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Abstract. In the present article we continue the study of the variety
X [M ] associated to pointwise planar normal sections of a natural imbedding
for a flag manifold M .

When M = G/T is the manifold of complete flags of a compact simple
Lie group G, we obtain two results about subspaces of the tangent space
T[T ] (M) , invariant by the torus action, which give rise to real projective
spaces in X [M ] . The first result determines their maximal dimension.
While the other one characterizes those of maximal dimension as tangent
spaces to the inner symmetric space G/K (the one of largest dimension for
the group G) at a fixed point of the natural action of the torus T.

The last section contains a nice application of these results.

1. Introduction

In the present article we continue our study of the variety X [M ] of directions of
pointwise planar normal sections for a manifold of complete flags M . The nature of
this variety gives information about the extrinsic geometry of a natural imbedding
of a flag manifold. For instance, as we saw in [5], this variety happens to be a
projective space if and only if M is an extrinsic symmetric submanifold.

In previous papers [5] and [6] we have gotten some results that, we fell, help
to understand the nature of these varieties. In [5] we found a characterization of
the set of pointwise planar normal sections in terms of the tensors α and D on
a general flag manifold M which indicates that this set is in fact a real algebraic
variety. In that paper we also computed its Euler-Poincaré characteristic showing
that it depends only on the dimension and hence gives little information about the
geometric nature of the flag manifold M.

In [6] we studied the presence of projective subspaces in the variety X [M ] ,
for a manifold of complete flags M = Gu/T . The existence of these subspaces
indicates that the variety X [M ] is rather special. The main result of that paper
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describes a natural family of maximal projective subspaces contained in X [M ] .
On the other hand [6, Th. 4.2] (Theorem 2.2 in the present paper) characterizes
those subspaces of the tangent space T[T ] (M), invariant by the torus action, which
give rise to real projective spaces contained in X [M ] . This result motivated our
interest in a deeper study of these subspaces and gave rise to the present paper.

Here we present the following two theorems on the variety X [M ] , for
M = Gu/T manifold of complete flags, and an interesting consequence of them.
In both of them Gu denotes a compact simply connected simple Lie group.

The meaning of the name presymmetric set is explained at the end of the
next section where all our notation is presented. Our first result identifies the
largest possible cardinality for these sets of positive roots and the second one
shows that each one of them gives the tangent space, at a specific point, of the
inner symmetric space Gu/K (the one of largest dimension d (Gu) for the group
Gu ). These results show an interesting connection of the variety X [M ] and
the geometry of the natural fibration Gu/T → Gu/K . The result obtained as
application of these facts (Theorem 4.1) is a nice expression of this connection.

Theorem 1.1. For each Gu, the number 1
2
d (Gu) is the largest possible cardi-

nality for a presymmetric set.

This means that if p̃ ⊂ T[T ] (M) is invariant by the natural action of the
torus T and gives rise to a projective subspace of X [M ] then dim p̃ ≤ d (Gu) .

Theorem 1.2. For each Gu and each presymmetric set ∆̃ whose cardinality
is 1

2
d (Gu) , the subspace p̃ =

∑
γ∈∆̃

mγ is tangent to the inner symmetric space

Gu/K at a fixed point of the action of the torus T.

It is clear that every tangent space to Gu/K at a fixed point of the torus
action is of this form, i.e. comes from a presymmetric set of roots. So the last
Theorem characterizes the tangent spaces to the inner symmetric space Gu/K at
those points.

Notice that the hypothesis of Theorem 1.2 mean that p̃ ⊂ T[T ] (M) is
invariant by the natural action of the torus T, its dimension is d (Gu) and it
gives rise to a projective subspace of X [M ] .

This paper is organized as follows. In the next section we include the basic
facts obtained in [5] and [6] as well as notations used throughout the paper. In
Section 3 we study presymmetric sets of roots and obtain the proofs of Theorems
1.1 and 1.2. In Section 4 we present the mentioned application of these results.

2. Basic facts

In the present section we introduce some of the basic notation to be used through-
out the paper. All unexplained notation will have the same meaning as in [5].

Let G be a simply connected, complex, simple Lie group and let g be its
Lie algebra. Let h be a Cartan subalgebra of g and ∆ = ∆ (g, h) the root system
of g relative to h. We may write

g = h⊕
∑

γ∈∆+

gγ ⊕ g−γ
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where ∆+ indicates the set of positive roots with respect to some order.

Let us consider in g the Borel subalgebra

b = h⊕
∑

γ∈∆+

g−γ .

Let B be the analytic subgroup of G corresponding to the subalgebra b. B
is closed and its own normalizer in G. The quotient space M = G/B is a complex
homogeneous space called the manifold of complete flags of G.

Let π = {α1, ..., αn} ⊂ ∆+ be a system of simple roots. We may take in
g a Weyl basis [11, III, 5] {Xγ : γ ∈ ∆} and {Hβ : β ∈ π} . The following set of
vectors provides a basis of a compact real form gu of g.





Uγ = 1√
2

(Xγ −X−γ) γ ∈ ∆+

U−γ = i√
2

(Xγ +X−γ) γ ∈ ∆+

iHβ β ∈ π.
(1)

We shall denote by hu the real vector space generated by {iHβ : β ∈ π}
and by mγ that of {Uγ , U−γ} . Then we may write gu = hu⊕

∑
γ∈∆+ mγ = hu⊕m.

Let Gu be the analytic subgroup of G corresponding to gu . Gu is compact
and acts transitively on M which can be written as

M = Gu/T

where the subgroup T = Gu∩B = exp hu is a maximal torus in Gu. The manifold
M is then a compact simply connected complex manifold and it is well known
that it is the orbit of a regular element E ∈ gu by the adjoint action of Gu on gu .
Then we have a natural embedding of M on gu which we may assume isometric
by taking in gu the inner product given by the opposite of the Killing form.

For this embedding we consider the algebraic variety X [M ] of directions
of pointwise planar normal sections of the flag manifold M which was introduced
in [5].

Associated to each simple group Gu we have its family of symmetric spaces
of type I [11, p. 518] and among them, those which are inner (i.e. the spaces in
which the symmetry at each point belongs to the group Gu ). These are, among all
symmetric spaces, the only ones that are related with our algebraic variety X [M ] ,
as we saw in [6]. They are those of the form Gu/K, where K is a subgroup of
maximal rank in Gu. The ones which are not inner in the list in [11, p. 518] are
AI, AII, BDI (p+ q = 2n, p odd, 1 ≤ p ≤ n), EI and EIV.

By conjugating K if necessary, we may assume that K contains T .

Let k be the Lie algebra of K and write gu = k⊕p where p is the orthogonal
complement to k with respect to the Killing form. Then hu ⊂ k and p ⊂ m.

Now we recall a few results from [6] which we need in the present paper.
We shall denote by RP (q) the real projective space associated to a real vector
space q.

Proposition 2.1. [6, 4.1] The tangent space p of the inner symmetric space
Gu/K at [K] gives rise to a projective space RP (p) contained in X [M ] .
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The subspaces p̃ ⊂ m invariant by the natural action of the torus T (see
[5]) are those of the form p̃ =

∑
γ∈∆̃

mγ where ∆̃ is any subset of ∆+ (an example of

this subspace is p of above proposition). For these subspaces we have the following
results.

Theorem 2.2. [6, 4.2] If p̃ =
∑
γ∈∆̃

mγ with ∆̃ ⊂ ∆+ then

RP (p̃) ⊂ X [M ]⇐⇒
(
ε, ρ ∈ ∆̃⇒ ε+ ρ /∈ ∆̃

)
.

The condition ε, ρ ∈ ∆̃⇒ ε+ ρ /∈ ∆̃ is weaker than the one usually given
in the definition of symmetric space. For this reason, in order to simplify our
notation, a subset ∆̃ ⊂ ∆+ with this property will be called a presymmetric set.

For a set A, # (A) will denote its cardinality.

Theorem 2.3. [6, 4.3] Let p be the tangent space of the inner symmetric
space Gu/K at [K] . Then RP (p) is maximal among the projective spaces RP (p̃)
contained in X [M ] , with p̃ of the form p̃ =

∑
γ∈∆̃

mγ for ∆̃ ⊂ ∆+.

3. Presymmetric sets

The list of irreducible symmetric spaces [11, p. 518] indicates that the irreducible
inner symmetric spaces of maximal dimension are those included in the following
table, with their respective dimensions.

Table I
g name N = Gu/K dimN

al AIII SU(l + 1)/S(U(k + 1)× U(k)) l = 2k 1
2
l(l + 2)

SU(l + 1)/S (U (k + 1)× U (k + 1)) l = 2k + 1 1
2

(l + 1)2

bl BDI SO(2l + 1)/SO(l + 1)× SO(l) l(l + 1)
cl CI Sp(l)/U(l) l(l + 1)
dl BDI SO(2l)/SO(l)× SO(l) l even l2

SO(2l)/SO(l+ 1)× SO(l− 1) l odd l2 − 1
e6 EII E6/SU(6)Sp(1) 40
e7 EV E7/(SU(8)/Z2) 70
e8 EVIII E8/(Spin(16)/Z2) 128
f4 FI F4/Sp(3)Sp(1) 28
g2 G G2/SO(4) 8

We shall denote by d (Gu) the dimension dim (Gu/K) indicated in the table.

From Proposition 2.1 and Theorem 2.2 we conclude that if p =
∑
γ∈∆̃

mγ

is the tangent space at [K] , for each one of the spaces in the table, then ∆̃ is a

presymmetric set. It is also clear that the cardinality of ∆̃ is #
(
∆̃
)

= 1
2
d (Gu) .

We denote by Γ the set of positive roots of odd height [13, p. 47] with
respect to the system of simple roots π .

In order to give the proof of Theorem 1.1 we need the following four lemmas.
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Lemma 3.1. #(Γ) = 1
2
d (Gu) .

Proof. It is clear that the statement is true for the exceptional algebras (see
[10, pp. 527-531]). We give a proof for each family of classical simple Lie algebras.

al. For each h ≥ 1, the roots of height h are of the form
∑
k≤i≤k+h−1 αi

with 1 ≤ k ≤ l − h+ 1.

If l = 2k , there are 2 (k − r) positive roots of height 2r + 1 with 0 ≤ r ≤
k − 1. Therefore

#(Γ) =
∑

0≤r≤k−1

2 (k − r) =
1

4
l (l + 2) .

If l = 2k + 1, there are 2 (k − r) + 1 positive roots of height 2r + 1 with
0 ≤ r ≤ k . Therefore

#(Γ) =
∑

0≤r≤k
2 (k − r) + k + 1 =

1

4
(l + 1)2 .

bl (and cl ). For each positive root α let j (α) = j be the number of
coefficients equal to 2 of α with respect to the system π. Clearly 0 ≤ j ≤ l − 1
and the set of roots in Γ with j = 0 has as many elements as in the algebra al,
that is 1

4
l (l + 2) or 1

4
(l + 1)2 according to wether l is even or odd.

Let us assume first that l = 2k. In that set, the amount of odd positive
roots with 1 ≤ j ≤ l − 1 is k − s if j = 2s or j = 2s+ 1. Then

#(Γ) = 1
4
l (l + 2) +

∑
1≤s≤k−1(k − s) +

∑
0≤s≤k−1 (k − s)

= 1
2
l (l + 1) .

Now, if l = 2k + 1 we have k − s + 1 or k − s odd positive roots when
j = 2s or j = 2s+ 1 respectively. Thus

#(Γ) = 1
4

(l + 1)2 +
∑

1≤s≤k(k − s+ 1) +
∑

0≤s≤k−1 (k − s)
= 1

2
l (l + 1) .

dl. The number of elements of Γ such that the coefficients of αl−1 and αl
coincide is the same as for the case bl−2 with the addition of 1

2
l − 1 if l is even

and with the addition of 1
2

(l − 1) if l is odd. On the other hand, the number
of elements such that the coefficients of αl−1 and αl are different is l or l − 1
according to wether l is even or odd.

# (Γ) = 1
2

(l − 1) (l − 2) + 1
2
l − 1 + l = 1

2
l2 l even

# (Γ) = 1
2

(l − 1) (l − 2) + 1
2

(l − 1) + l − 1 = 1
2

(l2 − 1) l odd

Lemma 3.2. For each simple Lie algebra g, if ∆̃ ⊂ ∆+ (g, h) is a presymmetric
set and satisfies

i) #
(
∆̃
)

= 1
2
d (Gu) ,

ii) π ⊂ ∆̃;

then ∆̃ = Γ.
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Proof. Let Λ be the subset of ∆̃ of those roots that have even height. If Λ = φ
the result follows from Lemma 3.1. Let us assume now that Λ 6= φ.

Consider first the case in which g is of classical type. We make the following
claim: Ψ : Λ → Γ defined by Ψ (γ) = γ − αjγ where αjγ is the first simple root
such that γ − αjγ is a root of g, is injective.

If β and γ are two roots in Λ such that Ψ (γ) = Ψ (β) i.e. γ−αjγ = β−αjβ
and either jγ = jβ or the coefficients of γ and β,with respect to π, are all different
from 2 then it is easy to see that γ = β. This proves that the claim is true for the
algebras of type al.

Assume now that the algebra g is of type bl or dl. If our β ∈ Λ has
some of its coefficients, say ki (β) , equal to 2 then β has an even number of
coefficients kt (β) equal to 1 for t < i. Then jβ is the index corresponding to the
first coefficient equal to 1 of β . Under this condition on β the root γ must have
also a coefficient equal to 2 and (for analogous reasons to the previous case) jγ
corresponds also to the first coefficient equal to 1 in the root γ. Then it is clear
that γ = β.

Let us consider now the case cl. If our β ∈ Λ has some of its coefficients,
say ki (β) , equal to 2 then β has an odd number of coefficients kt (β) equal to 1
for t < i. Then jβ is the index corresponding to the first coefficient equal to 1 of
β . Under this condition on β the root γ must have also a coefficient equal to 2
and (for analogous reasons to the previous case) jγ corresponds also to the first
coefficient equal to 1 in the root γ. Then it is clear that γ = β.

For the exceptional Lie algebras one may construct an injective function Ψ
by choosing for each γ ∈ Λ a convenient simple root αj(γ). This is seen by checking
the roots of even height of these algebras. (see [10, pp. 528-530]).

This proves our claim.

Now we observe that if the algebra g is not of type al with l even, then
the maximal root µ has odd height. In this case if ν is of maximal height in Λ,
then there is a simple root αj such that ν + αj ∈ Γ. Since ∆̃ is a presymmetric

set and due to hypothesis (ii) we have that Ψ (Λ) ⊂
(
Γ− ∆̃

)
and ν+αj ∈ Γ− ∆̃.

Therefore

#
(
∆̃
)

= # (Λ) + #
(
Γ ∩ ∆̃

)
= # (Ψ(Λ)) + #

(
Γ ∩ ∆̃

)
< # (Γ)

and by (i) this is a contradiction.

To finish our proof it remains to reach the same contradiction for the
algebras of type al with l even. If µ /∈ ∆̃ the proof is the same as above. Now if
µ ∈ ∆̃ then µ− αl ∈ Γ−

(
Ψ (Λ) ∪ ∆̃

)
and so it also follows that

#
(
∆̃
)
< # (Γ) .

Our proof is now complete.

Lemma 3.3. If ∆̃ ⊂ ∆+ (g, h) is a presymmetric set and the maximal root µ

is in ∆̃ then #
(
∆̃
)
≤ 1

2
d (Gu) .
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Proof. We indicate first some notation that will be used in this proof.

If g is not of type al there is only one root αj ∈ π such that µ − αj ∈ ∆
and µ is the unique positive root for which kj (µ) = 2. In this case set ∆0 =
{γ ∈ ∆+ : kj (γ) = 0} , ∆1 = {γ ∈ ∆+ : kj (γ) = 1} .

When g is of type al, µ − αj ∈ ∆ for j = 1, l (l ≥ 2) and we set
∆0 = {γ ∈ ∆+ : k1 (γ) = kl (γ) = 0} , ∆1 = {γ ∈ ∆+ : k1 (γ) + kl (γ) = 1} .

Then, for any g, we have ∆+ = ∆0∪∆1∪{µ} and by inspection, we observe
that the set ∆1 is union of pairs of positive roots γj and βj such that γj + βj =
µ.

Let now ∆̃ ⊂ ∆+ (g, h) be a presymmetric set containing µ. It is clear that

#
(
∆̃
)

= #
(
∆̃ ∩∆0

)
+ #

(
∆̃ ∩∆1

)
+ 1 and #

(
∆̃ ∩∆1

)
≤ 1

2
# (∆1) .

To study #
(
∆̃ ∩∆0

)
and # (∆1) (and therefore estimate #

(
∆̃
)

) we must
separate the proof into different cases according to the type of the simple Lie
algebra in question. The proof in each case follows the same pattern but the
numbers involved are different. In the first place one does it, by induction, for
the Lie algebras of classical type and then one considers each exceptional algebra
using the result obtained for the classical ones. For sake of brevity we will do only
one case since we think that the reader will have no difficulty in reconstructing the
proof in the other cases.

Let g be an algebra of type al. The lemma is immediate for l = 1, 2. We
proceed with the proof by induction on l. Let l ≥ 3. With ∆0 and ∆1 indicated
above for this case we have # (∆1) = 2 (l − 1) , (∆̃ ∩ ∆0) is a presymmetric set
for an algebra of type al−2 (α2, ..., αl−1 are its simple roots) and by the inductive
hypothesis its cardinality is

#
(
∆̃ ∩∆0

)
≤
{

1
4
l (l − 2) l even

1
4

(l − 1)2 l odd.

Then

#
(
∆̃
)
≤
{

1
4
l (l − 2) + (l − 1) + 1 = 1

4
l (l + 2) l even

1
4

(l − 1)2 + (l − 1) + 1 = 1
4

(l + 1)2 l odd.

Lemma 3.4. For each simple Lie algebra g, if ∆̃ ⊂ ∆+ (g, h) is a presymmetric

set such that #
(
∆̃
)

= 1
2
d (Gu) then there exist elements γ in ∆̃ and σ in the

Weyl group of ∆ (g, h) such that σ (γ) is the maximal root µ.

Proof. Since in each simple Lie algebra the maximal root µ is long, it suffices
to find a long root in ∆̃ (see [13, p. 53]). This is clear when all roots have the
same length. It is necessary to consider only the algebras of type bl, cl, f4 and
g2.

If the algebra g is if type bl then it has only l positive short roots . Since
1
2
d (SO (2l + 1)) = 1

2
l (l + 1) > l there is at least a long root γ in ∆̃.

For the algebras f4 and g2 the conclusion is reached similarly.

If g is of type cl there are l (l − 1) positive short roots while 1
2
d (Gu) =

1
2
l (l + 1) . In this case we will prove the lemma, by induction on l , showing that
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if ∆̃ is a set of positive short roots then its cardinality is less than 1
2
l (l + 1) . For

l = 3 this is true because the set of positive short roots is

{α1, α2, α1 + α2, α2 + α3, α1 + α2 + α3, α1 + 2α2 + α3}

and clearly is not a presymmetric set. For l = 4 the set of positive short roots
has twelve elements and it is easy to find a partition into four subsets of the form
{β, γ, β + γ}. Then any presymmetric set of short root has at most eight elements
and since 1

2
l (l + 1) is 10 in this case, the assertion follows.

Let now l ≥ 5. It is easy to see that ([13, p. 64])

ν = α1 +
∑

1<j<l

2αj + αl

is a short root.

Let us assume first that ν ∈ ∆̃ and consider the following three subsets

∆̃r =
{
γ ∈ ∆̃ : k2 (γ) = r

}
r = 0, 1, 2.

Let us notice that:

i) Since for each short root of the form
∑

1≤j<l kjαj + αl the first nonzero

coefficient kj (1 ≤ j < l) is equal to 1 it follows that ∆̃2 = {v} .
ii) Set ∆1 = {γ ∈ ∆+ : k2 (γ) = 1} . The cardinality of ∆1 is 4l−8 and by

inspection we can see that the set ∆1 is the union of pairs of positive short roots
γj, βj such that γj + βj = ν. Therefore #

(
∆̃1

)
= #

(
∆̃ ∩∆1

)
≤ 2l − 4.

iii) ∆̃0−{α1} is a presymmetric set of positive short roots for a subalgebra

of type cl−2 and then, by the inductive hypothesis, #
(
∆̃0 − {α1}

)

< 1
2

(l − 2) (l − 1) .

Then, since ∆̃0, ∆̃1 and ∆̃2 conform a partition of ∆̃, we have

#
(
∆̃
)
≤ 1

2
(l − 2)(l − 1) + 1 + 2l − 4 + 1 <

1

2
l (l + 1) .

Assume now that ν /∈ ∆̃. By taking any short root γ in ∆̃ there is a σ in the
Weyl group such that σ (γ) = ν . Now σ

(
∆̃ ∪ (−∆̃)

)
∩∆+ is a presymmetric set

of short roots which contains ν and therefore its cardinality is less than 1
2
l (l + 1) .

Then so does ∆̃. This completes the proof of the lemma.

Proof of Theorem 1.1. If the maximal root µ ∈ ∆̃ then conclusion follows from
Lemma 3.3. Let assume now that µ /∈ ∆̃ and #

(
∆̃
)
> 1

2
d (Gu) and consider

Ω ⊂ ∆̃ such that # (Ω) = 1
2
d (Gu) . By Lemma 3.4 there exists a σ in the Weyl

group of ∆ (g, h) such that µ ∈ σ (Ω) . Since µ ∈ σ
(
∆̃
)
, σ

(
∆̃ ∪ (−∆̃)

)
∩∆+ is

a presymmetric set and its cardinality is #
(
∆̃
)
, we reach a contradiction with

Lemma 3.3. This finishes the proof.

Our next objective is the proof of Theorem 1.2 and to that end we give the
following
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Lemma 3.5. For each simple Lie algebra g, if ∆̃ ⊂ ∆+ (g, h) is a presymmetric

set with #
(
∆̃
)

= 1
2
d (Gu) , then there exists an element σ in the Weyl group of

∆ (g, h) such that σ
(
∆̃ ∪ (−∆̃)

)
∩∆+ is the set Γ of positive roots of odd height.

Proof. We separate the proof into different cases according to the type of the
simple Lie algebra in question. We keep the notation from Lemma 3.3 and in the
same manner that in that Lemma, the proof in each case follows the same pattern
but the numbers involved are different. For sake of brevity we will do only the
proof for types al and bl, because we think that the reader will have no difficulty
in reconstructing it in the other cases.

Let g be an algebra of type al. We proceed with the proof by induction on
l. The lemma is immediate for l = 1, 2. Set l ≥ 3. By Lemma 3.4 we may assume
that µ ∈ ∆̃. Due to Lemma 3.2, the assertion that we want to prove is equivalent
to find an element σ in the Weyl group such that the system of simple roots π
is contained in σ

(
∆̃ ∪ (−∆̃)

)
.With ∆0 and ∆1 indicated in Lemma 3.3 for the

algebra al , we have # (∆1) = 2 (l − 1) and (∆̃ ∩ ∆0) is a presymmetric set for
an algebra of type al−2 (α2, ..., αl−1 are its simple roots). By Theorem 1.1, its
cardinality is

#
(
∆̃ ∩∆0

)
≤
{

1
4
l (l − 2) l even

1
4

(l − 1)2 l odd
(2)

and due to the fact that µ ∈ ∆̃,

#
(
∆̃ ∩∆1

)
≤ l − 1. (3)

Now since

#
(
∆̃
)

= #
(
∆̃ ∩∆0

)
+ #

(
∆̃ ∩∆1

)
+ 1 =

{
1
4
l (l + 2) l even

1
4

(l + 1)2 l odd

we get that formulas (2) and (3) are in fact equalities.

Then (∆̃∩∆0) is a presymmetric set of maximal cardinality for an algebra
of type al−2. Thus, by inductive hypothesis, there exists τ1 in the Weyl group of
al−2 such that

τ1

[(
∆̃ ∩∆0

)
∪
(
−(∆̃ ∩∆0)

)]
⊃ {α2, ..., αl−1} .

Let τ be the natural extension of τ1 to the Weyl group of al. Since τ is product
of reflections σαj with 2 ≤ j ≤ l − 1, it is clear that τ (µ) = µ and therefore

{µ, α2, α3, ..., αl−1} ⊂ τ
(
∆̃ ∪ (−∆̃)

)
.

In order to finish the proof, for the algebras of type al , we need to consider
the following four possibilities.

1) α1 and αl ∈ τ
(
∆̃ ∪ (−∆̃)

)
, then taking σ = τ we have the Lemma.

2) Neither α1 nor αl belong to τ
(
∆̃ ∪ (−∆̃)

)
then, keeping in mind that

in formula (3) equality holds, we have that ± (µ− α1) and

± (µ− α1) ∈ τ
(
∆̃ ∪ (−∆̃)

)
.
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Since the reflection σµ corresponding to the maximal root µ satisfies

σµ (αj) =

{
αj j 6= 1, l
αj − µ j = 1, l

by taking σ = σµτ, we have the Lemma.

3) α1 ∈ τ
(
∆̃ ∪ (−∆̃)

)
and αl /∈ τ

(
∆̃ ∪ (−∆̃)

)
. If we call

π′ = {−µ, α1, ..., αl−1}, this is also a system of simple roots for ∆ (g, h) and there-
fore there exists a θ in the Weyl group of al such that θ (π′) = π. Since π′ is

contained in τ
(
∆̃ ∪ (−∆̃)

)
then by taking σ = θτ we have the Lemma.

4) It is clear that the situation αl ∈ τ
(
∆̃ ∪ (−∆̃)

)
and α1 /∈ τ

(
∆̃ ∪ (−∆̃)

)

is totally analogous to (3) and so we also have the Lemma in this case. This
concludes the proof of the Lemma for the algebras of type al.

Let g be an algebra of type bl. We proceed with the proof by induction
on l. The lemma is immediate for l = 1, 2 (b1 ≈ a1 ). Set l ≥ 3. By Lemma 3.4
we may assume that µ ∈ ∆̃. Due to Lemma 3.2, the assertion that we want to
prove is equivalent to find an element σ in the Weyl group such that the system
of simple roots π is contained in σ

(
∆̃ ∪ (−∆̃)

)
.

With ∆0 and ∆1 indicated in Lemma 3.3 for the algebra bl , we have
# (∆1) = 2 (2l − 3) and (∆̃ ∩∆0)− {α1} is a presymmetric set for an algebra of
type bl−2 (α3, ..., αl are its simple roots). By Theorem 1.1, its cardinality is

#
(
(∆̃ ∩∆0)− {α1}

)
≤ 1

2
(l − 2) (l − 1) (4)

and
#
(
∆̃ ∩∆1

)
≤ 2l − 3 (5)

because µ ∈ ∆̃.

Now since

#
(
∆̃
)

= #
(
∆̃ ∩∆0

)
+ #

(
∆̃ ∩∆1

)
+ 1 =

1

2
l (l + 1)

we get that formulas (4) and (5) are in fact equalities and α1 ∈ ∆̃. Then (∆̃ ∩
∆0) − {α1} is a presymmetric set of maximal cardinality for an algebra of type
bl−2. Thus, by inductive hypothesis, there exists τ1 in the Weyl group of bl−2 such
that

τ1

[(
(∆̃ ∩∆0)− {α1}

)
∪ −

(
(∆̃ ∩∆0)− {α1}

)]
⊃ {α3, ..., αl} .

Let τ be the natural extension of τ1 to the Weyl group of bl. Since τ is product
of reflections σαj with 3 ≤ j ≤ l, it is clear that τ (α1) = α1 and therefore

{α1, α3, ..., αl} ⊂ τ
(
∆̃ ∪ (−∆̃)

)
.

If α2 ∈ τ
(
∆̃ ∪ (−∆̃)

)
then taking σ = τ we have the Lemma.

If α2 /∈ τ
(
∆̃ ∪ (−∆̃)

)
then, keeping in mind that in formula (5) equality

holds, we have that ± (µ− α2) ∈ τ
(
∆̃ ∪ (−∆̃)

)
. Since the reflection σµ corre-

sponding to the maximal root µ satisfies

σµ (αj) =

{
αj j 6= 2
α2 − µ j = 2,
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by taking σ = σµτ we conclude the proof for the algebras of type bl.

Proof of Theorem 1.2. In the paper [6, Remark 4.1] we proved that if p is the
tangent space of the inner symmetric space Gu/K at [K] then there exists a root
γ∗ ∈ π such that p is of the form

p =
∑
γ∈∆∗ mγ , where ∆∗ = {γ ∈ ∆+ : kγ(γ

∗) = 1} .

Furthermore by Proposition 2.1 we know that RP (p) ⊂ X [M ] . Now from
Theorem 2.2 and Lemma 3.5 it follows that there exists an element τ in the Weyl
group of ∆ (g, h) such that τ (∆∗ ∪ (−∆∗))∩∆+ = Γ (set of positive roots of odd
height). Then, if pΓ =

∑
γ∈Γ mγ there exists h in the normalizer NGu (T ) of the

maximal torus T in the group Gu such that Ad (h) pΓ = p.

By Lemma 3.5, for our subspace p̃ there exits a g in NGu (T ) such that
Ad (g) p̃ = pΓ. Thus Ad (hg) p̃ = p and since Ad (hg) is orthogonal with respect to
the Killing form in gu, it takes k̃ = p̃⊥ onto k = p⊥. Since the set of fixed points
of the torus T acting on Gu/K is the orbit of the point [K] by the normalizer
NGu (T ) the Theorem follows.

4. Some applications.

We present here some consequences and comments concerning the results of the
previous sections. First of all we introduce some notation and terminology which
is convenient for our purposes.

Let us recall a definition, as given for instance in [12, p. 70]. If Y ⊂ RP n

is an algebraic variety and G (k, n) denotes the Grassmannian of real projective
subspaces RP k contained in the projective space RP n [12, p. 63], we may consider
the set of k -planes contained in Y

Fk (Y ) = {Λ ∈ G (k, n) : Λ ⊂ Y } .

This is an algebraic variety ([12, p. 70]) which is a subvariety of the
Grassmannian. For each k this variety is a very interesting geometric object
naturally associated to the original variety Y which it is usually called the k -th
Fano variety associated to the variety Y .

We want to take a look here to a particular Fano variety associated to the
variety X [M ] for our flag manifold M = Gu/T and present an application of our
results.

Let us take the Fano variety Fd−1 (X [M ]) ⊂ G (d− 1, n− 1) where d =
d (Gu) and n = dim (M) . The points of Fd−1 (X [M ]) are the real projective
subspaces of dimension d− 1 contained in the variety X [M ] . It is clear that the
projective subspaces described in Theorems 2.2 and 2.3 are points in Fd−1 (X [M ])
and so this variety is not empty. In order to write down our result we need to
introduce some notation.

Recall that for each compact connected simple Lie group Gu we have the
corresponding flag manifold of complete flags M = Gu/T and also associated to the
group Gu we have an inner symmetric space Gu/K of maximal dimension d (Gu)
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(see Table I). There is one of them for each group Gu and so the flag manifold
M determines uniquely the inner symmetric space and hence the subgroup K
(without loosing generality we may assume T ⊂ K ).

Associated to the subgroup K we have its normalizer NGu (K) in the group
Gu. It is well known that the Lie algebra of NGu (K) coincides with that of K.
This means that the quotient group Σ = NGu (K) /K is discrete and hence finite.

There is a right free action of the group Σ on the symmetric space Gu/K
(compare [2, p. 24]) given by

(gK).(hK) = ghK, for hK ∈ Σ .

In this situation we may consider the quotient of the symmetric space by the free
action, which is then a manifold, and denote it by Σ \ (Gu/K) .

As usual we denote by χ(L) the Euler-Poincaré characteristic of the topo-
logical space L. Theorems 1.1 and 1.2 in this paper and results from [6] allow us
to present the following theorem concerning the Euler-Poincaré characteristic of
the variety Fd−1 (X [M ]) .

Theorem 4.1. The Euler-Poincaré characteristic of the (d− 1) − th Fano
variety associated to the variety X [M ] coincides with that of the locally symmetric
manifold Σ \ (Gu/K); i.e.

χ(Fd−1 (X [M ])) = χ (Σ \ (Gu/K)) .

Proof. Set o = eT ∈ M. The linear action (via AdGu (T )) of T on m = To (M)
induces an action of T on the Grassmannian

G (d, To (M)) = G (d− 1, RP (To (M))) = G (d− 1, n− 1) .

Since the variety X [M ] is defined in terms of the invariant tensors α an D it
is itself invariant by the action of the torus T (see [5, pp. 227 and 231]). This
clearly implies that there is a natural action of the torus T on the Fano variety
Fd−1 (X [M ]) .

It is a classical fact (see for instance [1, p. 163, 10.9] or [5, p. 234]) that the
Euler-Poincaré characteristic of a compact topological space supporting an action
of a torus, is equal to that of its fixed point set. For our action of T on Fd−1 (X [M ])
the fixed point set clearly consists of those subspaces of the form RP (q) where q

is a subspace of To (M) invariant by the torus action on this tangent space and
such that RP (q) ⊂ X [M ] . Theorem 2.2 identifies these subspaces precisely, and
so we see that the Euler-Poincaré characteristic of Fd−1 (X [M ]) is just the number
of these subspaces.

On the other hand Theorem 1.2 indicates that all these subspaces are
tangent to the symmetric space Gu/K at the fixed points of the natural action of
the torus T ⊂ K on Gu/K.

Since that action of the torus has only isolated fixed points it is also clear,
and well known, (by the same classical result mentioned above) that the Euler-
Poincaré characteristic of Gu/K is precisely the cardinality of this finite set Θ of
fixed points i.e. χ (Gu/K) = |Θ| .
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Since the action of Σ on Gu/K is free the space Gu/K is a |Σ|-sheeted
covering of the manifold Σ \ (Gu/K) and then

χ (Σ \ (Gu/K)) =
χ (Gu/K)

|Σ| =
|Θ|
|Σ| .

The group Σ acts simply transitively on the set

Ω = {s ∈ Gu/K : (Gu)s = K} .

In fact, if s = uK ∈ Ω then uKu−1 = K which means u ∈ NGu (K) and so the ac-
tion is transitive (we already mentioned that the action of Σ is free). Of course the

same thing is true for each of the sets hΩ =
{
h(s) ∈ Gu/K : (Gu)h(s) = hKh−1

}

for each h ∈ NGu (T ) .

Now we observe that the union of all these sets is Θ

Θ =
⋃

h∈NGu(T )

hΩ

(since the sets hΩ are in fact orbits of Σ, they either coincide or they are disjoint),
notice that h ∈ NK (T ) implies hΩ = Ω;

For each s ∈ Ω the isotropy subalgebra is precisely k and so the tangent
spaces Ts (Gu/K) (the subspace p orthogonal to k by the Killing form in gu )
coincide as subspaces of m. Thus they give a single RP (p) contained in X [M ]
and therefore one point in Fd−1 (X [M ]) fixed by the torus T. Naturally the same

thing is true for each of the sets hΩ. This proves that there are |Θ|
|Σ| points in the

fixed point set F (Fd−1 (X [M ]) , T ) and concludes de proof of the theorem.

The group Σ is a well known object associated to the inner symmetric space
Gu/K. It ”counts”, in some sense, how many points in that space have the same
isotropy subgroup or, as we have preferred to do above, how many points have
”the same” tangent space (as long as we identify the tangent space at a point with
the orthogonal complement of the isotropy subalgebra in gu with respect to the
Killing form).

The reader may find a list of the corresponding groups Σ for the classical
irreducible inner symmetric spaces for which it is not trivial in [2, p. 24]. The
authors indicate there that the group is trivial for G2/SO(4).

We have been able to see that the group Σ is also trivial for the symmetric
spaces F4/Sp (3)Sp (1) and E6/SU (6)Sp (1) . This was obtained from the last
theorem, by computing specifically all the presymmetric sets of roots for the
algebras f4 and e6 and noticing that the number of those sets coincides with
the Euler-Poincaré characteristic of the symmetric spaces.

There are many problems that we leave open because their consideration
seems beyond the scope of our methods.
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[5] Dal Lago, W., A. Garćıa, and C. Sánchez, Planar normal sections on the
natural imbedding of a flag manifold, Geom. Dedicata 53 (1994), 223–235.

[6] —, Maximal projective subspaces in the variety of planar normal sections
of a flag manifold, Geom. Dedicata, to appear.

[7] Deprez, J., and P. Verheyen, Immersions with circular normal sections
and normal sections of product immersions, Geom. Dedicata 20 (1986),
335–344.

[8] Ferus, D., Immersionen mit paralleler zweiter Fundamentalform: Beispiele
und Nicht-Beispiele, Manuscripta math. 12 (1974), 153–162.

[9] —, Symmetric submanifolds of Euclidean spaces, Math. Ann. 247 (1980),
81–93.

[10] Freudenthal, H., and H. deVries, “Linear Lie Groups, ” Academic Press,
New York and London, 1969.

[11] Helgason, S., “Differential Geometry, Lie Groups and Symmetric Spaces,”
Academic Press, New York and London, 1978.

[12] Harris, J., “Algebraic Geometry. A First Course, ” Graduate Texts in
Mathematics 133, Springer Verlag Berlin etc., 1992.

[13] Humphreys, J. E., “Introduction to Lie Algebras and Representation The-
ory,” Springer-Verlag Berlin etc., 1972.

Fa.M.A.F.

Universidad Nacional de Córdoba
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