C∞ , if
f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, U).

2.3. Results. The main properties of smooth calculus are the following.

(i) For mappings on Fréchet spaces this notion of smoothness coincides with
all other reasonable definitions. Even on R2 this is non-trivial, see [2].

(ii) Multilinear mappings are smooth if and only if they are bounded.

(iii) If f : E ⊇ U → F is smooth then the derivative df : U × E → F is
smooth, and also df : U → L(E,F ) is smooth where L(E,F ) denotes
the space of all bounded linear mappings with the topology of uniform
convergence on bounded subsets.

(iv) The chain rule holds.

(v) The space C∞(U, F ) is again a convenient vector space where the struc-
ture is given by the obvious injection

C∞(U, F )→
∏

c∈C∞(R,U)

C∞(R, F )→
∏

c∈C∞(R,U)

λ∈F ′

C∞(R,R).

(vi) The exponential law holds:

C∞(U,C∞(V,G)) ∼= C∞(U × V,G)

is a linear diffeomeorphism of convenient vector spaces. Note that this is
the main assumption of variational calculus.

(vii) A linear mapping f : E → C∞(V,G) is smooth (bounded) if and only

if E
f→C∞(V,G)

evv→ G is smooth for each v ∈ V . This is called the
smooth uniform boundedness theorem and it is quite applicable.

2.4 Counterexamples in infinite dimensions against common beliefs
on ordinary differential equations. Let E := s be the Fréchet space of
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rapidly decreasing sequences (Note that by the theory of Fourier series we have
s = C∞(S1,R)) and consider the continuous linear operator T : E → E given
by T (x0, x1, x2, . . .) := (0, 12x1, 2

2x2, 3
2x3, . . .). The ordinary linear differential

equation x′(t) = T (x(t)) with constant coefficients has no solution in s for
certain initial values. By recursion one sees that the general solution should be
given by

xn(t) =
n∑

i=0

(
n!
i!

)2
xi(0) tn−i

(n−i)!

If the initial value is a finite sequence, say xn(0) = 0 for n > N and xN (0) 6= 0,
then

xn(t) =

N∑

i=0

(
n!
i!

)2
xi(0) tn−i

(n−i)!

= (n!)2

(n−N)! t
n−N∑N

i=0

(
1
i!

)2
xi(0) (n−N)!

(n−i)! t
N−i;

|xn(t)| ≥ (n!)2

(n−N)! |t|n−N
(
|xN (0)|

(
1
N !

)2 −∑N−1
i=0

(
1
i!

)2 |xi(0)| (n−N)!
(n−i)! |t|N−i

)

≥ (n!)2

(n−N)!
|t|n−N

(
|xN (0)|

(
1
N !

)2 −∑N−1
i=0

(
1
i!

)2 |xi(0)||t|N−i
)

where the first factor does not lie in the space s of rapidly decreasing sequences
and where the second factor is larger than ε > 0 for t small enough. So at least
for a dense set of initial values this differential equation has no local solution.

This shows also, that the theorem of Frobenius is wrong, in the following
sense: The vector field x 7→ T (x) generates a 1-dimensional subbundle E of the
tangent bundle on the open subset s\0. It is involutive since it is 1-dimensional.
But through points representing finite sequences there exist no local integral
submanifolds (M with TM = E|M ). Namely, if c were a smooth nonconstant
curve with c′(t) = f(t).T (c(t)) for some smooth function f , then x(t) := c(h(t))
would satisfy x′(t) = T (x(t)), where h is a solution of h′(t) = 1/f(h(t)).

As next example consider E := RN and the continuous linear operator
T : E → E given by T (x0, x1, . . .) := (x1, x2, . . .). The corresponding differential
equation has solutions for every initial value x(0), since the coordinates must
satisfy the recusive relations xk+1(t) = x′k(t) and hence any smooth functions

x0 : R → R gives rise to a solution x(t) := (x
(k)
0 (t))k with initial value x(0) =

(x
(k)
0 (0))k . So by Borel’s theorem there exist solutions to this equation for any

initial value and the difference of any two functions with same initial value is
an arbitray infinite flat function. Thus the solutions are far from being unique.
Note that RN is a topological direct summand in C∞(R,R) via the projection
f 7→ (f(n))n , and hence the same situation occurs in C∞(R,R).

Let now E := C∞(R,R) and consider the continuous linear operator
T : E → E given by T (x) := x′ . Let x : R → C∞(R,R) be a solution of the
equation x′(t) = T (x(t)). In terms of x̂ : R2 → R this says ∂

∂t x̂(t, s) = ∂
∂s x̂(t, s).

Hence r 7→ x̂(t−r, s+r) has vanishing derivative everywhere and so this function
is constant, and in particular x(t)(s) = x̂(t, s) = x̂(0, s + t) = x(0)(s + t).
Thus we have a smooth solution x uniquely determined by the initial value
x(0) ∈ C∞(R,R) which even describes a flow for the vector field T in the sense
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of 2.7 below. In general this solution is however not real-analytic, since for any
x(0) ∈ C∞(R,R), which is not real-analytic in a neighborhood of a point s the
composite evs ◦ x = x(s+ ) is not real-analytic around 0.

2.5. Manifolds. In the sequel we shall use smooth manifolds M modelled on
c∞ -open subsets of convenient vector spaces. See [10] for an account of this.
Since we shall need it we also include some results on vector fields and their flows.

2.6. Lemma. Consider vector fields Xi ∈ C∞(TM) and Yi ∈ C∞(TN) for
i = 1, 2 , and a smooth mapping f : M → N . If Xi and Yi are f -related for
i = 1, 2 , i.e., Tf ◦Xi = Yi ◦ f , then also [X1, X2] and [Y1, Y2] are f -related.

Proof. We choose h ∈ C∞(N,R) and we view each vector field as a derivation.
This is possible if we either have smooth partitions of unity or if we pass to sheaves
of smooth functions. The converse is wrong in general, see [10] and [11]. Then
by assumption we have Tf ◦Xi = Yi ◦ f , thus:

(Xi(h ◦ f))(x) = Xi(x)(h ◦ f) = (Txf.Xi(x))(h) =

= (Tf ◦Xi)(x)(h) = (Yi ◦ f)(x)(h) = Yi(f(x))(h) = (Yi(h))(f(x)),

so Xi(h ◦ f) = (Yi(h)) ◦ f , and we may continue:

[X1, X2](h ◦ f) = X1(X2(h ◦ f))−X2(X1(h ◦ f)) =

= X1(Y2(h) ◦ f)−X2(Y1(h) ◦ f) =

= Y1(Y2(h)) ◦ f − Y2(Y1(h)) ◦ f = [Y1, Y2](h) ◦ f.

But this means Tf ◦ [X1, X2] = [Y1, Y2] ◦ f .

In particular if f : M → N is a local diffeomorphism (so (Txf)−1 makes
sense for each x ∈M ), then for Y ∈ C∞(TN) a vector field f∗Y ∈ C∞(TM) is
defined by (f∗Y )(x) = (Txf)−1.Y (f(x)). The linear mapping f∗ : C∞(TN) →
C∞(TM) is then a Lie algebra homomorphism.

2.7. The flow of a vector field. Let X ∈ C∞(TM) be a vector field. A
local flow FlX for X is a smooth mapping FlX : M ×R ⊃ U →M defined on a
c∞ -open neighborhood U of M × 0 such that

(i) d
dtFlXt (x) = X(FlXt (x)).

(ii) FlX0 (x) = x for all x ∈M .

(iii) U ∩ ({x} × R) is a connected open interval.

(iv) FlXt+s = FlXt ◦ FlXs holds in the following sense. If the right hand side
exists then also the left hand side exists and we have equality. Moreover:
If FlXs exists, then the existence of both sides is equivalent and they are
equal.

2.8. Lemma. Let X ∈ C∞(TM) be a vector field which admits a local flow
FlXt . Then each for integral curve c of X we have c(t) = FlXt (c(0)) , thus
there exists a unique maximal flow. Furthermore X is FlXt -related to itself, i.e.,
T (FlXt ) ◦X = X ◦ FlXt .
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Proof. We compute

d
dt

FlX(−t, c(t)) = − d
ds
|s=−tFlX(s, c(t)) + d

ds
|s=tFlX(−t, c(s))

= − d
ds
|s=0FlX−tFlX(s, c(t)) + T (FlX−t).c

′(t)

= −T (FlX−t).X(c(t)) + T (FlX−t).X(c(t)) = 0,

Thus FlX−t(c(t)) = c(0) is constant, so c(t) = FlXt (c(0)). For the second assertion

we have X ◦ FlXt = d
dtFlXt = d

ds |0FlXt+s = d
ds |0(FlXt ◦ FlXs ) = T (FlXt ) ◦ d

ds |0FlXs =

T (FlXt ) ◦X .

2.9. Lemma. Let X ∈ C∞(TM) and Y ∈ C∞(TN) be f -related vector fields
for a smooth mapping f : M → N which have local flows FlX and FlY . Then
we have f ◦ FlXt = FlYt ◦ f , whenever both sides are defined.

Moreover, if f is a diffeomorphism we have Flf
∗Y
t = f−1◦FlYt ◦f in the following

sense: If one side exists then also the other and they are equal.

For f = IdM this again implies that if there exists a flow then there
exists a unique maximal flow FlXt .

Proof. We have Y ◦ f = Tf ◦ X and thus (using 2.7.3 and 2.8) for small t
we get

d
dt (FlYt ◦ f ◦ FlX−t) = Y ◦ FlYt ◦ f ◦ FlX−t − T (FlYt ) ◦ Tf ◦X ◦ FlX−t

= T (FlYt ) ◦ Y ◦ f ◦ FlX−t − T (FlYt ) ◦ Tf ◦X ◦ FlX−t = 0.

So (FlYt ◦ f ◦ FlX−t)(x) = f(x) or f(FlXt (x)) = FlYt (f(x)) for small t . By
the flow properties (2.7.4) we get the result by a connectedness argument as
follows: In the common interval of definition we consider the closed subset
Jx := {t : f(FlXt (x)) = FlYt (f(x))} . This set is also open since for t ∈ Jx
and small |s| we have f(FlXt+s(x)) = f(FlXs (FlXt (x))) = FlYs (f(FlXt (x))) =

FlYs (FlYt (f(x))) = FlYt+s(f(x)).

2.10. The Lie derivative. We will meet situations (in 4.2) where we do
not know that the flow of X exists but where we will be able to produce the
following assumption: Suppose that ϕ : R×M ⊃ U →M is a smooth mapping
such that (t, x) 7→ (t, ϕ(t, x) = ϕt(x)) is a diffeomorphism U → V , where U and
V are open neighborhoods of {0}×M in R×M , and such that ϕ0 = IdM and
∂
∂t

∣∣
0
ϕt = X ∈ C∞(TM). Then again d

dt
|0(ϕt)

∗f = d
dt
|0f ◦ϕt = df ◦X = X(f).

Lemma. In this situation we have for Y ∈ C∞(TM) , and for a k -form
ω ∈ Ωk(M) :

d
dt
|0(ϕt)

∗Y = [X,Y ], ∂
∂t
|0(ϕt)

∗ω = LXω
Proof. Let f ∈ C∞(M,R) be a function and consider the mapping α(t, s) :=
Y (ϕ(t, x))(f ◦ ϕs), which is locally defined near 0. It satisfies

α(t, 0) = Y (ϕ(t, x))(f),

α(0, s) = Y (x)(f ◦ ϕs),
∂
∂t
α(0, 0) = ∂

∂t

∣∣
0
Y (ϕ(t, x))(f) = ∂

∂t

∣∣
0

(Y f)(ϕ(t, x)) = X(x)(Y f),

∂
∂sα(0, 0) = ∂

∂s |0Y (x)(f ◦ ϕs) = Y (x) ∂∂s |0(f ◦ ϕs) = Y (x)(Xf).
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So ∂
∂u |0α(u,−u) = [X,Y ]x(f). But on the other hand we have

∂
∂u |0α(u,−u) = ∂

∂u |0Y (ϕ(u, x))(f ◦ ϕ−u) =

= ∂
∂u
|0 (T (ϕ−u) ◦ Y ◦ ϕu)x (f)

= ( ddt |0(ϕt)
∗Y )x(f).

We may identify k -forms on M with C∞(M,R)-multilinear mappings on vector
fields (if smooth partitions of unity exist or if we pass to sheaves of vector fields).
The converse is wrong in general, see [11]. For (local) vector fields Yi ∈ C∞(TM)
we have

( ∂
∂t
|0(ϕt)

∗ω)(Y1, . . . , Yk) = ∂
∂t
|0(ω((ϕ−t)∗Y1, . . . , (ϕ−t)∗Yk) ◦ ϕt)

=
k∑

j=1

ω(Y1, . . . ,
∂
∂t |0(ϕ−t)∗Yj , . . . , Yk) + ∂

∂t |0(ϕt)
∗(ω(Y1, . . . , Yp)

= X(ω(Y1, . . . , Yk))−
k∑

i=1

ω(Y1, . . . , [X,Yi], . . . , Yk)

= LXω(Y1, . . . , Yk).

This is the usual formula for the Lie derivative.

3. Lie groups

3.1. Definition. A Lie group G is a smooth manifold modelled on c∞ -open
subsets of a convenient vector space, and a group such that the multiplication
µ : G × G → G and the inversion ν : G → G are smooth. We shall use the
following notation:
µ : G×G→ G , multiplication, µ(x, y) = x.y .
µa : G→ G , left translation, µa(x) = a.x .
µa : G→ G , right translation, µa(x) = x.a .
ν : G→ G , inversion, ν(x) = x−1 .
e ∈ G , the unit element.

3.2. Lemma. The tangent mapping T(a,b)µ : TaG× TbG→ TabG is given by

T(a,b)µ.(Xa, Yb) = Ta(µb).Xa + Tb(µa).Yb.

and Taν : TaG→ Ta−1G is given by

Taν = −Te(µa
−1

).Ta(µa−1) = −Te(µa−1).Ta(µ
a−1

).

Proof. Let insa : G→ G×G , insa(x) = (a, x) be the right insertion and let
insb : G→ G×G , insb(x) = (x, b) be the left insertion. Then we have

T(a,b)µ.(Xa, Yb) = T(a,b)µ.(Ta(insb).Xa + Tb(insa).Yb) =

= Ta(µ ◦ insb).Xa + Tb(µ ◦ insa).Yb = Ta(µb).Xa + Tb(µa).Yb.
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Now we differentiate the equation µ(a, ν(a)) = e ; this gives in turn

0e = T(a,a−1)µ.(Xa, Taν.Xa) = Ta(µa
−1

).Xa + Ta−1(µa).Taν.Xa,

Taν.Xa = −Te(µa)−1.Ta(µa
−1

).Xa = −Te(µa−1).Ta(µa
−1

).Xa

and the proof is complete.

3.3. Invariant vector fields and Lie algebras. Let G be a (real) Lie group.
A vector field ξ on G is called left invariant, if µ∗aξ = ξ for all a ∈ G , where
µ∗aξ = T (µa−1) ◦ ξ ◦ µa . Since we have µ∗a[ξ, η] = [µ∗aξ, µ

∗
aη] , the space XL(G) of

all left invariant vector fields on G is closed under the Lie bracket, so it is a sub
Lie algebra of X(G). Any left invariant vector field ξ is uniquely determined
by ξ(e) ∈ TeG , since ξ(a) = Te(µa).ξ(e). Thus the Lie algebra XL(G) of left
invariant vector fields is linearly isomorphic to TeG , and on TeG the Lie bracket
on XL(G) induces a Lie algebra structure, whose bracket is again denoted by
[ , ] . This Lie algebra will be denoted as usual by g , sometimes by Lie(G).

We will also give a name to the isomorphism with the space of left
invariant vector fields: L : g → XL(G), X 7→ LX , where LX(a) = Teµa.X .
Thus [X,Y ] = [LX , LY ](e).

Similarly a vector field η on G is called right invariant, if (µa)∗η = η
for all a ∈ G . If ξ is left invariant, then ν∗ξ is right invariant. The right
invariant vector fields form a sub Lie algebra XR(G) of X(G), which is again
linearly isomorphic to TeG and induces the negative of the Lie algebra structure
on TeG . We will denote by R : g = TeG → XR(G) the isomorphism discussed,
which is given by RX(a) = Te(µ

a).X .

3.4. Lemma. If LX is a left invariant vector field and RY is a right invariant
one, then [LX , RY ] = 0 . So if the flows of LX and RY exist, they commute.

Proof. We consider the vector field 0 × LX ∈ X(G × G), given by (0 ×
LX)(a, b) = (0a, LX(b)). Then T(a,b)µ.(0a, LX(b)) = Taµ

b.0a + Tbµa.LX(b) =
LX(ab), so 0 × LX is µ -related to LX . Likewise RY × 0 is µ -related to RY .
But then 0 = [0 × LX , RY × 0] is µ -related to [LX , RY ] by 2.6. Since µ is
surjective, [LX , RY ] = 0 follows.

3.5. Lemma. Let ϕ : G→ H be a smooth homomorphism of Lie groups. Then
ϕ′ := Teϕ : g = TeG→ h = TeH is a Lie algebra homomorphism.

Proof. For X ∈ g and x ∈ G we have

Txϕ.LX(x) = Txϕ.Teµx.X = Te(ϕ ◦ µx).X

= Te(µϕ(x) ◦ ϕ).X = Te(µϕ(x)).Teϕ.X = Lϕ′(X)(ϕ(x)).

So LX is ϕ -related to Lϕ′(X) . By 2.6 the field [LX , LY ] = L[X,Y ] is ϕ -related
to [Lϕ′(X), Lϕ′(Y )] = L[ϕ′(X),ϕ′(Y )] . So we have Tϕ ◦ L[X,Y ] = L[ϕ′(X),ϕ′(Y )] ◦ ϕ .
If we evaluate this at e the result follows.
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3.6. One parameter subgroups. Let G be a Lie group with Lie algebra g .
A one parameter subgroup of G is a Lie group homomorphism α : (R,+)→ G ,
i.e. a smooth curve α in G with α(s+ t) = α(s).α(t), and hence α(0) = e .

Note that a smooth mapping β : (−ε, ε) → G satisfying β(t)β(s) =
β(t + s) for |t| , |s| , |t + s| < ε is the restriction of a one parameter subgroup.
Namely, choose 0 < t0 < ε/2. Any t ∈ R can be uniquely written as t = N.t0+t′

for 0 ≤ t′ < t0 and N ∈ Z . Put α(t) = β(t0)Nβ(t′). The required properties
are easy to check.

Lemma. Let α : R → G be a smooth curve with α(0) = e . Let X ∈ g . Then
the following assertions are equivalent.

(i) α is a one parameter subgroup with X = ∂
∂t

∣∣
0
α(t) .

(ii) α(t) is an integral curve of the left invariant vector field LX , and also
an integral curve of the right invariant vector field RX .

(iii) FlLX (t, x) := x.α(t) (or FlLXt = µα(t) ) is the (unique by 2.9) global flow
of LX in the sense of 2.7.

(iv) FlRX (t, x) := α(t).x (or FlRXt = µα(t) ) is the (unique) global flow of
RX .

Moreover each of these properties determines α uniquely.

Proof. (i) =⇒ (iii). We have d
dt
x.α(t) = d

ds
|0x.α(t+ s) = d

ds
|0x.α(t).α(s) =

d
ds
|0µx.α(t)α(s) = Te(µx.α(t)).

d
ds
|0α(s) = LX(x.α(t)). Since it is obviously a flow,

we have (iii).

(iii) ⇐⇒ (iv). We have Flν
∗ξ
t = ν−1 ◦ Flξt ◦ ν by 2.9. Therefore we have

by 3.3

(FlRXt (x−1))−1 = (ν ◦ FlRXt ◦ ν)(x) = Flν
∗RX
t (x)

= Fl−LXt (x) = FlLX−t (x) = x.α(−t).
So FlRXt (x−1) = α(t).x−1 , and FlRXt (y) = α(t).y .

(iii) and (iv) together clearly imply (ii).

(ii) =⇒ (i). This is a consequence of the following result.

Claim. Consider two smooth curves α, β : R→ G with α(0) = e = β(0) which
satify the two differential equations

d
dtα(t) = LX(α(t))
d
dtβ(t) = RX(β(t)).

Then α = β and it is a 1-parameter subgroup.

We have α = β since

d
dt (α(t)β(−t)) = Tµβ(−t).LX(α(t))− Tµα(t).RX(β(−t))

= Tµβ(−t).Tµα(t).X − Tµα(t).Tµ
β(−t).X = 0.

Next we calculate for fixed s

d
dt (β(t− s)β(s)) = Tµβ(s).RX(β(t− s)) = RX(β(t− s)β(s)).

Hence by the first part of the proof β(t− s)β(s) = α(t) = β(t).

The statement about uniqueness follows from 2.9, or from the claim.
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3.7. Definition. Let G be a Lie group with Lie algebra g . We say that G
admits an exponential mapping if there exists a smooth mapping exp : g → G
such that t 7→ exp(tX) is the (unique by 3.6) 1-parameter subgroup with tangent
vector X at 0. Then we have by 3.6

(i) FlLX (t, x) = x. exp(tX).

(ii) FlRX (t, x) = exp(tX).x .

(iii) exp(0) = e and T0 exp = Id : T0g = g → TeG = g since T0 exp .X =
d
dt
|0 exp(0 + t.X) = d

dt
|0FlLX (t, e) = X .

(iv) Let ϕ : G → H be a smooth homomorphism of between Lie groups
admitting exponential mappings. Then the diagram

g �ϕ′

�
expG

h

�
expH

G �ϕ
H

commutes, since t 7→ ϕ(expG(tX)) is a one parameter subgroup of H
and d

dt |0ϕ(expG tX) = ϕ′(X), so ϕ(expG tX) = expH(tϕ′(X)).

3.8. Remarks. In [14], [15] Omori, Maeda and Yoshioka gave conditions
under which a smooth Lie group modelled on Fréchet spaces admits exponential
mappings. We shall elaborate on this notion in 5.3 below. They called this
‘regular Fréchet Lie groups’. We do not know of any smooth Fréchet Lie group
which does not admit an exponential mapping.

If G admits an exponential mapping, it follows from 3.7.(iii) that exp
is a diffeomorphism from a neighborhood of 0 in g onto a neighborhood of
e in G , if a suitable inverse function theorem is applicable. This is true for
example for smooth Banach Lie groups, also for gauge groups, but it is wrong
for diffeomorphism groups, see [5].

If E is a Banach space, then in the Banach Lie group GL(E) of all
bounded linear automorphisms of E the exponential mapping is given by the
von Neumann series exp(X) =

∑∞
i=0

1
i!X

i .

If G is connected with exponential mapping and U ⊂ g is open with
0 ∈ U , then one may ask whether the group generated by exp(U) equals G .
Note that this is a normal subgroup. So if G is simple, the answer is yes. This
is true for connected components of diffeomorphism groups and many of their
important subgroups.

Results on weakened versions of the Baker-Campbell-Hausdorff formula
can be found in [18].

3.9. The adjoint representation. Let G be a Lie group with Lie algebra
g . For a ∈ G we define conja : G → G by conja(x) = axa−1 . It is called the
conjugation or the inner automorphism by a ∈ G . This defines a smooth action
of G on itself by automorphisms.

The adjoint representation Ad : G → GL(g) ⊂ L(g, g) is given by
Ad(a) = (conja)′ = Te(conja) : g → g for a ∈ G . By 3.5 Ad(a) is a Lie

algebra homomorphism. By 3.2 we have Ad(a) = Te(conja) = Ta(µa
−1

).Te(µa) =

Ta−1(µa).Te(µ
a−1

).
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Finally we define the (lower case) adjoint representation of the Lie algebra
g , ad : g→ gl(g) := L(g, g), by ad := Ad′ = TeAd.

We shall also use the right Maurer-Cartan form κr ∈ Ω1(G, g), given by

κrg = Tg(µ
g−1

) : TgG → g ; similarly the left Maurer-Cartan form κl ∈ Ω1(G, g)

is given by κlg = Tg(µg−1) : TgG→ g .

Lemma.

(i) LX(a) = RAd(a)X(a) for X ∈ g and a ∈ G .

(ii) ad(X)Y = [X,Y ] for X,Y ∈ g .

(iii) dAd = (ad ◦ κr).Ad = Ad.(ad ◦ κl) : TG→ L(g, g) .

Proof. (i) LX(a) = Te(µa).X = Te(µ
a).Te(µ

a−1 ◦ µa).X = RAd(a)X (a).

(ii) We need some preparations. Let V be a convenient vector space. For
f ∈ C∞(G, V ) we define the left trivialized derivative Dlf ∈ C∞(G,L(g, V )) by

(1) Dlf(x).X := df(x).Tµx.X = (LXf)(x).

For f ∈ C∞(G,R) and g ∈ C∞(G, V ) we have

Dl(f.g)(x).X = d(f.g)(Teµx.X)(2)

= df(Teµx.X).g(x) + f(x).dg(Teµx.X)

= (f.Dlg +Dlf ⊗ g)(x).X.

From the fomula

DlDlf(x)(X)(Y ) = Dl(Dlf( ).Y )(x).X

= Dl(LY f)(x).X = LXLY f(x).

follows

(3) DlDlf(x)(X)(Y )−DlDlf(x)(Y )(X) = L[X,Y ]f(x) = Dlf(x).[X,Y ].

We consider now the linear isomorphism L : C∞(G, g)→ X(G) given by Lf (x) =
Teµx.f(x) for f ∈ C∞(G, g). If h ∈ C∞(G, V ) we get (Lfh)(x) = Dlh(x).f(x).
For f, g ∈ C∞(G, g) and h ∈ C∞(G,R) we get in turn, using (2), generalized to
the bilinear pairing L(g,R)× g→ R ,

(LfLgh)(x) = Dl(Dlh( ).g( ))(x).f(x)

= DlDlh(x)(f(x))(g(x)) +Dlh(x).Dlg(x).f(x)

([Lf , Lg]h)(x) = D2
l h(x).(f(x), g(x)) +Dlh(x).Dlg(x).f(x)−
−D2

l h(x).(g(x), f(x))−Dlh(x).Dlf(x).g(x)

= Dlh(x).
(

[f(x), g(x)]g +Dlg(x).f(x)−Dlf(x).g(x)
)

[Lf , Lg] = L
(

[f, g]g +Dlg.f −Dlf.g
)

(4)

Now we are able to prove the second assertion of the lemma. For X,Y ∈ g we
will apply (4) to f(x) = X and g(x) = Ad(x−1).Y . We have Lg = RY by (i),
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and [Lf , Lg] = [LX , RY ] = 0 by 3.4. So

0 = [LX , RY ](x) = [Lf , Lg](x)

= L([X, (Ad ◦ ν)Y ]g +Dl((Ad ◦ ν)( ).X).Y − 0)(x)

[X,Y ] = [X,Ad(e)Y ] = −Dl((Ad ◦ ν)( ).X)(e).Y

= d(Ad( ).X)(e).Y = ad(X)Y.

(iii) Let X,Y ∈ g and g ∈ G and let c : R→ G be a smooth curve with
c(0) = e and c′(0) = X . Then we have

(dAd(RX(g))).Y = ∂
∂t
|0Ad(c(t).g).Y = ∂

∂t
|0Ad(c(t)).Ad(g).Y

= ad(X)Ad(g)Y = (ad ◦ κr)(RX(g)).Ad(g).Y,

and similarly for the second formula.

3.10. Let r : M × G → M be a right action, so ř : G → Diff(M) is a group
anti homomorphism. We will use the following notation: ra : M → M and
rx : G→M , given by rx(a) = ra(x) = r(x, a) = x.a .

For any X ∈ g we define the fundamental vector field ζX = ζMX ∈ X(M)
by ζX(x) = Te(rx).X = T(x,e)r.(0x, X).

Lemma. In this situation the following assertions hold:

(i) ζ : g→ X(M) is a Lie algebra homomorphism.

(ii) Tx(ra).ζX(x) = ζAd(a−1)X(x.a) .

(iii) 0M × LX ∈ X(M ×G) is r -related to ζX ∈ X(M) .

4. Bundles and connections

4.1. Definition. A principal (fiber) bundle (P, p,M,G) is a smooth mapping
p : P →M such that there exist an open cover (Uα) of M and fiber respecting
diffeomorphisms ϕα : P |Uα := p−1(Uα) → Uα × G with (ϕα ◦ ϕ−1

β )(x, g) =
(x, ϕαβ(x).g) for a smooth cocycle of transition functions (ϕαβ : Uαβ := Uα ∩
Uβ → G). This is called a principal bundle atlas.

Each principal bundle admits a unique right action r : P×G→ P , called
the principal right action, given by ϕα(r(ϕ−1

α (x, a), g)) = (x, ag). Since left and
right translation on G commute, this is well defined. We write r(u, g) = u.g
when the meaning is clear. The principal right action is visibly free and for any
ux ∈ Px the partial mapping rux = r(ux, ) : G→ Px is a diffeomorphism onto
the fiber through ux , whose inverse is denoted by τux : Px → G . These inverses
together give a smooth mapping τ : P ×M P → G , whose local expression
is τ(ϕ−1

α (x, a), ϕ−1
α (x, b)) = a−1.b . This mapping is uniquely determined by

the implicit equation r(ux, τ(ux, vx)) = vx , thus we also have τ(ux.g, u
′
x.g
′) =

g−1.τ(ux, u
′
x).g′ and τ(ux, ux) = e .

4.2. Principal connections. Let (P, p,M,G) be a principal fiber bundle. Let
V P := (Tp)−1(0M ) → P be the vertical bundle. A (general) connection on P
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is a smooth fiber projection Φ : TP → V P , viewed as a 1-form in Ω1(P ;V P ) ⊂
Ω1(P ;TP ), which is called a principal connection if it is G -equivariant for the
principal right action r : P ×G → P , so that T (rg).Φ = Φ.T (rg) and Φ is rg -
related to itself, or (rg)∗Φ = Φ, for all g ∈ G . Then the kernel of Φ is called the
horizontal subbundle, a splitting vector subbundle of TP → P complementary
to V P .

The vertical bundle of P is trivialized as a vector bundle over P by the
principal action. So ω(Xu) := Te(ru)−1.Φ(Xu) ∈ g is well defined, and in this
way we get a g -valued 1-form ω ∈ Ω1(P ; g), which is called the (Lie algebra
valued) connection form of the connection Φ. Recall from 3.10. the fundamental
vector field mapping ζ : g→ X(P ) for the principal right action, which trivializes
the vertical bundle P × g ∼= V P . The defining equation for ω can be written
also as Φ(Xu) = ζω(Xu)(u).

Lemma. If Φ ∈ Ω1(P ;V P ) is a principal connection on the principal fiber
bundle (P, p,M,G) then the connection form has the following two properties:

(i) ω reproduces the generators of fundamental vector fields, so that we have
ω(ζX(u)) = X for all X ∈ g .

(ii) ω is G-equivariant, i.e., for all g ∈ G and Xu ∈ TuP we have
((rg)∗ω)(Xu) := ω(Tu(rg).Xu) = Ad(g−1).ω(Xu) .

(iii) For the Lie derivative we have LζXω = −ad(X).ω .

Conversely, a 1-form ω ∈ Ω1(P, g) satisfying (i) defines a connection Φ
on P by Φ(Xu) = Te(ru).ω(Xu) , which is a principal connection if and only if
(ii) is satisfied.

Proof. (i) Te(ru).ω(ζX(u)) = Φ(ζX(u)) = ζX(u) = Te(ru).X . Since Te(ru) :
g→ VuP is an isomorphism, the result follows.

(ii) Both directions follow from

Te(rug).ω(Tu(rg).Xu) = ζω(Tu(rg).Xu)(ug) = Φ(Tu(rg).Xu)

Te(rug).Ad(g−1).ω(Xu) = ζAd(g−1).ω(Xu)(ug) = Tu(rg).ζω(Xu)(u)

= Tu(rg).Φ(Xu).

(iii) Let g(t) be a smooth curve in G with g(0) = e and ∂
∂t |0g(t) = X . Then

ϕt := rg(t) is a smooth curve of diffeomorphisms on P with ∂
∂t
|0ϕt = ζX , and

by Lemma 2.10 we have

LζXω = ∂
∂t
|0(rg(t))∗ω = ∂

∂t
|0Ad(g(t)−1)ω = −ad(X)ω.

4.3. Curvature. Let Φ be a principal connection on the principal fiber bundle
(P, p,M,G) with connection form ω ∈ Ω1(P ; g).

Let us now define the curvature as the obstruction against integrability
of the horizontal subbundle, i.e., R(X,Y ) := Φ[X−ΦX,Y −ΦY ] for vector fields
X,Y on P . One can check easily that R is a skew-symmetric bilinear C∞(P,R)-

module homomorphism, and that (rg
−1

)∗.R(X,Y ) = R((rg)∗X, (rg)∗Y ) holds,
i.e., (rg)∗R = R for all g ∈ G . Since R has vertical values we may again
define a g -valued 2-form by Ω(X,Y )(u) := −Te(ru)−1.R(X,Y )(u), which is
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called the (Lie algebra-valued) curvature form of the connection. We also have
R(X,Y )(u) = −ζΩ(X,Y )(u)(u). We take the negative sign here to get in finite
dimensions the usual curvature form as in [8].

We equip the space Ω(P ; g) of all g -valued forms on P in a canonical
way with the structure of a graded Lie algebra by

[Ψ,Θ]∧(X1, . . . , Xp+q) =

= 1
p! q!

∑
σ signσ [Ψ(Xσ1, . . . , Xσp),Θ(Xσ(p+1), . . . , Xσ(p+q))]g

or equivalently by [ψ⊗X, θ⊗Y ]∧ := ψ∧θ⊗ [X,Y ]g . From the latter description
it is clear that d[Ψ,Θ]∧ = [dΨ,Θ]∧ + (−1)deg Ψ[Ψ, dΘ]∧ . In particular for
ω ∈ Ω1(P ; g) we have [ω, ω]∧(X,Y ) = 2[ω(X), ω(Y )]g .

Theorem. The curvature form Ω of a principal connection with connection
form ω has the following properties:

(i) Ω is horizontal, i.e. it kills vertical vector fields.

(ii) The Maurer-Cartan formula holds: Ω = dω + 1
2 [ω, ω]∧ ∈ Ω2(P ; g) .

(iii) Ω is G-equivariant in the following sense: (rg)∗Ω = Ad(g−1).Ω . Con-
sequently LζXΩ = −ad(X).Ω .

Proof. (i) is true for R by definition. For (ii) we show that the formula holds
if at least one vector field is vertical, or if both are horizontal. For X ∈ g we
have iζXR = 0 by (i), and using 4.2.(i) and (iii) we get

iζX (dω + 1
2
[ω, ω]∧) = iζXdω + 1

2
[iζXω, ω]∧ − 1

2
[ω, iζXω]∧ =

= LζXω + [X,ω]∧ = −ad(X)ω + ad(X)ω = 0.

So the formula holds for vertical vectors, and for horizontal vector fields X,Y
we have

R(X,Y ) = Φ[X − ΦX,Y − ΦY ] = Φ[X,Y ] = ζω([X,Y ])

(dω + 1
2
[ω, ω])(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]) + 0 = −ω([X,Y ]).

That Ω is really a ‘tensorial’ 2-form follows either from (ii) or from 4.4.(iv)
below.

4.4. Local descriptions of principal connections. We consider a prin-
cipal fiber bundle (P, p,M,G) together with some principal fiber bundle atlas
(Uα, ϕα : P |Uα → Uα × G) and corresponding cocycle (ϕαβ : Uαβ → G) of
transition functions. Let Φ = ζ ◦ ω ∈ Ω1(P ;V P ) be a principal connection with
connection form ω ∈ Ω1(P ; g). We consider the sections sα ∈ C∞(P |Uα) which
are given by ϕα(sα(x)) = (x, e) and satisfy sα.ϕαβ = sβ . Then we may associate
to the connection the collection of the ωα := sα

∗ω ∈ Ω1(Uα; g), the physicists
version of the connection.

Lemma. These local data have the following properties and are related by the
following formulas.

(i) The forms ωα ∈ Ω1(Uα; g) satisfy the transition formulas

ωα = Ad(ϕ−1
βα)ωβ + (ϕβα)κl,
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where κl ∈ Ω1(G; g) is the left Maurer-Cartan form from 3.9 .

(ii) The local expression of ω is given by

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

(iii) The local expression of Φ is given by

((ϕα)−1)∗Φ(ξx, ηg) = Te(µ
g).ωα(ξx) + ηg = Rωα(ξx)(g) + ηg

for ξx ∈ TxUα and ηg ∈ TgG .

(iv) The local expression of the curvature R is given by

((ϕα)−1)∗R = −R
dωα+

1
2 [ωα,ωα]∧g

so that R and Ω are indeed ‘tensorial’ 2-forms.

Proof. For (i) to (iii) plug in the definitions. For (iv) note that the right
trivialization or framing (κr, πG) : TG → g × G induces the isomorphism
R : C∞(G, g) → X(G), given by RX(x) = Te(µ

x).X(x). For the Lie bracket
we then have

[RX , RY ] = R−[X,Y ]g+dY.RX−dX.RY ,

R−1[RX , RY ] = −[X,Y ]g +RX(Y )− RY (X).

We write a vector field on Uα × G as (ξ, RX) where ξ : G → X(Uα) and
X ∈ C∞(Uα ×G, g). Then the local expression of the curvature is given by

(ϕα
−1)∗R((ξ, RX), (η,RY )) = (ϕ−1

α )∗(R((ϕα)∗(ξ, RX), (ϕα)∗(η,RY )))

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ, RX)− Φ(ϕα)∗(ξ, RX), . . .])

= (ϕ−1
α )∗(Φ[(ϕα)∗(ξ, RX)− (ϕα)∗(Rωα(ξ) + RX), . . .])

= (ϕ−1
α )∗(Φ(ϕα)∗[(ξ,−Rωα(ξ)), (η,−Rωα(η))])

= ((ϕ−1
α )∗Φ)([ξ, η]X(Uα) − Rωα(ξ)(η) + Rωα(η)(ξ),

− ξ(Rωα(η)) + η(Rωα(ξ)) +R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η)))

= Rωα([ξ,η]X(Uα)−Rωα(ξ)(η)+Rωα(η)(ξ)) − Rξ(ωα(η)) +Rη(ωα(ξ))

+ R−[ωα(ξ),ωα(η)]+Rωα(ξ)(ωα(η))−Rωα(ξ)(ωα(η))

= −R
(dωα+

1
2

[ωα,ωα]∧g )(ξ,η)
.

This finishes the proof of (iv).

5. Regular Lie groups

5.1. The right and left logarithmic derivatives. Let M be a manifold and
let f : M → G be a smooth mapping into a Lie group G with Lie algebra g .
We define the mapping δrf : TM → g by the formula

δrf(ξx) := Tf(x)(µ
f(x)−1

).Txf.ξx for ξx ∈ TxM.
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Then δrf is a g -valued 1-form on M , δrf ∈ Ω1(M ; g). We call δrf the right

logarithmic derivative of f , since for f : R→ (R+, ·) we have δrf(x).1 = f ′(x)
f(x)

=

(log ◦f)′(x).

Similarly the left logarithmic derivative δlf ∈ Ω1(M, g) of a smooth
mapping f : M → G is given by

δlf.ξx = Tf(x)(µf(x)−1).Txf.ξx.

Lemma. Let f, g : M → G be smooth. Then the Leibniz rule holds:

δr(f.g)(x) = δrf(x) + Ad(f(x)).δrg(x).

Moreover, the differential form δrf ∈ Ω1(M ; g) satisfies the ‘left Maurer-Cartan
equation’ ( left because it stems from the left action of G on itself)

dδrf(ξ, η)− [δrf(ξ), δrf(η)]g = 0,

or dδrf − 1
2
[δrf, δrf ]g∧ = 0,

where ξ, η ∈ TxM , and where for ϕ ∈ Ωp(M ; g), ψ ∈ Ωq(M ; g) one puts

[ϕ, ψ]g∧(ξ1, . . . , ξp+q) := 1
p!q!

∑
σ sign(σ)[ϕ(ξσ1, . . .), ψσ(p+1), . . .)]

g.

For the left logarithmic derivative the corresponding Leibniz rule is uglier, and it
satisfies the ‘right Maurer Cartan equation’:

δl(fg)(x) = δlg(x) + Ad(g(x)−1)δlf(x),

dδlf + 1
2
[δlf, δlf ]g∧ = 0.

For ‘regular Lie groups’ we will prove a converse to this statement later
in 7.2.

Proof. We treat only the right logarithmic derivative, the proof for the left
one is similar.

δr(f.g)(x) = T (µg(x)−1.f(x)−1

).Tx(f.g)

= T (µf(x)−1

).T (µg(x)−1

).T(f(x),g(x))µ.(Txf, Txg)

= T (µf(x)−1

).T (µg(x)−1

).
(
T (µg(x)).Txf + T (µf(x)).Txg

)

= δrf(x) + Ad(f(x)).δrg(x),

We shall use now principal bundle geometry from Section 3. We consider
the trivial principal bundle pr1 : M × G → M with right principal action.
Then the submanifolds {(x, f(x).g) : x ∈ M} for g ∈ G form a foliation of
M × G whose tangent distribution is complementary to the vertical bundle
M × TG ⊆ T (M × G) and is invariant under the principal right G -action.
So it is the horizontal distribution of a principal connection on M ×G→ G . For
a tangent vector (ξx, Yg) ∈ TxM × TgG the horizontal part is the right translate
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to the foot point (x, g) of (ξx, Txf.ξx), so the decomposition in horizontal and
vertical parts according to this distribution is

(ξx, Yg) = (ξx, T (µg).T (µf(x)−1

).Txf.ξx) + (0x, Yg − T (µg).T (µf(x)−1

).Txf.ξx).

Since the fundamental vector fields for the right action on G are the left invariant
vector fields, the corresponding connection form is given by

ωr(ξx, Yg) = T (µg−1).(Yg − T (µg).T (µf(x)−1

).Txf.ξx),

ωr(x,g) = T (µg−1)− Ad(g−1).δrfx,

ωr = κl − (Ad ◦ ν).δrf,(1)

where κl : TG→ g is the left Maurer-Cartan form on G (the left trivialization),
given by κlg = T (µg−1). Note that κl is the principal connection form for the
(unique) principal connection p : G→ point with right principal action, which is
flat so that the right (from right action) Maurer-Cartan equation equation holds
in the form

(2) dκl + 1
2
[κl, κl]∧ = 0.

The principal connection ωr is flat since we got it via the horizontal
leaves, so the principal connection form vanishes:

0 = dωr + 1
2
[ωr, ωr]∧(3)

= dκl + 1
2
[κl, κl]∧ − d(Ad ◦ ν) ∧ δrf − (Ad ◦ ν).dδrf

− [κl, (Ad ◦ ν).δrf ]∧ + 1
2 [(Ad ◦ ν).δrf, (Ad ◦ ν).δrf ]∧

= −(Ad ◦ ν).(dδrf − 1
2
[δrf, δrf ]∧),

where we used (2), and since for ξ ∈ g and a smooth curve c : R → G with
c(0) = e and c′(0) = ξ we have:

d(Ad ◦ ν)(T (µg)ξ) = ∂
∂t

∣∣
0

Ad(c(t)−1.g−1) = −ad(ξ)Ad(g−1)

= −ad
(
κl(T (µg)ξ)

)
(Ad ◦ ν)(g),

d(Ad ◦ ν) = −(ad ◦ κl).(Ad ◦ ν).(4)

So we have dδrf − 1
2 [δrf, δrf ]∧ , as asserted.

For the left logarithmic derivative δlf the proof is similar, and we discuss
only the essential deviations. First note that on the trivial principal bundle
pr1 : M ×G→M with left principal action of G the fundamental vector fields
are the right invariant vector fields on G , and that for a principal connection
form ωl the curvature form is given by dωl − 1

2 [ωl, ωl]∧ . Look at the proof of
Theorem 4.3 to see this. The connection form is then given by

(1)
′

ωl = κr −Ad.δlf,
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where the right Maurer-Cartan form (κr)g = T (µg
−1

) : TgG → g now satifies
the left Maurer-Cartan equation

(2)
′

dκr − 1
2
[κr, κr]∧ = 0.

Flatness of ωl now leads to the computation

0 = dωl − 1
2
[ωl, ωl]∧(3′)

= dκr − 1
2 [κr, κr]∧ − dAd ∧ δlf − Ad.dδlf

+ [κr,Ad.δlf ]∧ − 1
2
[Ad.δlf,Ad.δlf ]∧

= −Ad.(dδlf + 1
2 [δlf, δlf ]∧),

where we used dAd = (ad ◦ κr)Ad from 3.9.(3) directly.

5.2. Let G be a Lie group with Lie algebra g . For a closed interval I ⊂ R and
for X ∈ C∞(I, g) we consider the ordinary differential equation

(1)

{
g(t0) = e
∂
∂t
g(t) = Te(µ

g(t))X(t) = RX(t)(g(t)), or κr( ∂
∂t
g(t)) = X(t),

for local smooth curves g in G , where t0 ∈ I .

Lemma.

(i) Local solution curves g of the differential equation (1) are uniquely
determined.

(ii) If for fixed X the differential equation (1) has a local solution near each
t0 ∈ I , then it has also a global solution g ∈ C∞(I,G) .

(iii) If for all X ∈ C∞(I, g) the differential equation (1) has a local solution
near one fixed t0 ∈ I , then it has also a global solution g ∈ C∞(I,G) for
each X . Moreover, if the local solutions near t0 depend smoothly on the
vector fields X (see the proof for the exact formulation), then so does
the global solution.

(iv) The curve t 7→ g(t)−1 is the unique local smooth curve h in G which
satifies

{
h(t0) = e
∂
∂th(t) = Te(µh(t))(−X(t)) = L−X(t)(h(t)), or κl( ∂∂th(t)) = −X(t).

Proof. (i) Suppose that g(t) and g1(t) both satisfy (1). Then on the
intersection of their intervals of definition we have

∂
∂t

(g(t)−1 g1(t)) = −T (µg1(t)).T (µg(t)−1).T (µg(t)−1

).T (µg(t)).X(t)

+ T (µg(t)−1).T (µg1(t)).X(t) = 0,

so that g = g1 .

(ii) It suffices to prove the claim for every compact subintervall of I , so
let I be compact. If g is a local solution of (1) then t 7→ g(t).x is a local solution
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of the same differential equation with initial value x . By assumption for each
s ∈ I there is a unique solution gs of the differential equation with gs(s) = e ; so
there exists δs > 0 such that gs(s+ t) is defined for |t| < δs . Since I is compact
there exist s0 < s1 < . . . < sk such that I = [s0, sk] and si+1 − si < δsi . Then
we put

g(t) :=





gs0(t) for s0 ≤ t ≤ s1

gs1(t).gs0(s1) for s1 ≤ t ≤ s2

. . . . . .
gsi(t).gsi−1

(si) . . . gs0(s1) for si ≤ t ≤ si+1

. . . . . .

which is smooth by the first case and solves the problem.

(iii) Given X : I → g we first extend X to a smooth curve R→ g , using
the formula of [17]. For t1 ∈ I , by assumption there exists a local solution g
near t0 of the translated vector field t 7→ X(t1 − t0 + t), thus t 7→ g(t0 − t1 + t)
is a solution near t1 of X . So by assertion (iii) the differential equation has a
global solution for X on I .

Now we assume that the local solutions near t0 depend smoothly in the
vector field: So for any smooth curve X : R→ C∞(I, g) we have:

For each compact intervall K ⊂ R there is a neighborhood UX,K of t0
in I and a smooth mapping g : K × UX,K → G with

{
g(k, t0) = e
∂
∂tg(k, t) = Te(µ

g(k,t)).X(k)(t) for all k ∈ K, t ∈ UX,K .

Given a smooth curve X : R→ C∞(I, g) we extend (or lift) it smoothly
to X : R→ C∞(R, g) by using the formula of [17]. Then the smooth parameter
k from the compact intervall K passes smoothly through the proofs given above
to give a smooth global solution g : K × I → G . So the ‘solving operation’
respects smooth curves and thus is ‘smooth’.

(iv) One can show in a similar way that h is the unique solution of the
equation in (iv) by differentiating h1(t).h(t)−1 . Moreover the curve t 7→ g(t)−1 =
h(t) satisfies the equation of (iv), since

∂
∂t (g(t)−1) = −T (µg(t)−1).T (µg(t)−1

).T (µg(t)).X(t) = T (µg(t)−1).(−X(t)).

5.3. Definition. Regular Lie groups. If for each X ∈ C∞(R, g) there exists
g ∈ C∞(R, G) satisfying

(1)





g(0) = e
∂
∂tg(t) = Te(µ

g(t))X(t) = RX(t)(g(t)),

or κr( ∂∂tg(t)) = δrg(∂t) = X(t).

then we write

evolrG(X) = evolG(X) := g(1),

EvolrG(X)(t) := evolG(s 7→ tX(ts)) = g(t),



80 Kriegl and Michor

and call it the right evolution of the curve X in G . By Lemma 5.2 the solution
of the differential equation (1) is unique, and for global existence it is sufficient
that it has a local solution. Then

EvolrG : C∞(R, g)→ {g ∈ C∞(R, G) : g(0) = e}

is bijective with inverse the right logarithmic derivative δr .

The Lie group G is called a regular Lie group if evolr : C∞(R, g) → G
exists and is smooth.

We also write

evollG(X) = evolG(X) := h(1),

EvollG(X)(t) := evollG(s 7→ tX(ts)) = h(t),

if h is the (unique) solution of

(2)





h(0) = e
∂
∂th(t) = Te(µh(t))(X(t)) = LX(t)(h(t)),

or κl( ∂∂th(t)) = δlh(∂t) = X(t).

Clearly evoll : C∞(R, g) → G exists and is also smooth if evolr does, since we
have evoll(X) = evolr(−X)−1 by Lemma 5.2.

Let us collect some easily seen properties of the evolution mappings. If
f ∈ C∞(R,R), then we have

Evolr(X)(f(t)) = Evolr(f ′.(X ◦ f))(t).Evolr(X)(f(0)),

Evoll(X)(f(t)) = Evoll(X)(f(0)).Evoll(f ′.(X ◦ f))(t).

If ϕ : G → H is a smooth homomorphism between regular Lie groups then the
diagram

C∞(R, g) �ϕ′∗

�
evolG

C∞(R, h)

�
evolH

G �ϕ
H

commutes, since ∂
∂tϕ(g(t)) = Tϕ.T (µg(t)).X(t) = T (µϕ(g(t))).ϕ′.X(t).

Note that each regular Lie group admits an exponential mapping, namely
the restriction of evolr to the constant curves R → g . A Lie group is regular if
and only if its universal covering group is regular.

This notion of regularity is a weakening of the same notion of [14], [15],
who considered a sort of product integration property on a smooth Lie group
modelled on Fréchet spaces. Our notion here is due to [13]. Up to now the
following statement holds:

All known Lie groups are regular.

Any Banach Lie group is regular since we may consider the time dependent right
invariant vector field RX(t) on G and its integral curve g(t) starting at e , which
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exists and depends smoothly on (a further parameter in) X . In particular finite
dimensional Lie groups are regular.

For diffeomorphism groups the evolution operator is just integration of
time dependent vector fields with compact support.

5.4. Some abelian regular Lie groups. For (E,+), where E is a convenient

vector space, we have evol(X) =
∫ 1

0
X(t)dt , so convenient vector spaces are

regular abelian Lie groups. We shall need ‘discrete’ subgroups, which is not an
obvious notion since (E,+) is not a topological group: the addition is continuous
only c∞(E×E)→ c∞E , and not for the cartesian product of the c∞ -topologies.

Next let Z be a ‘discrete’ subgroup of a convenient vector space E in
the sense that there exists a c∞ -open neighborhood U of zero in E such that
U ∩ (z+U) = Ø for all 0 6= z ∈ Z (equivalently (U−U)∩ (Z \0) = Ø). For that
it suffices eġṫhat Z is discrete in the bornological topology on E . Then E/Z is
an abelian but possibly non Hausdorff Lie group. It does not suffice to take Z
discrete in the c∞ -topology: Take as Z the subgroup generated by A in RN×c0
in the proof of [4], 6.2.8.(iv).

Let us assume that Z fulfills the stronger condition: there exists a
symmetric c∞ -open neighborhood W of 0 such that (W+W )∩(z+W+W ) = Ø
for all 0 6= z ∈ Z (equivalently (W +W +W + W ) ∩ (Z \ 0) = Ø). Then E/Z
is Hausdorff and thus an abelian regular Lie group, since its universal cover E is
regular. Namely, for x /∈ Z , we have to find neighborhoods U and V of 0 such
that (Z +U) ∩ (x+ Z + V ) = Ø. There are two cases. If x ∈ Z +W +W then
there is a unique z ∈ Z with x ∈ z + W + W and we may choose U, V ⊂ W
such that (z+U)∩ (x+ V ) = Ø; then (Z +U)∩ (x+Z + V ) = Ø. In the other
case, if x /∈ Z +W +W , then we have (Z +W ) ∩ (x+ Z +W ) = Ø.

Notice that the two conditions above and their consequences also hold
for general (non-abelian) (regular) Lie groups instead of E , and their ‘discrete’
normal subgroups (which turn out to be central if G is connected).

It would be nice if any regular abelian Lie group were of the form E/Z
described above. A first result in this direction is that for an abelian Lie group
G with Lie algebra g which admits a smooth exponential mapping exp : g→ G
one can check easily by using 5.10 that ∂

∂t (exp(−tX). exp(tX + Y )) = 0 so that
exp is a smooth homomorphism of Lie groups.

Let us consider some examples. For the first one we consider a discrete
subgroup Z ⊂ RN . There exists a neighborhood of 0, without loss of the form
U × RN\n for U ⊂ Rn , with U ∩ (Z \ 0) = Ø. Then we consider the following
diagram of Lie group homomorphisms

0 �

�

RN\n �

�

RN\n

�

Z �

�

∼=

RN �

�
π

RN/Z

�

(S1)k × RN\(n−k)

�

π(Z) � Rn � Rn/π(Z) (S1)k × Rn−k
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which has exact lines and columns. For the right hand column we use a diagram
chase to see this. Choose a global linear section of π inverting π|Z . This factors
to a global homomorphism of the right hand side column.

As next example we consider Z(N) ⊂ R(N) . Then obviously R(N)/Z(N) =
(S1)N , which is a smooth (even real analytic, see [10]) manifold modeled on
R(N) . The reader may convince himself that the general Lie group covered by
R(N) is isomorphic to (S1)(A) × R(N\A) for A ⊆ N .

As another example one may check easily that `∞/(ZN ∩ `∞) = (S1)N ,
equipped with the ‘uniform box topology’.

5.5. Extensions of Lie groups. Let H and K be Lie groups. A Lie group G
is called an smooth extension of groups of H with kernel K if we have a short
exact sequence of groups

(1) {e} → K
i→ G

p→ H → {e},
such that i and p are smooth and one of the following two equivalent conditions
is satified:

(ii) p admits a local smooth section s near e (equivalently near any point),
and i is initial (i.e., any f into K is smooth if and only if i ◦ f is
smooth).

(iii) i admits a local smooth retraction r near e (equivalently near any point),
and p is final (i.e., f from H is smooth if and only if f ◦ p is smooth).

Of course by s(p(x))i(r(x)) = x the two conditions are equivalent,
and then G is locally diffeomorphic to K × H via (r, p) with local inverse
(i ◦ pr1).(s ◦ pr2).

Not every smooth exact sequence of Lie groups admits local sections as
required in (ii). Let for example K be a closed linear subspace in a convenient
vector space G which is not a direct summand, and let H be G/K . Then
the tangent mapping at 0 of a local smooth splitting would make K a direct
summand.

Theorem. Let {e} → K
i→ G

p→ H → {e} be a smooth extension of Lie groups.
Then G is regular if and only if both K and H are regular.

Proof. Clearly the induced sequence of Lie algebras is also exact,

0→ k
i′→ g

p′→ h→ 0,

with a bounded linear section Tes of p′ , so g is isomorphic to k×h as convenient
vector space.

Let us suppose that K and H are regular. Given X ∈ C∞(R, g),
we consider Y (t) := p′(X(t)) ∈ h with evolution curve h satisfying ∂

∂th(t) =

T (µh(t)).Y (t) and h(0) = e . By Lemma 5.2 it suffices to find smooth local
solutions g near 0 of ∂

∂tg(t) = T (µg(t)).X(t) with g(0) = e , depending smoothly
on X . We look for solutions of the form g(t) = s(h(t)).i(k(t)), where k is a
local evolution curve in K of a suitable curve t 7→ Z(t) in k , i.e., ∂

∂t
k(t) =

T (µk(t)).Z(t) and k(0) = e . For this ansatz we have

∂
∂t
g(t) = ∂

∂t

(
s(h(t)).i(k(t))

)
= T (µs(h(t))).T i.

∂
∂t
k(t) + T (µi(k(t))).T s. ∂

∂t
h(t)

= T (µs(h(t))).T i.T (µk(t)).Z(t) + T (µi(k(t))).T s.T (µh(t)).Y (t),
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and we want this to be

T (µg(t)).X(t) = T (µs(h(t)).i(k(t))).X(t) = T (µi(k(t))).T (µs(h(t))).X(t).

Using i ◦ µk = µi(k) ◦ i one quickly sees that

i′.Z(t) := Ad
(
s(h(t))−1

)
.
(
X(t)− T (µs(h(t))−1

).T s.T (µh(t)).Y (t)
)
∈ ker p′

solves the problem, so G is regular.

Let now G be regular. If Y ∈ C∞(R, h), then p ◦ EvolrG(s′ ◦ Y ) =
EvolH(Y ), since for g := EvolrG(s′ ◦ Y ) we have

∂
∂tp(g(t)) = Tp. ∂∂tg(t) = Tp.T (µg(t)).Tes.Y (t) = T (µp(g(t))).Y (t).

If U ∈ C∞(R, k), then p◦EvolG(i′◦U) = EvolH(0) = e so that EvolG(i′◦U)(t) ∈
i(K) for all t and thus equals i(EvolK(U)(t)).

5.6. Subgroups of regular Lie groups. Let G and K be Lie groups, let G
be regular and let i : K → G be a smooth homomorphism which is initial (see
5.5) with Tei = i′ : k → g injective. We suspect that K is then regular, but we
are only able to prove this under the following assumption:

There is an open neighborhood U ⊂ G of e and a smooth mapping
p : U → E into a convenient vector space E such that p−1(0) = K ∩U
and p constant on left cosets Kg ∩ U .

Proof. For Z ∈ C∞(R, k) we consider g(t) = EvolG(i′ ◦ Z)(t) ∈ G . Then
we have ∂

∂t
(p(g(t))) = Tp.T (µg(t)).i′(Z(t)) = 0 by the assumption, so p(g(t)) is

constant p(e) = 0, thus g(t) = i(h(t)) for a smooth curve h in H , since i is
initial. Then h = EvolH(Y ) since i is an immersion, and h depends smoothly
on Z since i is initial.

5.7. Abelian and central extensions. From theorem 5.5 it is clear that any
smooth extension G of a regular Lie group H with an abelian regular Lie group
(K,+) is again regular. We shall describe EvolG in terms of EvolG , EvolK , and
in terms of the action of H on K and the cocycle c : H ×H → K if the latter
exists.

Let us first recall these notions. If we have a smooth extension with
abelian normal subgroup K ,

{e} → K
i→ G

p→ H → {e}

then a unique smooth action α : H × K → K by automorphisms is given by
i(αh(k)) = s(h)i(k)s(h)−1 , where s is any smooth local section of p defined near
h . If moreover p admits a global smooth section s : H → G , which we assume
without loss to satisfy s(e) = e , then we consider the smooth mapping c : H ×
H → K given by ic(h1, h2) := s(h1).s(h2).s(h1.h2)−1 . Via the diffeomorphism
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K ×H → G given by (k, h) 7→ i(k).s(h) the identity corresponds to (0, e), the
multiplication and the inverse in G look as follows:

(1)

{
(k1, h1).(k2, h2) = (k1 + αh1

k2 + c(h1, h2), h1h2),
(k, h)−1 = (−αh−1(k)− c(h−1, h), h−1).

Associativity and (0, e)2 = (0, e) correspond to the fact that c satisfies the
following cocycle condition and normalization

(2)

{
αh1

(c(h2, h3))− c(h1h2, h3) + c(h1, h2h3)− c(h1, h2) = 0
c(e, e) = 0.

These imply that c(e, h) = 0 = c(h, e) and αh(c(h−1, h)) = c(h, h−1). For a
central extension the action is trivial, αh = IdK for all h ∈ H .

If conversely H acts smoothly by automorphisms on an abelian Lie group
K and if c : H × H → K satisfies (2), then (1) describes a smooth Lie group
structure on K × H , which is a smooth extension of H over K with a global
smooth section.

For later purposes let us compute

(0, h1).(0, h2)−1 = (−αh1
(c(h−1

2 , h2)) + c(h1, h
−1
2 ), h1h

−1
2 ),

T(0,h1)(µ
(0,h2)−1

).(0, Yh1
) =

= (−T (αc(h
−1
2 ,h2)).Yh1

+ T (c( , h−1
2 )).Yh1

, T (µh
−1
2 ).Yh1

).

Let us now assume that K and H are moreover regular Lie groups. We consider
a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra g which as convenient vector
space equals k× h . From the proof of 5.5 we get that

g(t) : = EvolG(U, Y )(t) = (0, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) : = EvolH(Y )(t) ∈ H,
(Z(t), 0) : = AdG(0, h(t))−1

(
(U(t), Y (t))− Tµ(0,h(t))−1

.(0, ∂∂th(t))
)

Z(t) = T0(αh(t)−1).
(
U(t) +

(
T (αc(h(t)−1,h(t)))− T (c( , h(t)−1))

)
. ∂∂th(t)

)
,

k(t) : = EvolK(Z)(t) ∈ K.

5.8. Semidirect products. From theorem 5.5 we see immediately that the
semidirect product of regular Lie groups is again regular. Since we shall need
explicit formulas later we specialize the proof of 5.5 to this case.

Let H and K be regular Lie groups with Lie algebras h and k , re-
spectively. Let α : H × K → K be smooth such that α̌ : H → Aut(K)
is a group homomorphism. Then the semidirect product K o H is the Lie
group K × H with multiplication (k, h).(k′, h′) = (k.αh(k′), h.h′) and inverse
(k, h)−1 = (αh−1(k)−1, h−1). We have then T(e,e)(µ

(k′,h′)).(U, Y ) = (T (µk
′
).U +

T (αk
′
).Y, T (µh

′
).Y ).
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Now we consider a curve t 7→ X(t) = (U(t), Y (t)) in the Lie algebra
k o h . Since s : h 7→ (e, h) is a smooth homomorphism of Lie groups, from the
proof of 5.5 we get that

g(t) : = EvolKoH(U, Y )(t) = (e, h(t)).(k(t), e) = (αh(t)(k(t)), h(t)), where

h(t) : = EvolH(Y )(t) ∈ H,
(Z(t), 0) : = AdKoH(e, h(t)−1)(U(t), 0) = (Te(αh(t)−1).U(t), 0),

k(t) : = EvolK(Z)(t) ∈ K.

5.9. Corollary. Let G be a Lie group. Then via right trivialization (κr, πG) :
TG→ g×G the tangent group TG is isomorphic to the semidirect product goG ,
where G acts by Ad : G→ Aut(g) .

So if G is a regular Lie group, then TG ∼= g o G is also regular, and
T evolrG corresponds to evolrTG . In particular for (Y,X) ∈ C∞(R, g × g) =
TC∞(R, g) , where X is the footpoint, and we have

evolrgoG(Y,X) =
(

Ad(evolrG(X))

∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds, evolrG(X)
)

TXevolrG.Y = T (µevolr
G

(X)).

∫ 1

0

Ad(EvolrG(X)(s)−1).Y (s) ds,

TX(EvolrG( )(t)).Y = T (µEvolr
G

(X)(t)).

∫ t

0

Ad(EvolrG(X)(s)−1).Y (s) ds.

Note that in the semidirect product representation TG ∼= g o G the
footpoint appears in the right factor G , contrary to the usual convention. We
followed this also in Tg = go g .

Proof. Via right trivialization the tangent group TG is the semidirect product
goG , where G acts on the Lie algebra g by Ad : G→ Aut(g), because by 3.2
we have for g, h ∈ G and X,Y ∈ g , where µ = µG is the multiplication on G :

T(g,h)µ.(RX(g), RY (h)) = T (µh).RX(g) + T (µg).RY (h)

= T (µh).T (µg).X + T (µg).T (µh).Y

= RX(gh) +RAd(g)Y (h),

Tgν.RX(g) = −T (µg
−1

).T (µg−1).T (µg).X

= −RAd(g−1)X(g−1),

so that we have

µgoG((X, g), (Y, h)) = (X + Ad(g)Y, gh)(1)

νgoG(X, g) = (−Ad(g−1)X, g−1).
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Now we shall prove that the following diagram commutes and that the equations
of the corollary follow. The lower triangle commutes by definition.

TC∞(R, g)

�
T evolG

�
∼= C∞(R, go g)�

�
�

�
� � evolTG �

evolgoG

TG �∼= goG

For that we choose X,Y ∈ C∞(R, g). Let us first consider the evolution operator
of the tangent group TG in the picture goG . On (g,+) the evolution mapping
is the definite integral, so going through the prescription 5.8 for evolgoG we have
in turn the following data:

evolgoG(Y,X) = (h(1), g(1)), where(2)

g(t) : = EvolG(X)(t) ∈ G,
Z(t) : = Ad(g(t)−1).Y (t) ∈ g,

h0(t) : = Evol(g,+)(Z)(t) =

∫ t

0

Ad(g(u)−1).Y (u) du ∈ g,

h(t) : = Ad(g(t))h0(t) = Ad(g(t))

∫ t

0

Ad(g(u)−1).Y (u) du ∈ g.

This shows the first equation in the corollary. The differential equation for the
curve (h(t), g(t)), which by Lemma 5.2 has a unique solution starting at (0, e),
looks as follows, using (1):

(
(h′(t), h(t)),g′(t)

)
= T(0,e)(µ

(h(t),g(t))
goG ).

(
(Y (t), 0), X(t)

)

=
(
Y (t) +

(
dAd(X(t)).h(t), 0 + Ad(e).h(t)

)
, T (µ

g(t)
G ).X(t)

)

h′(t) = Y (t) + ad(X(t))h(t)(3)

g′(t) = T (µ
g(t)
G )X(t).

For the computation of T evolG we let

g(t, s) := evolG

(
u 7→ t(X(tu) + sY (tu))

)
= EvolG(X + sY )(t),

satisfying δrg(∂t(t, s)) = X(t) + sY (t).

Then T evolG(Y,X) = ∂s|0g(1, s), and the derivative ∂s|0g(t, s) in TG corre-
sponds to the element

(T (µg(t,0)−1

).∂s|0g(t, s), g(t, 0)) = (δrg(∂s(t, 0)), g(t, 0)) ∈ goG

via right trivialization. For the right hand side we have g(t, 0) = g(t), so it
remains to show that δrg(∂s(t, 0)) = h(t). We will show that δrg(∂s(t, 0)) is
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the unique solution of the differential equation (3) for h(t). Using the Maurer
Cartan equation dδrg − 1

2 [δrg, δrg] = 0 from Lemma 5.1 we get

∂tδ
rg(∂s) = ∂sδ

rg(∂t) + d(δrg)(∂t, ∂s) + δrg([∂t, ∂s])

= ∂sδ
rg(∂t) + [δrg(∂t), δ

rg(∂s)]g + 0

= ∂s(X(t) + sY (t)) + [X(t) + sY (t), δrg(∂s)]g

so that for s = 0 we get

∂tδ
rg(∂s(t, 0)) = Y (t) + [X(t), δrg(∂s(t, 0))]g

= Y (t) + ad(X(t))δrg(∂s(t, 0)).

Thus δrg(∂s(t, 0)) is a solution of the inhomogeneous linear ordinary differential
equation (3) as required.

It remains to check the last formula. Note that X 7→ tX(t ) is a
bounded linear operator. So we have

Evolr(X)(t) = evol(s 7→ tX(ts)),

TX(EvolrG( )(t)).Y = TtX(t )evolrG.(tY (t ))

= T (µevolr
G

(tX(t ))).

∫ 1

0

AdG

(
EvolrG(tX(t ))(s)−1

)
.tY (ts) ds

= T (µEvolr
G

(X)(t)).

∫ 1

0

AdG

(
evolrG(stX(st ))−1

)
.tY (ts) ds

= T (µEvolr
G

(X)(t)).

∫ t

0

AdG

(
EvolrG(X)(s)−1

)
.Y (s) ds.

This finishes the proof.

5.10. Corollary. For a regular Lie group G the tangent mapping of the
exponential mapping exp : g→ G is given by:

TX exp .Y = TeµexpX .

∫ 1

0

Ad(exp(−tX))Y dt

= Teµ
expX .

∫ 1

0

Ad(exp(tX))Y dt

Remark. This formula was first proved by [6] for Lie groups with smooth
exponential mapping. If G is a Banach Lie group then we have from 3.7.(iv) and

3.8 the series Ad(exp(tX)) =
∑∞
i=0

ti

i!
ad(X)i , so that we get the usual formula

TX exp = Teµ
expX .

∞∑

i=0

1
(i+1)!

ad(X)i.

Proof. Just apply 5.9 to constant curves X,Y ∈ g .
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6. Bundles with regular structure groups

6.1. Theorem. Let (P, p,M,G) be a smooth ( locally trivial) principal fiber
bundle with a regular Lie group as structure group. Let ω ∈ Ω1(P, g) be a
principal connection form.

Then the parallel transport for the principal connection exists, is globally
defined, and is G-equivariant. In detail: For each smooth curve c : R → M
there is a unique smooth mapping Ptc : R × Pc(0) → P such that the following
holds:

(i) Pt(c, t, u) ∈ Pc(t) , Pt(c, 0) = IdPc(0)
, and ω( d

dt
Pt(c, t, u)) = 0 .

It has the following further properties:

(ii) Pt(c, t) : Pc(0) → Pc(t) is G-equivariant, i.e., for all g ∈ G and u ∈ P
we have Pt(c, t, u.g) = Pt(c, t, u).g . Moreover, Pt(c, t)∗(ζX |Pc(t)) =
ζX |Pc(0) for all X ∈ g .

(iii) For any smooth function f : R→ R we have
Pt(c, f(t), u) = Pt(c ◦ f, t,Pt(c, f(0), u)) .

(iv) The parallel transport is smooth as a mapping

Pt : C∞(R,M)×(ev0,M,p◦pr2) (R× P )→ P,

where C∞(R,M) is considered as a smooth space, see [4], 1.4.1 .

Proof. For a principal bundle chart (Uα, ϕα) we have the data from 4.4

sα(x) : = ϕ−1
α (x, e),

ωα : = s∗αω,

ω ◦ T (ϕ−1
α ) = (ϕ−1

α )∗ω ∈ Ω1(Uα ×G; g)

(ϕ−1
α )∗ω(ξx, Tµg.X) = (ϕ−1

α )∗ω(ξx, 0g) +X = Ad(g−1)ωα(ξx) +X.

For a smooth curve c : R→M the horizontal lift Pt(c, , u) through u ∈ Pc(0)

is given by the ordinary differential equation ω( d
dt

Pt(c, t, u)) = 0 with initial
condition Pt(c, 0, u) = u , among all smooth lifts of c . Locally we have

ϕα(Pt(c, t, u)) = (c(t), γ(t)),

so that

0 = Ad(γ(t))ω( d
dt

Pt(c, t, u)) = Ad(γ(t))(ω ◦ T (ϕ−1
α ))(c′(t), γ′(t))

= Ad(γ(t))((ϕ−1
α )∗ω)(c′(t), γ′(t)) = ωα(c′(t)) + T (µγ(t)−1

)γ′(t),

i.e., γ′(t) = −T (µγ(t)).ωα(c′(t)), thus γ(t) is given by

γ(t) = EvolG(−ωα(c′))(t).γ(0) = evolG(s 7→ −tωα(c′(ts))).γ(0).
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By Lemma 5.2 we may glue the local solutions over different bundle charts Uα ,
so Pt exists globally.

Properties (i) and (iii) are now clear, and (ii) can be checked as fol-
lows: The condition ω( ddtPt(c, t, u).g) = Ad(g−1)ω( ddtPt(c, t, u)) = 0 implies
Pt(c, t, u).g = Pt(c, t, u.g). For the second assertion we compute for u ∈ Pc(0) :

Pt(c, t)∗(ζX |Pc(t))(u) = TPt(c, t)−1ζX(Pt(c, t, u))

= TPt(c, t)−1 d
ds |0Pt(c, t, u). exp(sX)

= TPt(c, t)−1 d
ds |0Pt(c, t, u. exp(sX))

= d
ds
|0Pt(c, t)−1Pt(c, t, u. exp(sX))

= d
ds |0u. exp(sX) = ζX(u).

(iv) It suffices to check that Pt respects smooth curves. So let (f, g) :
R → C∞(R,M) ×M P ⊂ C∞(R,M) × P be a smooth curve. By cartesian
closedness of smooth spaces (see [4], 1.4.3) the smooth curve f : R→ C∞(R,M)

corresponds to a smooth mapping f̂ ∈ C∞(R2,M). For a principal bundle chart
(Uα, ϕα) as above we have ϕα(Pt(f(s), t, g(s))) = (f(s)(t), γ(s, t)), where γ is
the evolution curve

γ(s, t) = EvolG

(
−ωα( ∂

∂t
f̂(s, ))

)
(t).ϕα(g(s)),

which is clearly smooth in (s, t).

6.2. Theorem. Let (P, p,M,G) be a smooth principal bundle with a regular
Lie group as structure group. Let ω ∈ Ω1(P, g) be a principal connection form.
If the connection is flat, then the horizontal subbundle Hω(P ) := ker(ω) ⊂ TP
is integrable and defines a foliation.

If M is connected then each leaf of this horizontal foliation is a covering
of M . All leaves are isomorphic.

By standard arguments it follows that the principal bundle P is asso-
ciated to the universal covering of M viewed as a principal fiber bundle with
structure group the (discrete) fundamental group π1(M).

Proof. Let (Uα, uα : Uα → uα(Uα) ⊂ Eα) be a smooth chart of the manifold
M and let xα ∈ Uα be such that uα(xα) = 0 and the c∞ -open subset uα(Uα)
is disked in Eα . Let us also suppose that we have a principal fiber bundle chart
(Uα, ϕα : P |Uα → Uα ×G). We may cover M by such Uα .

We shall now construct for each wα ∈ Pxα a smooth section ψα : Uα → P
whose image is an integral submanifold for the horizontal subbundle ker(ω).
Namely, for x ∈ Uα let cx(t) := u−1

α (tuα(x)) for t ∈ [0, 1]. Then we put

ψα(x) := Pt(cx, 1, wα).

We have to show that the image of Tψα is contained in the horizontal bundle
ker(ω). Then we get Txψα = Tp|Hω(p)−1

ψα(x) . This is a consequence of the

following notationally more suitable claim.
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Let h : R2 → Uα be smooth with h(0, s) = xα for all s .

Claim. ∂
∂s |Pt(h(., s), 1, wα) is horizontal.

Let ϕα(wα) = (xα, gα) ∈ Uα ×G . Then from the proof of Theorem 6.1
we know that

ϕαPt(h( , s), 1, wα) = (h(1, s), γ(1, s)), where

γ(t, s) = γ̃(t, s).gα

γ̃(t, s) = evolG

(
u 7→ −tωα( ∂∂th(tu, s))

)

= EvolG

(
−(h∗ωα)(∂t( , s))

)
(t),

ωα = s∗αω, sα(x) = ϕ−1
α (x, e).

Since the curvature Ω = dω + 1
2 [ω, ω]∧ = 0 we have

∂s(h
∗ωα)(∂t) = ∂t(h

∗ωα)(∂s)− d(h∗ωα)(∂t, ∂s)− (h∗ωα)([∂t, ∂s])

= ∂t(h
∗ωα)(∂s) + [(h∗ωα)(∂t), (h

∗ωα)(∂s)]g − 0.

Using this and the expression for T evolG from 5.9 we have then:

∂
∂s γ̃(1, s) = T−(h∗ωα)(∂t)( ,s)evolG.

(
−∂s(h∗ωα)(∂t)( , s)

)

= −T (µγ̃(1,s)).

∫ 1

0

Ad(γ̃(t, s)−1)∂s(h
∗ωα)(∂t) dt

= −T (µγ̃(1,s)).

(∫ 1

0

Ad(γ̃(t, s)−1)∂t(h
∗ωα)(∂s) dt+

+

∫ 1

0

Ad(γ̃(t, s)−1).ad((h∗ωα)(∂t)).(h
∗ωα)(∂s) dt

)
.

Next we integrate by parts, use 3.9.(3), and κl(∂tγ̃(t, s)−1) = (h∗ωα)(∂t)(t, s)
which follows from 5.2.

∫ 1

0

Ad(γ̃(t, s)−1)∂t(h
∗ωα)(∂s) dt =

= −
∫ 1

0

(
∂tAd(γ̃(t, s)−1)

)
(h∗ωα)(∂s) dt+ Ad(γ̃(t, s)−1)(h∗ωα)(∂s)

∣∣∣∣
t=1

t=0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(
κl∂t(γ̃(t, s)−1)

)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)− 0

= −
∫ 1

0

Ad(γ̃(t, s)−1).ad
(

(h∗ωα)(∂t)
)
.(h∗ωα)(∂s) dt

+ Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s),
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so that finally

∂
∂s γ̃(1, s) = −T (µγ̃(1,s)).Ad(γ̃(1, s)−1)(h∗ωα)(∂s)(1, s)

= −T (µγ̃(1,s)).(h∗ωα)(∂s)(1, s),
∂
∂sγ(1, s) = T (µgα). ∂∂s γ̃(1, s)

= −T (µγ(1,s)).Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s)

ω( ∂
∂s

Pt(h( , s), 1, wα)) = ((ϕ−1
α )∗ω)

(
∂
∂s
h(1, s), ∂

∂s
γ(1, s)

)

= Ad(γ(1, s)−1)ωα( ∂∂sh(1, s))− Ad(γ(1, s)−1)(h∗ωα)(∂s)(1, s) = 0,

where in the end we used 4.4.(6). So the claim follows.

By the claim and by the uniqueness of parallel transport 6.1.(i) we con-
clude that for any smooth curve c in Uα the horizontal curve ψα(c(t)) coincides
with Pt(c, t, ψα(c(0))). Moreover Uα × G is G -equivariantly diffeomorphic to
p−1(Uα) via (x, g) 7→ ψα(x).g .

To finish the proof we may now glue overlapping right translations of
ψα(Uα) to maximal integral manifolds of the horizontal subbundle. As a subset
such an integral manifold consists of all endpoints of parallel transports of a fixed
point. These are diffeomorphic covering spaces of M via right translations.

It is not clear, however, that the integral submanifolds of the theorem
are initial submanifolds of P , or that they intersect each fiber in a totally
disconnected subset, since M might have uncountable fundamental group.

6.3. Holonomy groups. Let (P, p,M,G) be a principal fiber bundle with
regular structure group G so that all parallel transports exist by Theorem 6.1.
Let Φ = ζ ◦ ω be a principal connection. We assume that M is connected and
we fix x0 ∈M .

Now let us fix u0 ∈ Px0
. Consider the subgroup Hol(ω, u0) of the

structure group G which consists of all elements τ(u0,Pt(c, t, u0)) ∈ G for c
any piecewise smooth closed loop through x0 . Reparametrizing c by a function
which is flat at each corner of c we may assume that any c is smooth. We call
Hol(ω, u0) the holonomy group of the connection. If we consider only those curves
c which are nullhomotopic, we obtain the restricted holonomy group Hol0(ω, x0),
a normal subgroup in Hol(ω, u0).

Theorem.

(i) We have Hol(ω, u0.g) = conj(g−1)Hol(ω, u0) and
Hol0(ω, u0.g) = conj(g−1)Hol0(ω, u0) .

(ii) For each curve c in M with c(0) = x0 we have Hol(ω,Pt(c, t, u0)) =
Hol(ω, u0) and Hol0(ω,Pt(c, t, u0)) = Hol0(ω, u0) .

Proof. (i) This follows from the properties of the mapping τ from 4.1 and
from the from the G -equivariance of the parallel transport:

τ(u0.g,Pt(c, 1, u0.g)) = τ(u0,Pt(c, 1, u0).g) = g−1.τ(u0,Pt(c, 1, u0)).g.

(ii) By reparametrizing the curve c we may assume that t = 1, and
we put Pt(c, 1, u0) =: u1 . Then by definition for an element g ∈ G we have
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g ∈ Hol(ω, u1) if and only if g = τ(u1,Pt(e, 1, u1)) for some closed smooth loop
e through x1 := c(1) = p(u1), i.e.,

Pt(c, 1)(rg(u0)) = rg(Pt(c, 1)(u0)) = u1g = Pt(e, 1)(Pt(c, 1)(u0))

u0g = Pt(c, 1)−1Pt(e, 1)Pt(c, 1)(u0) = Pt(c.e.c−1, 3)(u0),

where c.e.c−1 is the curve travelling along c(t) for 0 ≤ t ≤ 1, along e(t− 1) for
1 ≤ t ≤ 3, and along c(3− t) for 2 ≤ t ≤ 3. This is equivalent to g ∈ Hol(ω, u0).
Furthermore e is nullhomotopic if and only if c.e.c−1 is nullhomotopic, so we
also have Hol0(ω, u1) = Hol0(ω, u0).

7. Rudiments of Lie theory for regular Lie groups

7.1. From Lie algebras to Lie groups. It is not true in general that every
convenient Lie agebra is the Lie algebra of a convenient Lie group. This is wrong
for Banach Lie algebras and Banach Lie groups, one of the first examples is from
[3], see also [7].

To Lie subalgebras in the Lie algebra of a Lie group do not correspond
Lie subgroups in general, see the following easy example:

Let g ⊂ Xc(R2) be the closed Lie subalgebra of all vector fields with
compact support on R2 of the form X(x, y) = f(x, y) ∂

∂x
+ g(x, y) ∂

∂y
where g

vanishes on the strip 0 ≤ x ≤ 1.

Claim. There is no Lie subgroup G of Diff(R2) corresponding to g .

If G exists there is a smooth curve t 7→ ft ∈ G ⊂ Diffc(R2) such that
the smooth curve Xt := ( ∂

∂t
ft)◦f−1

t in g has the property that X0 = f ∂
∂x

where
f = 1 near 0. But then ft moves the strip to the right for small t , so g is not
invariant under AdG(ft) = f∗t , a contradiction.

So we see that on any manifold of dimension greater that 2 there are
closed Lie subalgebras of the Lie algebra of vector fields with compact support,
which do not admit Lie subgroups.

Note that this example does not work for the Lie group of real analytic
diffeomorphisms on a compact manifold, see [9].

7.2. Let G be a connected Lie group with Lie algebra g . For a smooth mapping
f : M → G we considered in 5.1 the right logarithmic derivative δrf ∈ Ω1(M ; g)

which is given by δrfx := T (µf(x)−1

) ◦ Txf : TxM → Tf(x)G → g and which
satisfies the left (from the left action) Maurer-Cartan equation

dδrf − 1
2 [δrf, δrf ]g∧ = 0.

Similarly the left logarithmic derivative δlf ∈ Ω1(M ; g) of f ∈ C∞(M,G) was
given by δlfx := T (µf(x)−1) ◦ Txf : TxM → Tf(x)G → g and satisfies the right
(from the right action) Maurer Cartan equation

dδlf + 1
2 [δlf, δlf ]g∧ = 0.
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For regular Lie groups we have the following converse:

Theorem. Let G be a connected regular Lie group with Lie algebra g .

If a 1-form ϕ ∈ Ω1(M ; g) satisfies dϕ − 1
2
[ϕ, ϕ]∧ = 0 then for each

simply connected subset U ⊂M there exists a smooth mapping f : U → G with
δrf = ϕ|U , and f is uniquely detemined up to a right translation in G .

If a 1-form ψ ∈ Ω1(M ; g) satisfies dψ + 1
2 [ψ, ψ]∧ = 0 then for each

simply connected subset U ⊂M there exists a smooth mapping f : U → G with
δlf = ψ|U , and f is uniquely determined up to a left translation in G .

The mapping f is called the left developping of ϕ , or the right develop-
ping of ψ , respectively.

Proof. Let us treat the right logarithmic derivative since it leads to a principal
connection for a bundle with right principal action. For the left logarithmic
derivative the proof is similar, with the changes described in the second part of
the proof of 5.1.

We put ourselves into the situation of the proof of 5.1. If we are given
a 1-form ϕ ∈ Ω1(M ; g) with dϕ − 1

2 [ϕ, ϕ]∧ = 0 then we consider the 1-form
ωr ∈ Ω1(M ×G; g), given by the analogon of 5.1(1),

(1) ωr = κl − (Ad ◦ Inv).ϕ

Then ωr is a principal connection form on M × G , since it reproduces the
generators in g of the fundamental vector fields for the principal right action,
i.e., the left invariant vector fields, and ωr is G -equivariant:

((µg)∗ωr)h = ωrhg ◦ (Id× T (µg)) = T (µg−1.h−1).T (µg)− Ad(g−1.h−1).ϕ

= Ad(g−1).ωrh.

The computation in 5.1(3) for ϕ instead of δrf shows that this connection is flat.
Since the structure group G is regular, by Theorem 6.2 the horizontal bundle
is integrable, and pr1 : M × G → M , restricted to each horizontal leaf, is a
covering. Thus it may be inverted over each simply connected subset U ⊂ M ,
and the inverse (Id, f) : U →M×G is unique up to the choice of the branch of the
covering, and the choice of the leaf, i.e., f is unique up to a right translation by
an element of G . The beginning of the proof of 5.1 then shows that δrf = ϕ|U .

7.3. Theorem. Let G and H be Lie groups with Lie algebras g and h ,
respectively. Let f : g→ h be a bounded homomorphism of Lie algebras. If H is
regular and if G is simply connected then there exists a unique homomorphism
F : G→ H of Lie groups with TeF = f .

This theorem is due to Milnor ( [13]) and Yoshioka et al. ( [19]).

Proof. We consider the 1-form

ψ ∈ Ω1(G; h), ψ := f ◦ κr, ψg(ξg) = f(T (µg
−1

).ξg),

where κr is the right Maurer Cartan form from 5.1. It satisfies the left Maurer
Cartan equation

dψ − 1
2 [ψ, ψ]h∧ = d(f ◦ κr)− 1

2 [f ◦ κr, f ◦ κr]h∧
= f ◦ (dκr − 1

2
[κr, κr]g∧) = 0,
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by 5.1.(2′ ). But then we can use Theorem 7.2 to conclude that there exists a
unique smooth mapping F : G→ H with F (e) = e and whose right logarithmic
derivative satisfies δrF = ψ . For g ∈ G we have (µg)∗ψ = ψ , thus also

δr(F ◦ µg) = δrF ◦ T (µg) = (µg)∗ψ = ψ.

By uniqueness in Theorem 7.2 again the mappings F ◦µg, F : G→ H differ only
by right translation in H by (F ◦ µg)(e) = F (g), so that F ◦ µg = µF (g) ◦ F , or
F (g.g1) = F (g).F (g1). This also implies F (g).F (g−1) = F (g.g−1) = F (e) = e ,
so that F is the unique homomorphism of Lie groups we looked for.

7.4. Theorem. For a regular Lie group G we have

evolr(X).evolr(Y ) = evolr
(
t 7→ X(t) + AdG(Evolr(X)(t)).Y (t)

)
,

evolr(X)−1 = evolr
(
t 7→ −AdG(Evolr(X)(t)−1).X(t)

)
,

so that evolr : C∞(R, g) → G is a surjective smooth homomorphism of Lie
groups, where on C∞(R, g) we consider the operations

(X ∗ Y )(t) = X(t) + AdG(Evolr(X)(t)).Y (t),

X−1(t) = −AdG(Evolr(X)(t)−1).X(t).

With this operations and with 0 as unit element (C∞(R, g), ∗) becomes again a
regular Lie group. Its Lie algebra is C∞(R, g) with bracket

[X,Y ]C∞(R,g)(t) =
[∫ t

0

X(s) ds, Y (t)
]

g
+
[
X(t),

∫ t

0

Y (s) ds
]
g

= ∂
∂t

[∫ t
0
X(s) ds,

∫ t
0
Y (s) ds

]
g
.

Its evolution operator is given by

evol(C∞(R,g),∗)(X) : = AdG(evolG(Y s)).

∫ 1

0

AdG(EvolG(Y s)(v)−1).X(v)(s) dv,

Y s(t) : =

∫ s

0

X(t)(u)du.

Proof. For X,Y ∈ C∞(R, g) we compute

∂
∂t

(
Evolr(X)(t).Evolr(Y )(t)

)
=

= T (µEvolr(Y )(t)).T (µEvolr(X)(t)).X(t) + T (µEvolr(X)(t)).T (µEvolr(Y )(t)).Y (t)

= T (µEvolr(X)(t).Evolr(Y )(t)).(X(t) + AdG(Evolr(X)(t))Y (t)),

which implies also

Evolr(X).Evolr(Y ) = Evolr(X ∗ Y ), Evol(X)−1 = Evol(X−1).
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Thus Evol : C∞(R, g) → C∞(R, G) is a group isomorphism onto the subgroup
{c ∈ C∞(R, G) : c(0) = e} of C∞(R, G) with the pointwise product, which,
however, is only a smooth space, see [4], 1.4.1. Nevertheless it follows that
the product on C∞(R, g) is associative. It is clear that these operations are
smooth, so that the convenient vector space C∞(R, g) becomes a Lie group; and
C∞(R, G) becomes a manifold.

Now we aim for the Lie bracket. We have

(X ∗ Y ∗X−1)(t) =

((
X + Ad(Evolr(X)).Y

)
∗
(
−Ad(Evolr(X)−1).X

))
(t)

= X(t) + Ad(Evolr(X)(t)).Y (t)−
−Ad

(
Evolr(X ∗ Y )(t)

)
.Ad

(
Evolr(X)(t)−1

)
.X(t)

= X(t) + Ad
(

Evolr(X)(t)
)
.Y (t)−

−Ad
(

Evolr(X)(t)
)
.Ad

(
Evolr(Y )(t)

)
.Ad
(

Evolr(X)(t)−1
)
.X(t).

We shall need

T0

(
AdG(Evolr( )(t))

)
.Y = TeAdG.T0(Evolr( )(t)).Y

= adg

(∫ t

0

Y (s) ds
)
, by 5.9.

Using this we can differentiate the conjugation,

(AdC∞(R,g)(X).Y )(t) = (T0(X ∗ ( ) ∗X−1).Y )(t)

= 0 + Ad(Evolr(X)(t)).Y (t)−
−Ad(Evolr(X)(t)).

(
T0(Ad(Evolr( )(t))).Y

)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)−

−Ad(Evolr(X)(t)).adg

(∫ t

0

Y (s) ds
)
.Ad(Evolr(X)(t)−1).X(t)

= Ad(Evolr(X)(t)).Y (t)− adg.
(

Ad(Evolr(X)(t)).

∫ t

0

Y (s) ds
)
.X(t).

Now we can compute the Lie bracket

[X,Y ]C∞(R,g)(t) =
(
T0(AdC∞(R,g)( ).Y ).X

)
(t)

= T0

(
Ad(Evolr( )(t)).X

)
.Y (t)− 0−

[
Ad(Evolr(0)(t)).

∫ t

0

Y (s) ds,X(t)
]
g

=
[∫ t

0

X(s) ds, Y (t)
]

g
−
[∫ t

0

Y (s) ds,X(t)
]
g

=
[∫ t

0

X(s) ds, Y (t)
]

g
+
[
X(t),

∫ t

0

Y (s) ds
]
g

= ∂
∂t

[∫ t
0
X(s) ds,

∫ t
0
Y (s) ds

]
g
.
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Now we show that the Lie group (C∞(R, g), ∗) is regular. For this let X̌ ∈
C∞(R, C∞(R, g)) correspond to X ∈ C∞(R2, g). We look for g ∈ C∞(R2, g)
which satisfies the equation 5.3.(1):

µg(t, )(Y )(s) = (Y ∗ g(t, ))(s) = Y (s) + AdG(EvolG(Y )(s)).g(t, s)

∂
∂tg(t, s) =

(
T0(µg(t, )).X(t, )

)
(s)

= X(t, s) +
(
T0

(
AdG(EvolG( )(s))

)
.X(t, )

)
.g(t, s)

= X(t, s) + adg

(∫ s

0

X(t, u)du
)
.g(t, s)

= X(t, s) +
[∫ s

0

X(t, u)du), g(t, s)
]
g
.

This is the differential equation 5.9.(3), depending smoothly on a further param-
eter s , which has the following unique solution which is given by 5.9.(2)

g(t, s) : = AdG(EvolG(Y s)(t)).

∫ t

0

AdG(EvolG(Y s)(v)−1).X(v, s) dv

Y s(t) : =

∫ s

0

X(t, u)du.

Since this solution is visibly smooth in X , the Lie group C∞(R, g) is regular. For
convenience (yours, not ours) we show now (once more) that this is a solution.
Putting Y s(t) :=

∫ s
0
X(t, u)du we have by 3.9.(iii)

∂
∂tg(t, s) =

= dAd( ∂∂tEvol(Y s)(t)).
∫ t

0
Ad(Evol(Y s)(v)−1).X(v, s) dv

+ Ad(Evol(Y s)(t)).Ad(Evol(Y s)(t)−1).X(t, s)

= ((ad ◦ κr).Ad)
(
T (µEvol(Y s)(t)).Y s(t)

)
.

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv

+X(t, s)

= ad(Y s(t)).Ad(Evol(Y s)(t)).

∫ t

0

Ad(Evol(Y s)(v)−1).X(v, s) dv+X(t, s)

=
[∫ s

0

X(t, u)du), g(t, s)
]
g

+X(t, s).

7.5. Corollary. Let G be a regular Lie group. Then as smooth spaces and
groups we have the following isomorphims

(C∞(R, g), ∗)oG ∼= {f ∈ C∞(R, G) : f(0) = e}oG ∼= C∞(R, G),

where g ∈ G acts on f by (αg(f))(t) = g.f(t).g−1 , and on X ∈ C∞(R, g) by
αg(X)(t) = AdG(g)(X(t)) . The leftmost space is a smooth manifold, thus all
spaces are regular Lie groups.
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For the Lie algebras we have an isomorphism

C∞(R, g)o g ∼= C∞(R, g),

(X, η) 7→
(
t 7→ η +

∫ t

0

X(s)ds
)

(Y ′, Y (0))← Y

where on the left hand side the Lie bracket is given by

[(X1, η1), (X2, η2)] =

=
(
t 7→ [

∫ t
0
X1(s) ds,X2(t)]g + [X1(t),

∫ t
0
X2(s) ds]g + [η1, X2(t)]g − [η2, X1]g,

[η1, η2]g

)
,

and where on the right hand side the bracket is given by

[X,Y ](t) = [X(t), Y (t)]g.

On the right hand sides the evolution operator is given by

EvolrC∞(R,G) = C∞(R,EvolrG).

7.6. Remarks . Let G be a connected regular Lie group. The smooth
homomorphism evolrG : C∞(R, g) → G admits local smooth sections. Namely
using a smooth chart near e of G we can choose a smooth curve cg : R → G
with cg(0) = e and cg(1) = g , depending smoothly on g , for g near e . Then
s(g) := δrcg is a local smooth section. We have an extension of groups

0→ K → C∞(R, g)
evolrG→ G→ {e}

where K = ker(evolrG) is isomorphic to the smooth group {f ∈ C∞(R, G) :
f(0) = e, f(1) = e} via the mapping EvolrG . We do not know whether K is a
submanifold.

Next we consider the smooth group C∞((S1, 1), (G, e)) of all smooth
mappings f : S1 → G with f(1) = e . With pointwise multiplication this is
a splitting closed normal subgroup of the regular Lie group C∞(S1, G) with
the manifold structure described in [10] and [12]. Moreover C∞(S1, G) is the
semidirect product C∞((S1, 1), (G, e)) o G , where G acts by conjugation on
C∞((S1, 1), (G, e)). So by Theorem 5.5 the subgroup C∞((S1, 1), (G, e)) is also
regular.

The right logarithmic derivative δr : C∞(S1, G) → C∞(S1, g) restricts
to a diffeomorphism C∞((S1, 1), (G, e)) → ker(evolG) ⊂ C∞(S1, g), thus the
group ker(evolG : C∞(S1, g)→ G) is a regular Lie group which is isomorphic to
C∞((S1, 1), (G, e)). It is also a subgroup (via pullback by the covering mapping
e2πit : R→ S1 ) of the regular Lie group (C∞(R, g), ∗). Note that C∞(S1, g) is
not a subgroup, it is not closed under the product ∗ , if G is not abelian.
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[15] —, On regular Fréchet Lie groups V. Several basic properties, Tokyo J.
Math. 6 (1983), 39–64.

[16] Pestov, V., Regular Lie groups and a theorem of Lie-Palais, J. of Lie
Theory 5 (1995), 173–178.

[17] Seeley, R. T., Extension of C∞ -functions defined in a half space, Proc.
Amer. Math. Soc. 15 (1964), 625–626.



Kriegl and Michor 99

[18] Wojtyński, W., One parameter subgroups and B-C-H formula, Studia
Math. 111 (1994), 163–185.

[19] Yoshioka, A., Y. Maeda, H. Omori and O. Kobayashi, On regular Fréchet
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