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Abstract. Let G be a finite dimensional connected Lie group. Fix a
basis {Xi}i=1,···,n of the Lie algebra g and form the associated Laplace
operator ∆ = −∑1≤i≤n X

2
i in the enveloping algebra U(g) . Let π be a

strongly continuous unitary representation of G ; let dπ(∆) be the closure
of the essentially self-adjoint operator dπ(∆) . We show that π almost has
invariant vectors if and only if 0 belongs to the spectrum of dπ(∆) . From
this, we deduce that G has Kazhdan’s property (T ) if and only if there
exists ε > 0 such that, for any unitary representation without non zero fixed
vectors, one has ε < min{Sp(dπ(∆))} . This answers positively a question of
Y. Colin de Verdière. It also allows us to define new Kazhdan constants,
that we compare to the classical ones.

1. Introduction

In 1967, Kazhdan introduced property (T ), a fixed point property of unitary
representations for locally compact groups. More precisely,

Definition 1.1. Let G be a locally compact group.

1. Let π : G → U(Hπ) be a strongly continuous unitary representation, ε > 0
and let K ⊂ G be a compact subset of G; a vector ξ ∈ H1

π , the set of vectors
of length 1 in Hπ , is (ε,K)-invariant if

sup{‖π(g)ξ − ξ ‖ | g ∈ K} < ε.

2. π has almost invariant vectors if for every ε and K as above, there exists
an (ε,K)-invariant vector.

3. G has property (T), if for all representations with almost invariant vectors,
there exists a nonzero fixed vector.
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This property has strong consequences both from practical and theoretical
points of view (see [10]). In graph theory, the property (T ) permits the construc-
tion of family of expanders via the knowledge of the Kazhdan constant (see [11]).
Let (π,Hπ) be a representation of G and let K be a compact generating set of
G. We define κ(G,K, π) as follows :

κ(G,K, π) = inf
ξ∈H1

π

max
s∈K
‖π(s)ξ − ξ ‖ .

The Kazhdan constant of the group G relatively to K is defined by:

κ(G,K) = inf{κ(G,K, π) | π ∈ G̃∗}
where G̃∗ is the set of equivalence classes of unitary representations of G on
separable Hilbert spaces, without nonzero fixed vectors.

Proposition 1.2. For G a locally compact group and K a compact generating
set of G, the following assertions are equivalent :

1. G has property (T)

2. κ(G,K) > 0

A proof of this result is given in [4].

In general, it is difficult to see whether a group G has property (T ). In this
paper we give an equivalent definition of property (T ) for connected Lie groups.
This approach was suggested by Colin de Verdière [1].

2. Definitions and first properties

Let G be a connected Lie group with Lie algebra g and enveloping algebra U(g).
We use on G a right invariant Haar measure dg .

Any unitary representation (π,Hπ) of G induces a representation dπ of g

on the subspace C∞(Hπ) of C∞ -vectors of π , i.e. the subspace of vectors ξ ∈ Hπ

for which the function x 7→ π(x)ξ is a C∞ function. dπ extends to a representation
of U(g) on the same subspace C∞(Hπ).

Let ξ and η be two vectors in Hπ , we denote by ϕξ,η the function on G
defined by ϕξ,η(g) = 〈π(g)ξ | η〉. We call ϕξ,η the coefficient of π associated to ξ
and η .

Lemma 2.1. Using the same notations as before, if ξ is in C∞(Hπ), η is in
Hπ and X is in g, then ϕξ,η satisfies :

1. Xϕξ,η = ϕdπ(X)ξ,η ,

2. ∆ϕξ,η = ϕdπ(∆)ξ,η ,

3. ∆nϕξ,η = ϕdπ(∆)nξ,η for every n ≥ 1.
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Proof. By definition, we get for every g in G :

(Xϕξ,η)(g) = lim
t→0

ϕξ,η(g exp(tX))− ϕξ,η(g)

t

= lim
t→0

1

t

[〈
π(exp(tX))ξ | π(g−1)η

〉
−
〈
ξ|π(g−1)η

〉]

=
〈
dπ(X)ξ | π(g−1)η

〉
= ϕdπ(X)ξ,η(g)

This proves (1). The assertions (2) and (3) follow from the fact that dπ(X)ξ is
a C∞ vector if ξ is.

Lemma 2.2. Let X be an element of g and ψ be a C∞ function on G such
that ψ and Xψ lie in L1(G); then

∫
G(Xψ)(g)dg = 0.

Proof. Suppose first that ψ ∈ C∞0 (G), the space of C∞ with compact support
on G :

∫

G
(Xψ)(g)dg =

∫

G

(
lim
t→0

ψ(g exp(tX))− ψ(g)

t

)
dg

= lim
t→0

∫

G

ψ(g exp(tX))− ψ(g)

t
dg = 0.

The two last equalities hold because Supp(ψ) is compact and because the measure
dg is invariant by right multiplication. Now, if ψ ∈ C∞(G) is such that ψ and Xψ
lie in L1(G), there exists a compact subset K of G such that

∫
G−K |ψ(g)|dg < ε/3

and
∫
G−K |(Xψ)(g)|dg < ε/3. So we have : | ∫G(Xψ)(g)dg| < | ∫K(Xψ)(g)dg|+ε/3.

For χ ∈ C∞0 (G), χ ≡ 1 on K , 0 ≤ χ ≤ 1, |(Xχ)(g)| ≤ 1, we have
∫

K
(Xψ)(g)dg =

∫

K
(Xψ)(g)χ(g)dg

=
∫

K
(X(ψχ))(g)dg (because Xχ = 0 onK)

= −
∫

G−K
(X(ψχ))(g)dg (because

∫

G
X(ψχ)(g)dg = 0)

= −
∫

G−K
(Xψ)(g)χ(g)dg−

∫

G−K
(Xχ)(g)ψ(g)dg

But | ∫G−K(Xψ)(g)χ(g)dg| ≤ ∫G−K |(Xψ)(g)|dg ≤ ε/3 and
| ∫G−K(Xχ)(g)ψ(g)dg| ≤ ∫G−K |ψ(g)|dg ≤ ε/3.

Corollary 2.3. Let X be an element of g and ψ be a C∞ function on G such
that ψ and Xψ lie in L1(G). If ξ belongs to C∞(Hπ) and η belongs to Hπ , then :

∫

G

〈
ξ|π(g−1)η

〉
(Xψ)(g)dg = −

∫

G

〈
dπ(X)ξ|π(g−1)η

〉
ψ(g)dg.

Proof. The corollary follows from 2.2, 2.1 (1) and from the equality :
∫

G
ϕξ,η(g)(Xψ)(g)dg +

∫

G
(Xϕξ,η)(g)ψ(g)dg =

∫

G
(X(ϕξ,ηψ))(g)dg = 0.

Let X1, . . . , Xn be a basis of g; set ∆ = −∑n
i=1 X

2
i ∈ U(g) The operator

dπ(∆) is essentially selfadjoint [8], and we denote by dπ(∆) its closure and by
D(dπ(∆)) the domain of dπ(∆).
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Corollary 2.4. If ψ is a C∞ function on G such that ψ , Xiψ and X2
i ψ belong

to L1(G) for every i = 1, . . . , n, then for every ξ in D(dπ(∆)) and for every η
in Hπ : ∫

G
ϕξ,η(g)(∆ψ)(g)dg =

∫

G
ϕdπ(∆)ξ,η(g)ψ(g)dg.

Proof. By lemmas 2.1 and 2.3, the equality is true for ξ ∈ C∞(Hπ). If
ξ ∈ D(dπ(∆)), there exists a sequence (ξk)k≥1 in C∞(Hπ) such that

‖ξk − ξ ‖ + ‖dπ(∆)ξk − dπ(∆)ξ ‖ −→
k→∞

0.

Then : |
∫
ϕξ,η(g)(∆ψ)(g)dg −

∫ 〈
dπ(∆)ξ|π(g−1)η

〉
ψ(g)dg|

≤ |
∫ 〈

ξ − ξk|π(g−1)η
〉

(∆ψ)(g)dg|

+ |
∫ 〈

ξk|π(g−1)η
〉

(∆ψ)(g)dg

−
∫ 〈

dπ(∆)ξk|π(g−1)η
〉
ψ(g)dg|

+ |
∫ 〈

dπ(∆)ξk − dπ(∆)ξ|π(g−1)η
〉
ψ(g)dg|

≤ (‖ξ − ξk ‖‖∆ψ ‖1 + ‖dπ(∆)(ξk − ξ)‖‖ψ ‖1) ‖η ‖ −→
k→∞

0.

This finishes the proof.

Proposition 2.5. The following conditions are equivalent :

1. π has a non zero fixed vector.

2. 0 is an eigenvalue for dπ(∆).

3. 0 is an eigenvalue for dπ(∆).

Proof. The implications 1)⇒ 2) and 2)⇒ 3) are obvious.

We prove now 3) ⇒ 1) : Let ξ be a non zero vector in Ker(dπ(∆)). Let
η ∈ Hπ and ψ ∈ C∞0 (G). Then, using Corollary 2.4, we have in the sense of weak
derivatives :

(∆ϕξ,η, ψ) = (ϕξ,η,∆ψ) = (ϕdπ(∆)ξ,η, ψ) = 0.

Therefore, ∆ϕξ,η = 0 as a distribution, and since ∆ is hypo-elliptic (see [8]), ϕξ,η
is a C∞ function on G.

Since η is arbitrary, this implies that g 7→ π(g)ξ is weakly C∞ and so,
by a lemma due to Poulsen (see [15]), g 7→ π(g)ξ is strongly C∞ . Therefore,
dπ(∆)ξ = dπ(∆)ξ = 0. Hence,

n∑

i=1

‖dπ(Xi)ξ ‖2= 〈dπ(∆)ξ|ξ〉 = 0.

Since {Xi}i=1,...,n is a basis of g, this implies that dπ(X)ξ = 0 for every element
of g. Hence, π(g)ξ = ξ for every g in V , a suitable neighbourhood of e in G. As
G is connected, V generates G and so ξ is fixed under the action of G.
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3. Spectral characterisation of almost invariant vectors

The goal of this section is to prove :

Theorem 3.1. For a unitary representation (π,Hπ) of G, the following con-
ditions are equivalent :

1. π almost has invariant vectors.

2. 0 is an approximate eigenvalue of dπ(∆).

3. 0 is a spectral value of dπ(∆).

Proof. The equivalence between 2) ⇔ 3) is clear, since dπ(∆) is the closure
of dπ(∆).

2)⇒ 1)

If 0 is an approximate eigenvalue of dπ(∆), there exists a sequence {ξm}m≥0

of unit vectors in C∞(Hπ) such that lim
m→+∞

‖dπ(∆)ξm ‖= 0. So,

lim
m→+∞

‖dπ(Xi)ξm ‖= 0 for every i = 1, . . . , n.

Let V defined by

V = { Π
1≤i≤n

exp(tiXi) | − 1 ≤ ti ≤ 1}.

V is a compact neighbourhood of e, see [5].

Moreover, for every X in g and every t ≥ 0, we have :

π(exp(tX))ξm − ξm =
∫ t

0
π(exp(sX))dπ(X)ξmds .

Let ε > 0. Then, for 0 ≤ t ≤ 1, we have :

‖π(exp(tXi))ξm − ξm ‖≤ t ‖dπ(Xi)ξm ‖≤ ε/n

for i = 1, · · · , n and m sufficiently large.

This implies that ‖π(g)ξm − ξm ‖≤ ε for every g in V as soon as m is large
enough.

So we proved that, for every ε > 0, there exist (ε, V )-invariant vectors. As
G is connected, V generates G and one easily deduces that π has (ε,K)-invariant
vectors for any compact subset K of G.

The remainder of this section is devoted to the proof of the implication
1)⇒ 3) which is much more involved. For this, we need to recall some facts about
the heat kernel associated with ∆.

Let h denote the closure of ∆ acting on L2(G). As −h is a selfadjoint
and negative definite operator, by the Hille-Yosida theorem (see [16]), −h is the
infinitesimal generator of a strongly continous semi-group of contractions T (t).

It is known (see [13]) that, for every t > 0, T (t) is given by the convo-
lution from the right with a function pt , the heat kernel. The function pt is a
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smooth function on G with positive values and integral 1. We briefly recall its
construction.

Let δ denote the modular function associated with our right Haar measure,
thus : ∫

G
δ(x)f(xy)dy =

∫

G
f(y)dy,

for every integrable function f over G. The right regular representation over
L2(G) is given by :

(ρ(x)ξ)(y) = ξ(yx).

The left regular representation is then given by :

(λ(x)ξ)(y) = δ(x−1)1/2ξ(x−1y).

If ∆ = −
n∑

i=1

X2
i and if h is the closure of ∆ on L2(G), then h and λ(x) commute

for every x in G.

For every t ≥ 0, let T (t) = exp(−th).

We claim that for every t > 0, T (t) is a regularising operator, that is,
for every ξ ∈ L2(G), for every integer m ≥ 1, hmT (t)ξ ∈ D(h). Indeed,
let h =

∫∞
0 λdE(λ) be the spectral decomposition of h. As the function λ 7→

λ2m exp(−2tλ) is bounded on R+ , we have :
∫ ∞

0
λ2m exp(−2tλ)dEξ(λ) =‖hmT (t)ξ ‖2<∞, ∀ξ ∈ L2(G).

By Sobolev’s lemma, T (t)ξ ∈ C∞(G), ∀ξ ∈ L2(G).

By Schwartz Kernel theorem, there exists a C∞ function p′t : G×G→ R+

such that
(T (t)ξ)(x) =

∫

G
p′t(x, y)ξ(y)dy, ∀ξ ∈ L2(G).

Hence ,

(λ(x)T (t)ξ)(x′) = δ(x−1)1/2(T (t)ξ)(x−1x′)

= δ(x−1)1/2
∫

G
p′t(x

−1x′, y)ξ(y)dy

Moreover

(T (t)λ(x)ξ)(x′) =
∫

G
p′t(x

′, y)(λ(x)ξ)(y)dy

= δ(x−1)1/2
∫

G
p′t(x

′, y)ξ(x−1y)dy

= δ(x−1)1/2
∫

G
δ(x)p′t(x

′, xy)ξ(y)dy

As T (t) and λ(x) commute, we deduce that

(∗) p′t(x−1x′, y) = δ(x)p′t(x
′, xy) ∀x, x′, y ∈ G.

Set pt(x) = p′t(e, x).
The above relation (∗) shows that, for all y ∈ G,

pt(x
−1y)δ(x−1) = p′t(e, x

−1y)δ(x−1) = p′t(x, y).
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Hence

(T (t)ξ)(x) =
∫
p′t(x, y)ξ(y)dy =

∫
pt(x

−1y)δ(x−1)ξ(y)dy

=
∫
pt(y)ξ(xy)dy for ξ ∈ L2(G).

Recall that if π is a representation of G, then π(f) is the operator defined for
f ∈ L1(G) by

π(f)η =
∫
f(y)π(y)ηdy for every η ∈ Hπ.

Taking π = ρ and f = pt , we see that :

(ρ(pt)ξ)(x) =
∫
pt(y)(ρ(y)ξ)(x)dy =

∫
pt(y)ξ(xy)dy = (T (t)ξ)(x).

As T (t) = T (t)∗ , we have pt = p∗t , and pt is a solution of the heat equation :

∂pt
∂t

= −∆pt.

Lemma 3.2. ∆pt belongs to L1(G) and

lim
s→0+

‖ pt+s − pt
s

+ ∆pt ‖1= 0, for every t > 0.

Proof. We denote by ρ1 the right regular representation of G on L1(G).
Following ([13], theorem 4, p.599), we set for t > 0 and for f ∈ L1(G) :

P tf =
∫

G
pt(y)ρ1(y)fdy.

By lemma 7.1 and theorem 4 of [13], P tf is an analytic vector in the following
sense : there exists s > 0 such that

∞∑

m=0

1

m!

∑

1≤i1,...,im≤n
‖dρ1(Xi1) . . . dρ1(Xim)P tf ‖1 s

m <∞.

In particular, pt = P t/2pt/2 is analytic in the preceding sense, and hpt ∈ L1(G).
The last assertion is a consequence of mean value theorem and of Lebesgue’s
dominated convergence theorem.

Let now π be a unitary representation of G. Set

S(t) = π(pt), if t > 0 and S(0) = IHπ .

(S(t))t≥0 is a strongly continuous semi-group on Hπ with infinitesimal generator
A. Moreover S(t)∗ = S(t) for every t because pt = p∗t .

By Corollary 10.6, p.41 of [14], A is selfadjoint. More precisely the following
is true.

Lemma 3.3. With the same notations, one has A = −dπ(∆), where dπ(∆)
denotes the closure of dπ(∆).
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Proof. Let ξ be in D(dπ(∆)). We claim that, for every t > 0, S(t)ξ belongs
to D(A) and

AS(t)ξ = −S(t)dπ(∆)ξ.

Indeed, let η in Hπ . Then, for 0 < s ≤ 1 :
〈
S(s)S(t)ξ − S(t)ξ

s
|η
〉

=
1

s
〈π(pt+s)ξ − π(pt)ξ|η〉

=
1

s

∫
(pt+s(g)− pt(g))

〈
ξ|π(g−1)η

〉
dg

=
∫
pt+s(g)− pt(g)

s
ϕξ,η(g)dg.

By lemma 3.2 and corollary 2.4,

lim
s→0+

〈
S(s)S(t)ξ − S(t)ξ

s
|η
〉

=
∫

(−∆pt)(g)ϕξ,η(g)dg

= −
〈
S(t)dπ(∆)ξ|η

〉
.

By theorem 1.3, p.43 of [14], S(t)ξ belongs to D(A) and AS(t)ξ =
−S(t)dπ(∆)ξ . This proves the claim. But ‖S(t)ξ − ξ ‖ −→

t→0
0 and

‖AS(t)ξ − (−dπ(∆)ξ)‖=‖−S(t)dπ(∆)ξ + dπ(∆)ξ ‖ −→
t→0

0.

Since A is a closed operator, ξ belongs to D(A) and Aξ = −dπ(∆)ξ .

So −dπ(∆) ⊂ A, and as they are selfadjoint, we have −dπ(∆) = A.

Lemma 3.4. If (π,Hπ) is a unitary representation of a locally compact group
G with almost invariant vectors and if µ is a probability measure over G, the
spectrum of the operator π(µ) =

∫
π(g)dµ(g) contains 1.

Proof. Let (ξk)k≥1 a sequence of unit vectors in Hπ such that ϕξk,ξk tends to
1 uniformly over every compact set of G. We show that

lim
n→∞

‖π(µ)ξk − ξk ‖= 0.

Let ε > 0; there exists a compact set K in G such that µ(G − K) ≤ ε. So we
have

‖π(µ)ξk − ξk ‖≤
∫

K
‖π(g)ξk − ξk ‖ dµ(g) + 2ε < 3ε

for k sufficiently large.

As we now show, the converse is true under some restrictions on µ. Al-
though we shall not use this result, we give the proof as we think it is of interest.

Lemma 3.5. Let G be a locally compact group and let µ be a absolutely con-
tinuous probability measure with respect to the Haar measure and such that the
support generates topologically G. Let π be a unitary representation on a Hilbert
space Hπ . Then π has almost invariant vectors, if the spectrum of the operator
π(µ) =

∫
π(g)dµ(g) contains 1.



Bekka, Cherix, Jolissaint 103

Proof. By replacing µ by 1
2
(µ+ µ̌), we can assume that µ is symmetric. Then

π(µ) is selfadjoint and there exist unit vectors ξn such that ‖π(µ)ξn − ξn ‖→ 0.

So we have :

lim
n→∞

∫

G
(1− Re 〈π(x)ξn|ξn〉)dµ(x) = 0.

As µ ≥ 0 and 1− Re 〈π(x)ξn|ξn〉 ≥ 0, there exist a subsequence of {ξn}n≥0 (that
we will also denote by {ξn}n≥0 ), such that

lim
n→∞

1− Re 〈π(x)ξn|ξn〉 ≥ 0

for µ-almost every x ∈ G.

On an other hand, by compactness of the unit ball of L∞ gifted with the
weak∗ topology, there exists a subsequence of {ξn}n≥0 (still denoted by {ξn}n≥0 )
and a positive type function ϕ on G such that

lim
n→∞

ϕ(x)− Re 〈π(x)ξn|ξn〉 ≥ 0

almost everywhere with respect to the Haar measure (this is true first for the weak ∗

topology σ(L∞, L1) and the claim follows by the same arguments as before).

As µ is absolutely continuous, we have ϕ = 1 µ-almost everywhere. As ϕ
is a measurable, positive definite function, ϕ is continuous. Hence ϕ = 1 on the
support of µ.

Therefore, ϕ = 1 on the closed subgroup generated by Supp(µ) which is
G, by assumption.

So lim
n→∞

Re 〈π(x)ξn|ξn〉 = 1 almost everywhere on G and by Lebesgue’s

dominated convergence, this is also true in the σ(L∞, L1) topology. By [2], The-
orem 13.5.2, it follows that lim

n→∞
Re 〈π(x)ξn|ξn〉 = 1 uniformly on every compact

subset of G and, hence, lim
n→∞

‖π(x)ξn − ξn‖= 0 uniformly on compact subsets

of G. This shows that π almost has invariant vectors.

Now we are able to finish the proof of Theorem 3.1.

If π almost has invariant vectors, by lemma 3.4, the spectrum of π(pt)
contains 1, for every t > 0.

Now −dπ(∆) is the infinitesimal generator of the semi-group (π(pt))t≥0 so
that 0 is in the spectrum of dπ(∆) by functional calculus and lemma 3.3.

One may wonder whether it is necessary to use, as we did, arguments
involving the heat kernel to prove 1) ⇒ 3). For instance, one might think that
if, for a compact neighbourhood V of e in G, {ξn}n≥0 is a family of (1/n, V )-
invariant C∞ vectors, then ‖dπ(∆)ξn‖ should tend to 0.
The following example shows that this is not always true.

Example 3.6. Let G = R be the real line. We define first, the following family
of unitary representations of degree 2 :

s 7→ πn(s) =

(
exp(is/n) 0

0 exp(isn)

)
.
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We consider the unitary representation π defined by s 7→ ⊕
n≥0

πn(s).

We also define ξn = (0, . . . , 0,
√
n−1
n
,
√

1
n
, 0, . . .) where the nonzero compo-

nents of ξn are in 2nth and (2n+ 1)th places.

By construction the ξn have norm 1. Let I be a compact subset of R.
Then, for every s in I , we have :

‖π(s)ξn − ξn ‖2 = |(exp(is/n)− 1)

√
n− 1

n
|2 + |(exp(isn)− 1)

√
1

n
|2

= |(exp(is/n)− 1)|2 n− 1

n
+ | exp(isn)− 1|2 1

n
.

As | exp(is/n)− 1|2 −→
n→∞

0 uniformly for s in I and as

| exp(isn) − 1|2 ≤ 4, the ξn are (εn, I)-invariant vectors for a sequence {εn}n≥0

with εn > 0 and lim εn = 0.

However this family ξn does not satisfy ‖dπ(∆)ξn ‖ −→
n→∞

0.

In fact,

dπ(∆)ξn = (0, . . . , 0,
1

n2

√
n− 1

n
, n2

√
1

n
, 0, . . .).

Thus, ‖dπ(∆)ξn‖≈ n3/2 ; so it does not tend to 0.

Lemma 3.7. Let h be a selfadjoint operator on a Hilbert space H , with domain
D(h), and such that its spectrum is bounded from below. Then

min(Sp h) = inf
ξ∈D(H)1

〈hξ|ξ〉 , where D(H)1 = {ξ ∈ D(H)| ‖ξ ‖= 1}.

Proof. As h is selfadjoint, its residual spectrum is empty. So every spectral
value is an approximate eigenvalue. For every spectral value λ, there exists a
sequence {ξn}n≥0 in D(h)1 such that 〈hξn|ξn〉 → λ.

Hence,
inf

ξ∈D(h)1
〈hξ|ξ〉 ≤ λ .

Let λ0 = min(Sp(h)) (the minimum exists since the spectrum of h is real, closed
and bounded below). If we apply the last inequality to λ0 , we get :

inf
ξ∈D(h)1

〈hξ|ξ〉 ≤ λ0 .

As for the other inequality, let h =
∫
λdE(λ) be the spectral decomposition of h;

we have 〈hξ|ξ〉 =
∫
λ 〈dE(λ)ξ|ξ〉 and

〈ξ|ξ〉 =
∫ 〈dE(λ)ξ|ξ〉 for every fixed ξ in D(h). Then, for ξ in D(h)1 ,

〈hξ|ξ〉 =
∫

spec(h)
λ 〈dE(λ)ξ|ξ〉 ≥ λ0

∫

spec(h)
〈dE(λ)ξ|ξ〉 = λ0 .

This finishes the proof.
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Definition 3.8. For a unitary representation π of G, we define the constant
k(dπ(∆), G) by

k(dπ(∆), G) = inf
ξ∈D(dπ(∆))1

〈
dπ(∆)ξ|ξ

〉
.

Corollary 3.9. The following holds :

k(dπ(∆), G) = min Sp(dπ(∆)) = inf
ξ∈[C∞(Hπ)]1

n∑

i=1

‖dπ(Xi)ξ ‖2

Proof. The first equality comes from the preceding lemma. On the other hand,
it is clear that

k(dπ(∆), G) ≤ inf
ξ∈[C∞(Hπ)]1

〈
dπ(∆)ξ|ξ

〉
= inf

ξ∈[C∞(Hπ)]1

n∑

i=1

‖dπ(Xi)ξ ‖2 .

To obtain the reverse inequality, it suffices to show that, for ε > 0, there exists a
C∞ vector η of norm 1 such that

|k(dπ(∆), G)− 〈dπ(∆)η|η〉 | < ε .

By definition, there exists ξ in D(dπ(∆)) of norm 1 such that

0 ≤
〈
dπ(∆)ξ|ξ

〉
− k(dπ(∆), G) < ε/3 .

As dπ(∆) is the closure of dπ(∆), there exists a C∞ vector η of norm 1 which is
arbitrarily close to ξ with respect to the graph norm. As,

|k(dπ(∆), G)− 〈dπ(∆)η|η〉 | ≤ |k(dπ(∆), G)− 〈dπ(∆)ξ|ξ〉 |+
|
〈
dπ(∆)ξ|ξ

〉
−
〈
dπ(∆)ξ|η

〉
|+

|
〈
dπ(∆)ξ|η

〉
− 〈dπ(∆)η|η〉 |

this proves the claim.

Theorem 3.10. G has property (T ) if and only if there exists an ε > 0 such
that k(dπ(∆), G) ≥ ε for every unitary representation π of G without non zero
fixed vectors.

Proof. ⇐) If π has almost invariant vectors, by thm 3.1, k(dπ(∆), G) =
min Sp(dπ(∆)) = 0. The assumption then implies that π has non zero fixed vec-
tors, i.e. G has property (T ).
⇒) Assume by contradiction that there exists a sequence of unitary represen-
tations {πn}n≥0 without non zero fixed vector such that k(dπn(∆), G) → 0.
We claim that the representation σ =

⊕
n≥0 πn satisfies k(dσ(∆), G) = 0. By

the assumption, there exists, for every n, a vector ξn ∈ C∞(Hπn )1 such that
〈dπn(h)ξn | ξn〉 < 1/n+ k(dπn(∆), G).

The vector ηn defined by ηn = (0, · · · , 0, ξn, 0 · · ·), with ξn at the n th place,
is a C∞ vector in H1

σ and
〈
dσ(∆)ηn | ηn

〉
=
〈
dπn(∆)ξn | ξn

〉
< 1/n+ k(dπn(∆), G).

Hence, k(dσ(∆), G) = 0 and 0 is in the spectrum of dσ(∆). By Theorem
3.1, this implies that σ has almost invariant vectors. Since G has property T , σ
has a nonzero fixed vector {βn}n≥0 . Choose n so that βn 6= 0. Then βn is a non
zero fixed vector for πn , contradicting the assumption.
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We can define K(∆, G) = inf
π∈G̃∗ k(dπ(∆), G), the Laplacian Kazhdan

constant.

Corollary 3.11. G has property (T ) if and only if K(∆, G) > 0.

This corollary is a direct consequence of the preceding proposition.

Remark 3.12. The above results (Theorem 3.1, Theorem 3.10 and Corollary
3.11) remain true if the vectors X1, . . . , Xn are only assumed to generate g as
a Lie algebra. The relevant facts about the heat kernel associated with the sub-
Laplacian ∆ = −∑n

i=1 X
2
i hold in this more general situation.

4. Comparison with the classical constants

Proposition 4.1. Let G be a connected Lie group and let {Xi}i=1,...,n be a basis
of its Lie algebra. Fix ε > 0 and set S = {exp(tXi) | t ∈ [0, ε], i ∈ {1, . . . , n}}.
Then, for any unitary representation π of G, one has :

κ(G, S, π) ≤ ε
√
k(dπ(∆), G).

In particular κ(G, S) ≤ ε
√
K(∆, G).

Proof. Let π be a unitary representation of G and let ξ ∈ C∞(Hπ).

Then sup
s∈S
‖π(s)ξ − ξ ‖ = sup

t∈[0,ε]
max
i∈{1...n}

‖π(etXi)ξ − ξ ‖

= sup
t∈[0,ε]

max
i∈{1...n}

‖
∫ t

0
π(esXi)dπ(Xi)ξds‖

≤ sup
t∈[0,ε]

max
i∈{1...n}

∫ t

0
‖π(esXi)dπ(Xi)ξ ‖ ds

≤ ε max
i∈{1...n}

‖dπ(Xi)ξ ‖

≤ ε

√√√√
n∑

i=1

‖dπ(Xi)ξ ‖2 .

So

κ(G, S, π) = inf
ξ∈H1

π

sup
s∈S
‖π(s)ξ − ξ ‖

≤ inf
ξ∈(C∞(Hπ))1

sup
s∈S
‖π(s)ξ − ξ ‖

≤ ε inf
ξ∈(C∞(Hπ))1

√√√√
n∑

i=1

‖dπ(Xi)ξ ‖2

= ε
√
k(dπ(∆), G)

This ends the proof.
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Remark 4.2. (i) 4.1 gives an alternative proof of implication (⇒) in 3.10.

(ii) Proposition 4.1 states that :

κ(G, S, π) ≤ ε
√
k(dπ(∆), G),

for every unitary representation π of G. However the converse fails very strongly :
there exists no continuous function f : R+ → R+ , such that f(0) = 0 and

k(dπ(∆), G) ≤ f(κ(G, S, π)),

for every connected Lie group G and for every unitary representation π of G.
Indeed, κ(G, S, π) ≤ 2 for any representation π , and we shall exhibit a sequence
(πk)k≥1 of unitary representations of R such that k(dπk(∆), G) = k2 for every
k ≥ 1.

Let Hk = L2([k,+∞)) et Tk be the selfadjoint operator on Hk defined by :

D(Tk) = {ξ ∈ Hk |
∫ ∞

k
λ2|ξ(λ)|2dλ <∞} and (Tkξ)(λ) = λ ξ(λ).

If πk(t) = exp(itTk), we have :

k(dπk(∆),R) = inf
ξ∈D(Tk)1

〈
T 2
k ξ | ξ

〉
= k2.

Example 4.3. 1. Let G = SL(2,R). Take, as basis of the Lie algebra
sl2(R), the matrices

H =
1

2

(
1 0
0 −1

)
, V =

1

2

(
0 1
1 0

)
, W =

1

2

(
0 1
−1 0

)
.

Then ∆ = −(H2 + V 2 + W 2) is equal to 1
4
(ω + 2W 2) with ω the Casimir

operator in U(sl2(R)).

Let us use the coordinates (x, y, θ) on G, where a group element is expressed
as

g =

( √
y x

0 1√
y

)(
cos θ sin θ
− sin θ cos θ

)
, (x, θ ∈ R, y > 0).

Then, in these coordinates, we find, viewing H, V,W as left invariant vector
fields on G :

∆ = −y2(
∂2

∂x2
+

∂2

∂y2
) + y

∂2

∂x∂θ
+

1

2

∂2

∂θ2

(see S. Lang, [9], Chap. X, §1 and §2).

Let H ∼= G/K , K = SO(2), be the Poincaré upper half space

H = {z = x + iy | x, y ∈ R, y > 0},

with invariant measure y−2dxdy .

Let π be the left regular representation of G on L2 (H). As the functions
on H are independent of θ on the right, we have

dπ(∆) = −y2(
∂2

∂x2
+

∂2

∂y2
)
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which is the Laplace-Beltrami operator on H .

It is well known that Sp(dπ(∆)) ⊆ [1/4; +∞[. Here is a very elementary
argument for this due to Mac Kean [12]: Let f be a real smooth function
on H with compact support. Then

1

4

(∫ ∞

0
f(x, y)2y−2dy

)2

=

(∫ ∞

0
f(x, y)

∂f

∂y
(x, y)y−1dy

)2

≤
∫ ∞

0
f(x, y)2y−2dy

∫ ∞

0

(
∂f

∂y
(x, y)

)2

dy

So
1

4

∫ ∞

0
f(x, y)2y−2dy ≤

∫ ∞

0

(
∂f

∂y
(x, y)

)2

dy.

Hence

1

4
‖f ‖2

L2(H) ≤
∫ +∞

−∞
dx
∫ ∞

0

(
∂f

∂y
(x, y)

)2

dy

≤
∫ +∞

−∞
dx
∫ ∞

0



(
∂f

∂x
(x, y)

)2

+

(
∂f

∂y
(x, y)

)2

 dy

= −
∫ +∞

−∞
dx
∫ ∞

0
f(x, y)

(
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y)

)
dy

= 〈dπ(∆)f |f〉 .

This implies that λ ≥ 1/4 for any λ ∈ Sp(π(∆)).

It is actually known that inf Sp(dπ(∆)) = 1/4, that is, k(dπ(∆), G) = 1/4
(see [9]).

2. Let G be the (three-dimensional) Heisenberg group. Thus G = R3 with
group law

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ +
1

2
(pq′ − qp′)).

The left invariant vectors fields on G corresponding to the coordinates
(p, q, t) are :

P =
∂

∂p
− 1

2
q
∂

∂t
, Q =

∂

∂q
+

1

2
p
∂

∂t
, T =

∂

∂t
.

As is well known, G has for each h ∈ R, h 6= 0, an infinite dimensional
unitary representation ρh on L2(R) so that

dρh(P ) = hD, dρh(Q) = M, dρh(T ) =
h

2πi
I,

where D = 1
2πi

∂
∂x

and M is the multiplication operator by x on L2(R).
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A version of the Heisenberg Uncertainty Principle states that :

‖Mu‖2
2 + ‖Du‖2

2≥
1

2π
‖u‖2

2, ∀u ∈ L2(R)

with equality if and only if u is a multiple of the Gaussian x 7→ exp(−πx2)
(see [3], Corollary (1.37)). Replacing in this inequality u by the function
x 7→ |h|1/4u(h1/2x) yields

‖Mu‖2
2 + ‖hDu‖2

2≥
|h|
2π
‖u‖2

2

with equality if u(x) = |h|1/4 exp(−π|h|x2).

Thus, with ∆ = −(P 2 +Q2 + T 2), we see that

〈dρh(∆)u|u〉 =‖Mu‖2
2 + ‖hDu‖2

2 +
|h|2
4π2
‖u‖2

2≥
(
|h|
2π

+
|h|2
4π2

)
‖u‖2

2

with equality for the above Gaussian function.

Hence, we obtain the exact value for the Kazhdan constant

k(dρh(∆), G) = inf{λ |λ ∈ Sp(dρh(∆))}

=

(
|h|
2π

+
|h|2
4π2

)

3. The following well-known example was pointed out to us by A. Valette. Let
G be a connected compact semi-simple Lie group. Let {Xi}i=1,···,n be a
basis of its Lie algebra g, which is orthogonal relatively to the Killing form.

Then ∆ = −
n∑

i=1

X2
i is the Casimir operator of G. As ∆ ∈ Z(U(g)), the

Schur lemma insures that, for π ∈ Ĝ, dπ(∆) = c I. This constant c can be
determined in the following way : if λ is the highest weight of π and ρ is
the half sum of the positive roots, as we can see in [7], p. 247, we have

k(dπ(∆), G) = 〈λ+ 2ρ |λ〉 =‖λ+ ρ‖2 − ‖ρ‖2 .

Remark 4.4. Let G be a simply connected, connected nilpotent Lie group,
and let π be a unitary irreducible representation of G. In [6], a bound is given for
k(dπ(∆), G) in terms of the distance from 0 of the Kirillov orbit associated to π .
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mathématiques

Université de Metz
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