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Stability and control in spacecraft dynamics
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Abstract. An optimal control problem for the spacecraft dynamics is

discussed and some of its properties are pointed out.

1. Introduction

Recent work in nonlinear control has drawn attention to drift–free systems with
fewer controls than state variables. These arise in problems of motion plan-
ning for wheeled robots subject to nonholonomic controls [12], [13], models of
kinematic drift effects in space systems subject to appendage vibrations or artic-
ulations [5], [6], models of self-propulsion of paramecia at low Reynolds numbers
[16] and autonomous underwater vehicle dynamics [8].

The goal of our paper is to discuss a similar problem for the spacecraft
dynamics. The case with drift can be found in [11].

2. The spacecraft as a drift-free left invariant system on SO(3)

Let us consider a spacecraft free to move in R3 . Let (b1, b2, b3) be an orthonormal
frame fixed on the body and let (r1, r2, r3) define an inertial frame with the origin
coincident with the origin of the body-fixed frame. Then we define X(t) ∈ SO(3)
( = the special orthogonal group, i.e., SO(3) = {A ∈ M3×3(R) |At · A =
I3, det(A) = 1}) such that ri = X(t)bi , i.e., X(t) determines the attitude of
the spacecraft at time t . Let e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T .
Define

ˆ : x =



x1

x2

x3


 ∈ R3 7→ x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ∈ so(3)

and

Ai = êi; i = 1, 2, 3.
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Then {A1, A2, A3} is the standard basis for so(3) and X(t) satisfies:

Ẋ = XΩ̂; Ω̂ =

3∑

i=1

Ωi(t)Ai, (2.1)

where Ω = (Ω1,Ω2,Ω3)T is the angular velocity of the spacecraft in the body-
fixed coordinates. If we let

ui = Ωi; i = 1, 2, 3,

i.e., if we interpret the components of the angular velocity as our controls, then
(2.1) takes the form

X = X

(
3∑

i=1

uiAi

)
. (2.2)

We shall be most interested in the case when only two components of the
angular velocity can be controlled. For example, if we can control the angular
velocity about the b1 and b2 axes, then X(t) satisfies

Ẋ = X(u1A1 + u2A2).

This realization of the spacecraft dynamics is due to Leonard [7].

Theorem 2.1. The system (2.3) is controllable and it is a single bracket one.

Let us observe that the above theorem tells us in fact that we can reorient
the spacecraft as desired by controlling only two of the three angular velocity
components (e.g. roll and pitch velocities).

Remark 2.1. Similar results hold for the controls about:

(i) b1 and b2 axes;

(ii) b2 and b3 axes.

3. An optimal control problem for the spacecraft dynamics

Let J be the cost function given by

J(u1, u2) =
1

2

tf∫

0

[c1u
2
1(t) + c2u

2
2(t)]dt; c1 > 0, c2 > 0. (3.1)

Then we can prove:
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Theorem 3.1. The controls that minimize J and steer the system (2.3) from
X = 0 at t = 0 to X = Xf at t = tf are given by:

u1 =
1

c1
P1; u2 =

1

c2
P2,

where the functions Pi are solutions of




Ṗ1 = − 1

c2
P2P3

Ṗ2 =
1

c1
P1P3

Ṗ3 =

(
1

c2
− 1

c1

)
P1P2 .

(3.2)

Proof. Simply apply Krishnaprasad’s theorem [4]. It follows that the optimal
Hamiltonian is given by

h =
1

2c1
P 2

1 +
1

2c2
P 2

2 . (3.3)

It is in fact the controlled Hamiltonian H given by

H = P1u1 + P2u2 −
1

2
(c1u

2
1 + c2u

2
2),

which is reduced to (so(3))? via the Poisson reduction. Here (so(3))? is (so(3))?

together with the minus Lie–Poisson structure

ΠRB =




0 −P3 P2

P3 0 −P1

−P2 P1 0


 . (3.4)

Then the optimal controls are given by

u1 =
1

c1
P1; u2 =

1

c2
P2,

where the functions Pi are solutions of the reduced Hamilton’s equations (or
momentum equations) given by

[Ṗ1, Ṗ2, Ṗ3] = ΠRB · ∇h,
which are nothing else but the required equations.

Remark 3.1. The function C given by

C =
1

2
(P 2

1 + P 2
2 + P 2

3 ) (3.5)

is a Casimir of our configuration ((so3))?,ΠRB) ' (R3,ΠRB), i.e.,

(∇C)T ·ΠRB = 0.

Remark 3.2. The phase space curves of our system (3.2) are the intersections
of the elliptic cylinders

P 2
1

c1
+
P 2

2

c2
= 2h

with the spheres
P 2

1 + P 2
2 + P 2

3 = 2C.
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Theorem 3.2. The dynamics (3.2) is equivalent to the pendulum dynamics.

Proof. Indeed, h is a constant of motion, so

P 2
1

c1
+
P 2

2

c2
= l2.

Let us take now {
P1 = l

√
c1 cos θ

P2 = l
√
c2 sin θ .

Then
Ṗ1 = −√c1 sin θ · θ̇

= −l
√
c1
c2

√
c2 sin θ · θ̇

= −
√
c1
c2
P2θ̇,

or equivalently,

θ̇ = −
√
c1
c2

Ṗ1

P2

= −
√
c1
c2

(
−P2P3

P2

)
1

c2

=
1√
c1c2

P3.

Differentiating again, we get

θ̈ =
l2√
c1c2

(
1

c2
− 1

c1

)
c1c2 sin 2θ,

or equivalently

θ̈ =
l2

2

√
c1c2(c1 − c2) sin 2θ. (3.6)

Thus, pendulum dynamics as required.

In the particular case c1 = c2 = 1 we refined Baillieul’s theorem [2],
namely:

Theorem (Baillieul). The controls which minimize

J(u1, u2) =
1

2

tf∫

0

(u2
1 + u2

2)dt

and steer the system (2.3) from X = 0 at t = 0 to X = Xf at t = tf are given
by sinusoids.

Proof. Indeed, let us take in (3.6) c1 = c2 = 1. Then θ = k1t + k2 and the
optimal controls are given via theorems 3.1 and 3.2 by

u1 = l cos(k1t+ k2)

u2 = l sin(k1t+ k2)

as required.
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Theorem 3.4. The system (3.2) may be realized as a Hamilton–Poisson
system in an infinite number of different ways, i.e., there exist infinitely many
different (in general nonisomorphic) Poisson structures on R3 such that the
system (3.2) is induced by an appropriate Hamiltonian .

Proof. Indeed, to begin with, let us observe that our system can be put in an
equivalent form:

Ṗ = ∇C ×∇h,
where P = [P1, P2, P3]T and C, h are respectively given by (3.5) and (3.3).
Now, an easy computation shows us that the system (3.2) may be realized as
a Hamilton–Poisson system with the phase space R3 , the Poisson bracket
{·, ·}ab given by

{f, g}ab = −∇C ′ · (∇f ×∇g),

where a, b ∈ R and

C ′ =
a

2
C +

b

2
h,

and the Hamiltonian h′ defined by

h′ = cC + dh,

where c, d ∈ R, ad− bc = 1.

Finally, we shall discuss the integrability of the equations (3.2) via elliptic
functions. More precisely, we have

Theorem 3.5. The equations (3.2) may be explicitely integrated by elliptic
functions.

Proof. It is known that

P 2
1 c2 + P 2

2 c1 = l, l = 2hc1c2

and
P 2

1 + P 2
2 + P 2

3 = 2C

are constants of motion. Then an easy computation shows us that

P 2
2 =

c2
c2 − c1

[
2Cc2 − l

c2
− P 2

3

]

and

P 2
1 =

c1
c1 − c2

[
2Cc1 − l

c1
− P 2

3

]
.

Using now the third equation from (3.2) we get

(Ṗ3)2 =
1

c1c2

(
P 2

3 −
2Cc2 − l

c2

)(
2Cc1 − l

c1
− P 2

3

)
,

that is

t =

P2∫

P3(0)

dt√
1

c1c2

(
P 2

3 − 2Cc2−l
c2

) (
2Cc1−l
c1

− P 2
3

) ,

which shows that P3 , and hence P1, P2 are elliptic functions of time.
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4. Numerical integration of the equation (3.2)

In this section we shall discuss the numerical integration of the equations (3.2)
via the Lie–Trotter formula and the midpoint rule, and we shall point out some
of their geometric properties.

To begin with, let us observe that the Hamiltonian vector field Xh splits
as follows:

Xh = Xh1
+Xh2

,

where

h1 =
1

2c1
P 2

1 h2 =
1

2c2
P 2

2 .

The integral curves of Xh1
and Xh2

are given by

P (t) = exp(tXh1
) · P (0) = Φ1(t, P (0))

and respectively,

P (t) = exp(tXh2
) · P (0) = Φ2(t, P (0)).

Now, following [10] (see also [15]), the Lie–Trotter formula gives rise to an explicit
integrator of the equation (3.2), namely:

P k+1 = Φ1(t,Φ2(t, P k))

or explicitely:





P k+1
1 = P k1 cos

P2(0)

c2
t− P k3 sin

P2(0)

c2
t

P k+1
2 = P k1 sin

P1(0)

c1
t sin

P2(0)

c2
t+ P k2 cos

P1(0)

c1
t+ P k3 sin

P1(0)

c1
t cos

P1(0)

c1
t

P k+1
3 = P k1 cos

P1(0)

c1
t sin

P2(0)

c2
t− P k2 sin

P1(0)

c1
t+ P k3 cos

P1(0)

c1
t cos

P2(0)

c2
t

(4.1)
Some of its properties are sketched in the following theorem:

Theorem 4.1.

(i) The numerical integrator (4.1) preserves the Poisson structure (3.4).

(ii) The numerical integrator (4.1) preserves the Casimirs of our config-
uration (R3,ΠRB) .

(iii) Its restriction to each coadjoint orbit (C = 1
2
k2, ωk = 1

k
(P2dP1 ∧

dP3 − P3dP1 ∧ dP2 − P1dP2 ∧ dP3)) gives rise to a symplectic integrator.

(iv) The numerical integrator (4.1) does not preserve the Hamiltonian h
given by (3.3).

Proof. The items (i) – (iii) hold because Φ1 and Φ2 are flows of some
Hamiltonian vector fields, hence they are Poisson maps.

Item (iv) is essentially due to the fact that {h1, h2} 6= 0.
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An alternative way for the numerical integration of the equations (3.2) is
given by the midpoint rule of Gauss–Legendre integrator. In our case it is given
by the following implicit formula:





P k+1
1 = P k1 −

h

4c2
(P k+1

2 + P k2 )(P k+1
3 + P k3 )

P k+1
2 = P k2 +

h

4c1
(P k+1

1 + P k1 )(P k+1
3 + P k3 )

P k+1
3 = P k3 +

h(c1 − c2)

4c1c2
(P k+1

1 + P k1 )(P k+1
2 + P k2 )

(4.2)

Using now the same arguments as in [1] with obvious modifications we can prove

Theorem 4.2.

(i) The numerical integrator (4.3) preserves the Hamiltonian (3.3) and
the Casimir (3.5).

(ii) The numerical integrator (4.3) does not preserve the Poisson struc-
ture (3.4).

(iii) The numerical integrator (4.3) does not preserve the symplectic
structure:

ωk =
1

k
[P2dP1 ∧ dP3 − P3dP1 ∧ dP2 − P1dP2 ∧ dP3],

hence its restriction to each coadjoint orbit
(
C = 1

2k
2, ωk

)
is not a symplectic

integrator.

5. Stability

It is not hard to see that the equilibrium states of our system (3.2) are

e1 = (M, 0, 0); e2 = (0,M, 0); e3 = (0, 0,M),

where M ∈ R . Now we shall discuss their nonlinear stability. Recall that an
equilibrium point p is nonlinearly stable if trajectories starting close to p stay
close to p . In other words, a neighbourhood of p must be flow invariant.

First consider the system linearized about c1 . Its eigenvalues are given
by solutions of the equation

λ

(
λ2 − c1 − c2

c21c2
M2

)
= 0.

If c1 > c2 , then a root of the characteristic polynomial has positive real part, thus
e1 is unstable. If c1 < c2 , then the characteristic polynomial has two imaginary
eigenvalues and one zero eigenvalue. Is the system stable? We shall prove that
it is, via the energy–Casimir method.
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Recall that the energy–Casimir method (see [3], [9] or [14]) requires
finding a constant of motion for the system, say H , usually the energy, and
a family of constants of motion C such that for some C ∈ C, C + H has a
critical point at the equilibrium of interest. C ’s are often taken to be Casimirs.
Definiteness of δ2(H + C), the second variation of H + C and the critical
point is sufficient to prove the stability if the phase space of the system is finite
dimensional. We use this method to prove the following

Theorem 5.1. The equilibrium state e1 = (M, 0, 0) is nonlinear stable if
c1 < c2 .

Proof. Consider the energy–Casimir function

hϕ =
1

2

(
P 2

1

c1
+
P 2

2

c2

)
+ ϕ

(
1

2
(P 2

1 + P 2
2 + P 2

3 )

)
,

where ϕ : R→ R is an arbitrary smooth real valued function defined on R . Let
ϕ′, ϕ′′ denote its first and second derivatives. Now, the first variation of hϕ is
given by

δhϕ =
P1

c1
δP1 +

P2

c2
δP2 + ϕ′(·)(P1δP1 + P2δP2 + P3δP3).

This equals zero at the equilibrium of interest if and only if

ϕ′
(

1

2
M2

)
= − 1

c1
. (5.1)

The second variation of hϕ at the equilibrium of interest is given via (5.1) by

δ2hϕ(c1) = ϕ′′
(

1

2
M2

)
M2(δP1)2 +

c1 − c2
c1c2

(δP2)2 − 1

c1
(δP3)2.

Since c1 < c2; c1, c2 > 0 and having chosen ϕ such that

ϕ′′
(

1

2
M2

)
< 0,

we can conclude that the second variation at the equilibrium of interest is negative
definite and thus e1 is nonlinear stable.

In a similar manner we can prove

Theorem 5.2. The equilibrium state e2 = (0,M, 0) is

(i) unstable, if c1 < c2 ;

(ii) nonlinear stable, if c1 > c2 .

Theorem 5.3. The equilibrium state e3 = (0, 0,M) is nonlinear stable.
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