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Abstract. Let G be a Lie group with finitely many components and

K a compact subgroup with identity component K0 . The normalizer,

respectively, centralizer of K in G is denoted by N(K,G) , respectively,
Z(K,G) . It is shown that N(K,G)/K0Z(K,G) is finite. This is applied to a

problem in theoretical probability theory, namely, to the characterisation of
operator semistable measures. The article explains these concepts and puts

the present application into perspective.

1. A Structure Theorem on Lie Groups and Some Consequences

Motivated by applications to probability theory, notably to semistable laws on
vector spaces and groups which we shall discuss in detail in Section 3 below, we
present some results on the structure of Lie groups and locally compact groups
which are of independent interest.

If K is a compact subgroup of a locally compact group L and C is
a closed subgroup isomorphic to either R or Z such that L = KC , then the
structure of L is known (see e.g. [14], pp.60–64; cf. also [11].)

Example 1.1. (The infinite dihedral group.) Let S0 be the multiplicative
group of integers {1,−1} . On the product Z×S0 we consider the multiplication
(m1, ε1)(m2, ε2) = (m1 + ε1·m2, ε1ε2). Then K := {0} × S0 is one maximal
compact and not normal subgroup and C := Z×{1} is an infinite cyclic normal

subgroup. In fact, each of the subsets K
def
= {(0, 1), (m,−1)} is a maximal

compact subgroup. Note that no nonidentity element commutes with (0,−1).

We shall make frequent reference below to the special case that K is
assumed to be normal; Example 1 shows how this may fail, and the structure
theorems ([14], p.61) say that (at least in the case C ∼= R) it is not far from the
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worst that can happen. If K is normal and C ∼= R , the subgroup C can be
chosen to commute elementwise with K , i.e., L ∼= K × R as we shall reprove in
1.9 below. In the case that K is open, i.e. C ∼= Z , the situation is more involved.

Let us use the following notation. If A is a subgroup of a group B , we
denote by

N(A,B) = {b ∈ B : bA = Ab} the normalizer and by

Z(A,B) = {b ∈ B : ba = ab for all a ∈ A} the centralizer

of A in B . Note that AZ(A,B) = Z(A,B)A ⊆ N(A,B).

Example 1.2. Let K1 be a compact group and α an automorphism of the
topological group K1 . Form L = K1 × Z and define a multiplication

(k1,m1)(k2,m2) = (k1α
m1(k2),m1 +m2).

Then K := K1 × {0} is a compact normal subgroup of L and C := {1} × Z is
infinite cyclic and discrete. An element (k,m) is in the centralizer Z(K,L) if
and only if αm = 1 and k is in the center Z(K1, K1). Thus

Z(K,L) =

{
Z(K1, K1)× nZ if α has finite order n,
Z(K1, K1)× {0} otherwise.

In the former case, KZ(K,L) has finite index n in L , and KZ(K,L) = K1×nZ
is a direct product.

Example 1.2.1. We write K1×αZ for the semidirect product L introduced
in 1.2. Let T = R/Z be the torus and set K1 = T2 . Then by duality we have
Aut(T2) ∼= AutZ2 ∼= GL(2,Z). Since GL(2,Z) contains elements of infinite

order such as

(
1 1
0 1

)
we have an α ∈ AutT2 of infinite order. Then T2×αZ

is a two dimensional metabelian Lie group with Z(K,L) = K = T2×{0} . In this
Lie group, the maximal compact normal subgroup is far from splitting directly.

In Exercise 1.11 below we shall observe that Example 1.2.1 is typical in
the following sense: if the dimension of the center of K1 is < 2 the phenomenon
illustrated by Example 1.2.1 cannot occur.

Examples of the type of 1.2 arise as follows: Let K be a compact
subgroup of a topological group G and let a be an element of the normalizer
N(K,G) of K in G such that C := 〈a〉 = {an : n ∈ Z} is an infinite discrete
subgroup. Then L := KC ⊆ G is isomorphic to K×αZ with α ∈ Aut(K) given
by α(k) = aka−1 . The order of α is n iff n is the smallest natural number such
that an ∈ Z(K,G).

We shall show that whenever G is a Lie group with finitely many compo-
nents, then for each a ∈ N(K,G) there is an element k in the identity component
of K and a natural number e such that kae ∈ Z(K,G) . In the case that 〈a〉
is infinite discrete, this entails that K〈ae〉 = K〈kae〉 is isomorphic to the direct
product K × Z .

This turns out to be a fairly quick consequence of a noteworthy structure
theorem on Lie groups. If H is a topological group, then H0 denotes its identity
component. Our main theorem contributes to the finiteness results surrounding
the concept of a Weyl group in a general vein.
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Theorem A. Let G be a Lie group with finitely many components and K a
compact subgroup. Then N(K,G)/K0Z(K,G) is finite.

The proof will be given in Section 2. Here we firstly point out sufficient
conditions which secure the hypothesis that G has finitely many components
and afterwards draw some consequences of Theorem A.

Lemma 1.3. Let A be a subgroup of a topological group G and let K be a
subgroup of A . Then

N(K,A)/K0Z(K,A) ∼= N(K,A)K0Z(K,G)/K0Z(K,G) ⊆ N(K,G)/K0Z(K,G).

In particular, if N(K,G)/K0Z(K,G) is finite, then N(K,A)/K0Z(K,A) is
finite as well.

Proof. We note that N(K,A) = N(K,G)∩A and Z(K,A) = Z(K,G)∩A and
thus, by the modular law, K0Z(K,A) = K0Z(K,G)∩A = K0Z(K,G)∩N(K,A).
Thus

N(K,A)/K0Z(K,A) = N(K,A)/
(
N(K,A) ∩K0Z(K,G)

)

∼= N(K,A)K0Z(K,G)/K0Z(K,G) ⊆ N(K,G)/K0Z(K,G).

The Lemma follows.

Corollary 1.4. If A is a closed subgroup of a real or complex affine algebraic
group and K a compact subgroup of A , then N(K,A)/K0Z(K,A) is finite.

Proof. Any real or complex affine algebraic group is contained up to isomor-
phism, as a closed subgroup, in some general linear group G = GL(n,R) for
a suitable n . Thus A is a real Lie group contained in some group GL(n,R),
n ≥ 1, which is a Lie group with two components. Thus Theorem A applies and
shows the finiteness of N(K,G)/K0Z(K,G).

In particular, the 2-dimensional metabelian Lie group of Example 1.2.1
cannot be (isomorphic to) a subgroup of a real or complex affine algebraic group;
in particular, it is not isomorphic to any matrix group.

Corollary 1.5. Let H be a connected Lie group. If K is a compact subgroup
of the automorphism group AutH , then N(K,AutH)/K0Z(K,AutH) is finite.

Proof. Every automorphism ϕ:H → H determines uniquely a unique lifting
to an automorphism ϕ̃: H̃ → H̃ of the universal covering, and ϕ 7→ ϕ̃ : AutH →
Aut H̃ is an isomorphism onto the closed subgroup of those automorphisms of
H̃ which preserves the kernel of the covering map H̃ → H . On the other hand,
Aut H̃ is a Lie group which is isomorphic to the linear Lie group Aut h where
h is the Lie algebra of H and H̃ . But Aut h is an affine algebraic subgroup of
GL(h). Hence Corollary 1.4 proves the assertion.

Corollary 1.6. Let K be a compact subgroup of GL(V ) for a finite dimen-
sional real vector space V . Then N

(
K,GL(V )

)
/K0Z(K,GL(V )

)
is finite.

Proof. This is an immediate consequence of Corollary 1.5 which we apply
with H = V .
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Now we draw two conclusions from Theorem A; the first is Lie group
theoretical, the second is arithmetical and group theoretical.

The Lie algebra of a Lie group G will be denoted by L(G); we abbreviate
L(G) by g and L(K) by k .

Corollary B. Let G be a Lie group with finitely many components and K a
compact subgroup. Then L

(
N(K,G)

)
= k + L

(
Z(K,G)

)
.

Proof. By Theorem A, the Lie group N(K,G)/K0Z(K,G) is finite, and thus
K0Z(K,G) is open in N(K,G). Consequently, L

(
N(K,G)

)
= L

(
K0Z(K,G)

)
.

But L
(
K0Z(K,G)

)
= L(K0) + L

(
Z(K,G)

)
. Since L(K0) = L(K) = k , the

assertion follows.

We remark that in the case that K and G are connected, the Lie algebra
L
(
N(K,G)

)
is the normalizer of k in g , and L

(
Z(K,G)

)
is the centralizer of k

in g .

Corollary 1.7. Let G be a Lie group with finitely many components and K
a compact subgroup. Then the following conditions are equivalent.

(1) K is open in N(K,G) .

(2) k = L
(
N(K,G)

)
.

(3) L(Z(K,G)
)
⊆ k .

(4) Z(K,G)0 ⊆ K .

Proof. (1) and (2) are equivalent since for any closed normal subgroup A in
a Lie group B the relation L(A) = L(B) is equivalent to A0 = B0 , and that
is equivalent to A being open in the Lie group B . By Corollary B we have
L
(
N(K,G)

)
= L(K)+L

(
Z(K,G)

)
. Hence assertions (2) and (3) are equivalent.

But (3) and (4) are both equivalent to Z(K,G)0 ⊆ K0 .

Now we draw a second conclusion. For this purpose recall that the
exponent of a group F is

e(F ) =
{

min{n ∈ N : (∀g ∈ G) gn = 1} if {|〈g〉| : g ∈ F} is bounded,
∞ otherwise.

If F is a finite group, then the exponent e(F ) is finite.

Lemma 1.8. If K is a subgroup of a group G and if the exponent e =
e
(
N(K,G)/K0Z(K,G)

)
is finite, then for all a ∈ N(K,G) there is a k ∈ K0

such that (kae)x = x(kae) for all x ∈ K . In particular, K〈ae〉 = K〈kae〉
and the factors in the last product commute elementwise. Accordingly, (x, n) 7→
x(kae)n:K × Z → K〈ae〉 is an isomorphism of groups.

Proof. By hypothesis and the definition of e we have ae ∈ K0Z(K,G), i.e.,
there is a k ∈ K0 such that ae = k−1z for some z ∈ Z(K,G). The claim
follows.

Now Lemma 1.8 and Theorem A imply
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Corollary C. Let G be a Lie group with finitely many components and K a
compact subgroup. Let e be the exponent of N(K,G)/K0Z(K,G) . Then for all
a ∈ N(K,G) there is a k ∈ K0 such that (kae)x = x(kae) for all x ∈ K .

Moreover, (x, n) 7→ x(kae)n:K×Z→ K〈ae〉 is a morphism of topological
groups which is an isomorphism if and only if K ∩ 〈ae〉 = {1} .

Corollary D. Let G be a linear Lie group and K a compact normal subgroup
such that G/K is either isomorphic to R or to Z . Then in the first case

(i) G ∼= K × R .

In the second case,

(ii) there is a natural number e such that for each a ∈ G there is an element
k ∈ K0 such that kae ∈ Z(K,G) . Moreover, if a /∈ K , then the open
normal subgroup K〈ae〉 of G is isomorphic to K ×Z . If 〈Ka〉 = G/K ,
then K〈ae〉 has index e in G .

Proof. Since K is normal in G , we have N(K,G) = G .

Case 1. Here K is not open in G . Hence by Corollary 1.7, Z(K,G)0 6⊆
K , and since the only connected subgroups of R are {0} and R , we have
G = KZ(K,G)0 . Since Z(K,G)0/(Z(K,G)0∩K) ∼= R , there is a one parameter
subgroup E ∼= R contained in Z(K,G)0 . Then K ∩ E = {1} and G = KE .
Therefore (k, x) 7→ kx:K ×E → G is an isomorphism.

Case 2. Since G is a linear Lie group, Corollary 1.4 (or Corollary 1.6)
shows that G/K0Z(K,G) is finite. Now Corollary C applies and shows that
(x, n) 7→ x(kae)n:K × Z → K〈ae〉 is an isomorphism of topological groups.
Clearly G = K〈a〉 implies |G/K〈ae〉| = |Z/eZ| = e .

The structure of an extension of a compact normal subgroup by a group
isomorphic to R has long been settled. (See e.g [4]; or [14], Proposition 9.4; or
[11], Lemma 1.25.) We can use the present results to present an independent
proof.

Remark 1.9. Let K be a compact normal subgroup of a locally compact group
G such that G/K ∼= R . Then G ∼= K × R .

Proof. Claim 1. G/G0 is compact. Again, since the only connected subgroups
of R are {0} and R , we know that KG0/K = G/K and thus G = KG0 . Hence
G/G0 is compact as asserted.

Claim 2. K contains a compact normal subgroup N of G such that
G/N is a Lie group. There are arbitrarily small compact normal subgroups N
of G such that G/N is a Lie group. (See e.g. [23], p.175, Theorem 4.6.) As K
is the unique maximal compact normal subgroup, N ⊆ K follows.

Now G/N is a Lie group with finitely many components by Claims 1 and
2, while K/N is a compact normal subgroup and (G/N)/(K/N) ∼= G/N ∼= R .
Then by Corollary D we know G/N ∼= K/N × R . Then G ∼= K × R follows at
once.

A straightforward generalisation of the Corollary D, G/K ∼= Z along the
lines of Remark 1.9 is not possible. Let K∗ = (Z/2Z)Z and let α:Z→ Aut(K∗)
be defined by

α(m)((xn)n∈Z) = (x(n−m))n∈Z.
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Set G = K∗×αZ , K = K∗ × {0} . Then G/K ∼= Z and the unique smallest
nondegenerate compact normal subgroup is K . Also K0Z(K,G) = K . The
essential conclusions of Corollary D fail. What remains is the following exercise.

Exercise 1.10. Let G be a locally compact group and K a compact normal
subgroup such that G/K ∼= Z and that G has arbitrarily small compact normal
subgroups N such that G/N is a linear Lie group. Then there is a natural
number e such that for each a ∈ G \K the open normal subgroup K〈ae〉 of G
is isomorphic to K × Z . If 〈Ka〉 = G , then K〈ae〉 has index e in G .

The following exercise rounds off the discussion illustrated by Example
1.2.1 which is shown to depend on the dimension of the center of K1 .

Exercise 1.11. Let K1 be a compact connected Lie group, let Z be the
identity component of the center, and let S be the (semisimple) commutator
subgroup of K1 . The automorphism group of S is a finite extension of the inner
automorphism group of S and is therefore compact. Now α 7→ (α|Z, α|S) :
Aut(K1) → Aut(Z) × Aut(S) is an embedding and thus Aut(K1) is compact
if Aut(Z) is compact, and this is the case if and only if dimZ < 2. If

Aut(K1) is compact, then the natural semidirect product P
def
= K1× Aut(K1)

is a compact Lie group G with the normal subgroup K
def
= K1 × {1} . Trivially

the number of components of G is finite. Hence, by Corollary C there is a natural
number e such that for any α ∈ Aut(K1) there is an element k ∈ K1 such that

(kα, α
e)

def
= (k, α)e commutes elementwise with K .

Now let α ∈ Aut(K1) and recall the notation of 1.2.1. Then σ:K1×αZ →
P , σ(x,m) = (x, αm) is injective. Hence (kα, e) commutes elementwise with
K1 × {0} , and K1 × eZ is a direct product.

2. The proof of Theorem A.

The proof proceeds through several steps.

Case 1. The case that K is connected and abelian. Let K be a connected
compact abelian subgroup of a Lie group G . Since K is compact, each adX ,
X ∈ k is semisimple because eR· adX = Ad(expR·X) is a compact subgroup
of GL(g). Hence there is a Cartan subalgebra h of g containing k . (See [1],
Chap. 7, §2, no 3, Proposition 10). Since the group exp k = K is compact and

contained in the nilpotent Lie subgroup H
def
= exp h , it is central in H . (Recall

that any connected nilpotent Lie group has a unique maximal compact subgroup
which is central.) Hence [k, h] = {0} = [k, k] . Now Theorem 4.9 on p. 131 of
[13] applies and shows that the Weyl group W(k, g) is finite. By Lemma 4.3 on
p. 128 of [13] this means that N(K,G0)/Z(K,G0) is finite. From Lemma 1.3,
recalling K = K0 ⊆ Z(K,G), we note

N(K,G0)/Z(K,G0) ∼= N(K,G0)Z(K,G)/Z(K,G),

so this last group is finite. Further N(K,G)/
(
N(K,G)∩G0) ∼= N(K,G)G0/G0 .

Now assume that G/G0 is finite. Then the group N(K,G)/N(K,G0), being
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isomorphic to a subgroup of G/G0 , is finite. Then N(K,G)/N(K,G0)Z(K,G),
as a quotient of N(K,G)/N(K,G0), is finite, too. Hence N(K,G)/Z(K,G) is
finite as asserted. Since K = K0 ⊆ Z(K,G), Theorem A is proved in this case.

Case 2. The case that K is connected. Any compact group is the product of
the identity component Z0(K) of the center and the commutator group K ′ which
is a semisimple Lie group; both of these subgroups are (fully) characteristic. We
construct morphisms

ϕ:N(K,G)/KZ(K,G)→ N(Z0(K), G)/Z(Z0(K), G),

ψ:N(K,G)/KZ(K,G)→ Aut(K ′)/Int(K ′).

The range of ϕ is finite in view of the case that K is connected abelian, the range
of ψ is finite by a result of Iwasawa’s [15]. If we can show that kerϕ∩kerψ = {1} ,
the assertion of Theorem A follows in this case.

Now N(K,G) ⊆ N(Z0(K), G) and Z(K,G) ⊆ Z(Z0(K), G). Moroever,
K ′ ⊆ Z(Z0(K), G) and Z0(K) ⊆ Z(Z0(K), G) whence

KZ(K,G) ⊆ Z0(K)K ′Z(Z0(K), G) ⊆ Z(Z0(K), G).

Hence ϕ is well defined by ϕ
(
nKZ(K,G)

)
= nZ(Z0(K), G) and has the kernel

Z(Z0(K), G)/KZ(K,G).

Recall that K ′ is characteristic, hence normal in N(K,G). Each in-
ner automorphism In , In(k) = nkn−1 , n ∈ N(K,G), k ∈ K ′ , gives us a
morphism n 7→ In:N(K,G) → Aut(K ′). This morphism maps KZ(K,G) =
K ′Z0(K)Z(K,G) = K ′Z(K,G) to the subgroup of inner automorphisms Int(K ′)
and therefore defines ψ via ψ

(
nZ(K,G)

)
= In·Int(K ′). The kernel of this mor-

phism is KZ(K ′, G)/KZ(K,G). Hence

kerϕ ∩ kerψ =
(
Z(Z0(K), G) ∩KZ(K ′, G)

)
/KZ(K,G).

Now
K ′ ⊆ Z(Z0(K), G) and KZ(K ′, G) = K ′Z(K ′, G).

Hence the numerator equals K ′
(
Z(Z0(K), G) ∩ Z(K ′, G)

)
by the modular law,

and Z(Z0(K), G) ∩ Z(K ′, G) = Z(K,G) because K = Z0(K)K ′ . It follows
that kerϕ ∩ kerψ is indeed singleton. Thus Theorem A is proved for connected
K = K0 .

Case 3. The general case. Since K0 is characteristic in K we have N(K,G) ⊆
N(K0, G). By the preceding N(K0, G)/

(
K0Z(K0, G)

)
is finite, and then

(
N(K,G)Z(K0, G)

)
/
(
K0Z(K0, G)

) ∼= N(K,G)/
(
N(K,G) ∩K0Z(K0, G)

)

is finite. We claim that

(
N(K,G) ∩K0Z(K0, G)

)
/K0Z(K,G)

is finite. This will imply that N(K,G)/K0Z(K,G) is finite, as asserted in
Theorem A.
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We consider the morphism α:N(K,G) → Aut(K), α(n) = In|K .
Then kerα = Z(K,G). Let IntK0

(K) = α(K0). By a result of Iwasawa’s
[15], this group is the identity component Aut0(K) of Aut(K). Thus α in-
duces an injective morphism α0:N(K,G)/K0Z(K,G)→ Aut(K)/Aut0(K). Let
AutK0

(K) be the group of automorphisms of K fixing K0 elementwise. Then
α0

(
N(K,G) ∩K0Z(K0, G)/K0Z(K,G)

)
is contained in

AutK0
(K) Aut0(K)/Aut0(K) ∼= AutK0

(K)/
(

AutK0
(K) ∩Aut0(K)

)

= AutK0
(K)/

(
AutK0

(K) ∩ IntK0
(K)

)

= AutK0
(K)/ IntZ(K0)(K).

It thus suffices for our purposes to verify that AutK0
(K)/ IntZ(K0)(K) is finite.

Now let AutK0,K/K0
(K) be the subgroup of AutK0

(K) of all automorphisms
σ ∈ Aut(K) with σ(k) ∈ kK0 . Then IntK0

(K) ⊆ AutK0,K/K0
(K) ⊆ AutK0

(K).
The group AutK0,K/K0

(K)/ IntZ(K0)(K) is finite according to Iwasawa [15]. It
therefore remains to show that

AutK0
(K)/AutK0,K/K0

(K)

is finite. Indeed, we notice that the homomorphism β: AutK0
(K)→ Aut(K/K0),

β(σ)(kK0) = σ(k)K0 has the precise kernel AutK0,K/K0
(K) and that the group

Aut(K/K0) is finite because K is a compact Lie group, whence K/K0 is finite.
Thus AutK0

(K)/ kerβ is finite. This completes the proof of the theorem.

3. Applications to probability theory

Theorem A, as we pointed out in the introduction, was motivated by an attempt
to describe the structure of certain closed subgroups of GL(Rd) which arise in
the theory of infinitely divisible probability measures on Rd . We describe the
situation. Let R×+ denote the multiplicative group of positive real numbers. For
a locally compact group G we let denote Aut(G) its group of automorphisms
endowed with the standard refined compact open topology. If G is a connected
Lie group, then Aut(G) is isomorphic to a subgroup of Aut(g) ⊆ GL(g) (with
the Lie algebra g of G) and is therefore a linear Lie group. In particular, every
subgroup of Aut(G) has a countable basis for its topology. For any group G we
let Z(G) denote the center of G . If G is a Lie group, g is its Lie algebra, and
z(g) is the Lie algebra of Z(G).

Let µ• := (µt)t≥0 be a continuous convolution semigroup. Then µ0 is
an idempotent, hence µ0 = ωL a Haar measure on a compact subgroup L. To

any probability measure µ define µ̃ by µ̃(A)
def
= µ(A−1) for Borel sets A .

Definition 3.1. For a locally compact group G and a continuous convolution
semigroup µ• := (µt)t≥0 we set

Dec(µ•) = {A ∈ Aut(G) :
(
∃a ∈ R×+, X ∈ z(g)

)
(∀t ≥ 0) Aµt = µta ∗ εexp t·X}

Sym(µ•) = {A ∈ Aut(G) :
(
∃X ∈ z(g)

)
(∀t ≥ 0) Aµt = µt ∗ εexp t·X}.
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The group Dec(µ•) is called the decomposability group, Sym(µ•) the group of
symmetries. Indeed, it is easily shown that Dec(µ•) and Sym(µ•) are subgroups
of Aut(G).

The projection fµ• : Dec(µ•) → (R×+, ·), fµ•(A) = a , is a continuous
homomorphism with kernel Sym(µ•) so that we have the following exact sequence
before our eyes:

(†) 0→ Sym(µ•)
incl
−−→Dec(µ•)

fµ•−−→R×+
log
−−→∼= R.

Definition 3.2. A convolution semigroup µ• on a locally compact group G
is called

(i) semistable if and only if Dec(µ•) 6= Sym(µ•),

(ii) stable if and only if im(fµ•) = R×+ ,

(iii) properly semistable if and only if im(fµ•) =
(
an : n ∈ Z) for some

a ∈ ]0, 1[,

(iv) (A, a)-semistable if A ∈ Dec(µ•) and fµ•(A) = a , and

(v) strictly (A, a)-semistable if (∀t ≥ 0)A(µt) = µat .

Assume for a moment that for a semistable law µ• on a connected Lie
group G , we have the additional information that Dec(µ•) is closed in Aut(G)
and that Sym(µ•) is compact. Then from (†) we know that the group Dec(µ•)
is the extension of the maximal compact normal subgroup Sym(µ•) by a group
isomorphic to R (if µ• is stable) or Z (if µ• is properly semistable). In these
circumstances, Corollary D applies. This is the probability theoretical interest
of the discourse in Section 1.

Now it is important for us to explain sufficient conditions for Dec(µ•) to
be closed in Aut(G) and for Sym(µ•) to be compact. As usual εg denotes the
probability measure concentrated on {g} . We shall say that µ• is degenerate if
for each t there is a compact subgroup Lt of G and an element xt ∈ G such that
µ = ωLt ∗ εxt , equivalently, if for each t the measure µt ∗ µ̃t is the normalized
Haar measure of a compact subgroup of G .

Proposition 3.3. Assume that G is a Lie group and that µ• is nondegenerate.
Then Dec(µ•) is a closed subgroup of Aut(G) . Moreover, if G is connected, then
Dec(µ•) is a linear Lie group with a countable basis for its topology.

Proof. The idempotent µ0 is a Haar measure ωL on a compact subgroup L.
Assume An ∈ Dec(µ•), A = limnAn in Aut(G) and An(µt) = µtan ∗ εexp(tXn) .
We must show A ∈ Dec(µ•). Now An(µt ∗ µ̃t) = µtan ∗ µ̃tan → A(µt ∗ µ̃t).
Suppose firstly that an → 0. Then A(µt ∗ µ̃t) = µ0 ∗ µ̃0 = ωL , contradicting
the hypothesis that µ• is nondegenerate. Suppose secondly an → ∞ . As
we shall show in an appendix, µt ∗ µ̃t converges vaguely for t → ∞ . Then
A(µt ∗ µ̃t) = ρ = lims→∞ µs ∗ µ̃s for all t > 0, again a contradiction. Hence
the sequence an is bounded away from 0 and ∞ . Assume an → a ∈ ]0,∞[. As
above we obtain now A(µt) = limn→∞ µant ∗ εexp(tXn) . Since µant converges to
µat , we obtain the boundedness of {exp(tXn)} for all t ≥ 0. Hence

(∗) (∀t ≥ 0)(∃z(t) ∈ Z(G)0) A(µt) = µat ∗ εz(t).
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Lemma Z. Assume that µ• is a convolution semigroup of a Lie group G , that
A ∈ Aut(G) , and that 0 < a ∈ R . If Condition (∗) is satisfied, then there is an
X ∈ z(g) such that

(∗∗) (∀t ≥ 0) µat ∗ εz(t) = µat ∗ εexp(t·X).

In particular, A ∈ Dec(µ•) .

Once Lemma Z is proved it will be established that Dec(µ•) is closed in Aut(G).

Proof of Lemma Z. This requires that we find an X ∈ z(g) such that
µat ∗ εz(t) = µat ∗ εexp(t·X) . Define Ir = {x ∈ Z(G)0 : µr ∗ εx = µr} . Then
Ir is a compact subgroup for each r . Since the function r 7→ Ir is increasing
and continuous from the right, G is a Lie group, and the set of closed compact
subgroups of a Lie group satisfies the descending chain condition, there is a
δ > 0 and a compact subgroup I such that Ir = I for all 0 ≤ r < δ . We
compute µa(s+t) ∗ εz(s+t) = A(µs+t) = A(µs) ∗A(µt) = µas ∗ εz(s) ∗ µat ∗ εz(t) =
µas ∗ µat ∗ εz(s) ∗ εz(t) = µa(s+t) ∗ εz(s)z(t) since z(s) is central. Hence z(s)z(t) ∈
z(s+ t)Ia(s+t) , and thus z(s)z(t) ∈ z(s+ t)I for 0 ≤ s+ t < δ

a
. The local one-

parameter subsemigroup r 7→ z(r)I :
[
0, δ

a

[
→ Z0(G)I/I ∼= Z0(G)/(Z0(G) ∩ T )

gives rise to an element X ∈ z(g) such that z(t)I = exp(tX)I for 0 ≤ t < δ
a .

Then A(µt) = µat ∗ εz(t) = µat ∗ εexp(t·X) for t ∈
[
0, δa

[
. Since t 7→ A(µt), µat ∗

εexp(t·X): [0,∞[→M1(G) are continuous one-parameter semigroups which agree
on a neighborhood of 0, they agree. This proves statement (∗∗) of Lemma Z.
From (∗) and (∗∗) and from the definition of Dec(µ•) in 3.1 it follows that
A ∈ Dec(µ•). Thus Lemma Z is proved.

If G is connected, then Aut(G) is a Lie subgroup of Aut(g) ⊆ GL(g).
In these circumstances, as a closed subgroup of Aut(G), the group Dec(µ•) is a
linear Lie group, and we conclude that it has a countable basis for its topology.

In order to prove the compactness of Sym(µ•) and closedness of im fµ•
one needs a “Convergence of Types Theorem.” We explain what this means.
Namely, we say that the Convergence of Types Theorem holds if there is a
subgroup B ⊆ Aut(G) and an open subset F ⊆M1(G) such that for µ, ν ∈ F ,

(µn, An, xn) ∈ M1(G)× B ×G, n ∈ N,
such that

(µ, ν) = lim
n→∞

(µn, An(µn) ∗ εxn),

it follows that {An : n ∈ N} and {xn : n ∈ N} are relatively compact in B and
G , respectively. We shall also say that a Convergence of Types Theorem holds
for a convolution semigroup µ• if a Convergence of Types Theorem holds in such
a fashion that Dec(µ•) ⊆ B and µt ∈ F for t > 0.

Proposition 3.4. Let G be a connected Lie group and µ• a convolution
semigroup. If a Convergence of Types Theorem holds for µ• , then im fµ• is
closed in R×+ , and Sym(µ•) is compact.

Proof. (Cf. [7], [9], [24].) Assume that (an) is a sequence in im fµ• converging
to a ∈ ]0,∞[ . We must show that a ∈ im fµ• . Pick An ∈ Dec(µ•) with
fµ•(An) = an and find Xn ∈ z(g) such that

(1) µant = An(µt) ∗ εexp(−tXn).
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Then µant → µat , t ≥ 0. By the Convergence of Types Theorem for µ• we
obtain relative compactness of {An : n ≥ 1} and of {exp−tXn : n ≥ 1} for each
t > 0. Hence there exist accumulation points A ∈ Aut(G) and z(t) ∈ Z(G)0 ,
such that

(∗) (∀t ≥ 0)(∃z(t) ∈ Z(G)0) A(µt) = µat ∗ εz(t).

By Lemma Z in the proof of 3.3 we find an element X ∈ z(g) such that

(∗∗) (∀t ≥ 0) A(µt) = µat ∗ εexp(t·X)

and that A ∈ Dec(µ•). This shows that a ∈ im fµ• and thus complete the
proof that im fµ• is closed. In order to see the compactness of Sym(µ•) we take
{An : n ∈ N} in Sym(µ•), and we have to show that this sequence has a cluster
point. We find Xn ∈ z(g) such that

(2) µt = An(µt) ∗ εexp(−t·Xn).

This relation follows from (1) upon setting an = 1 for all n . Thus the argument
in the first part of the proof shows that there is a cluster point A of {An :
n ∈ N} in Dec(µ•) and an X ∈ z(g) such that A(µt) = µt ∗ εexp(t·X) . Hence
A ∈ Sym(µ•), and the compactness of Sym(µ•) is established.

We shall discuss below situations in which a Convergence of Types The-
orem is available for a given semigroup µ• .

Corollary 3.5. Assume the hypotheses of Proposition 3.4 and, in addition,
that µ• is stable. Then Dec(µ•) ∼= Sym(µ•)× R .

Proof. The surjectivity of fµ• implies that the following sequence is exact:

0→ Sym(µ•)
incl
−−→Dec(µ•)

log ◦fµ•−−−−→R→ 0.

Set Γ
def
= Dec(µ•)/ Sym(µ•). Then log ◦fµ• induces canonically a bijective

morphism f : Γ → R . Since Sym(µ•) is compact and im fµ• is closed in R×+
by 3.4, by the Open Mapping Theorem for morphisms between locally compact
groups, fµ• is open onto its image, and thus is also a closed map because its
kernel Sym(µ•) is compact. Hence f is also closed and thus is an isomorphism.
Now Remark 1.9 proves the corollary.

The conclusion of the previous Corollary may be obtained with slightly

weaker hypotheses as follows. We continue to set Γ
def
= Dec(µ•)/ Sym(µ•) and

let f : Γ→ R be the morphism induced by log ◦fµ• .

Remark 3.6. Let G be a locally compact group and µ• a stable convolution
semigroup such that Dec(µ•) is locally compact and Sym(µ•) is compact. If
Dec(µ•) has a countable basis for its topology, which is the case if G is a con-
nected Lie group and Dec(µ•) is closed in Aut(G), then Dec(µ•) ∼= Sym(µ•)×R .
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Proof. Since µ• is stable, f : Γ → R is a bijective morphism of topological
groups. The connected subgroup f(Γ0) of R is either {0} or R since R does
not contain any proper connected nonsingleton subgroups. In the latter case,
the bijectivity of f implies Γ0 = Γ. Then, as a locally compact and connected
group, Γ is σ -compact. Hence f is an isomorphism. If this fails, then Γ0 = {1} ,
i.e., Γ is a totally disconnected locally compact abelian group. Hence it has an
open compact subgroup C . Then f(C) = {0} since R has no nondegenerate
compact subgroups. Hence C = {1} and thus Γ is discrete. Then Dec(µ•) has
uncountably many open components and thus cannot be contained in the group
Aut(G) which has a countable basis for its topology. So this is impossible. The
splitting is then concluded form 1.9 as in the proof of 3.5.

A particular consequence of Corollary 3.5 concerns information on con-
volution semigroups. Indeed, from 3.5 we obtain a one-parameter subgroup
t 7→ τt:R×+ → Z

(
Sym(µ•),Aut(G)

)
such that Dec(µ•) = Sym(µ•)τR×

+
and that

this product is direct.

Corollary 3.7. Assume that G is a locally compact group and µ• a con-
volution semigroup such that Dec(µ•) ∼= Sym(µ•) × R ; by 3.6, this hypothesis
is satisfied if G is a connected Lie group, if a Convergence of Types Theorem
holds for µ• , and if µ• is stable. Then there exists a continuous one-parameter
group t 7→ τt:R×+ → Dec(µ•) , τst = τsτt , such that µ• is (τt, t)-semistable for
all t > 0 . In other words, for all s ≥ 0 and t > 0 we have

τt(µs) = µts ∗ εexp(tsX)

for a suitable X = X(t) ∈ z(g) .

Next we deal with the properly semistable variant of Proposition 3.4. For
this purpose we introduce the following definition.

Definition 3.8. An element A ∈ Dec(µ•) is called a commuting normalization
if AS = SA for all S ∈ Sym(µ•).

We note the following. Assume that A is a commuting normalisation.
Then we define a ∈ R×+ \ {1} by fµ•(A) = a . Now the semidirect product

Deca(µ•)
def
= {A′ ∈ Dec(µ•) : fµ•(A

′) = an, n ∈ Z} = f−1
µ• {an : n ∈ Z}

splits as a direct product over the compact subgroup Sym(µ•) in the form

Deca(µ•) = Sym(µ•)× {An : n ∈ Z} ∼= Sym(µ•)× Z.

Theorem 3.9. Let G be a connected Lie group and µ• a properly semistable
convolution semigroup of probability measures on G . If a Convergence of Types
Theorem holds for µ• , then the following conclusions hold,

(I) Dec(µ•) ∼= Sym(µ•)× Z .

(II) There exists a natural number e ∈ N such that for any C ∈ Dec(µ•) there

is an S ∈ Sym(µ•)0 such that A
def
= CeS is a commuting normalization.
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(III) Let c = fµ•(C) . Then

f−1
µ•

(
{cen : n ∈ Z}

)
= Sym(µ•){An : n ∈ N},

and this product is direct and isomorphic to Sym(µ•)× Z .

(IV) Let C ∈ Dec(µ•) be such that fµ•(C) is a generator of im(fµ•) . Then
there is an element S ∈ Sym(µ•)0 such that the subgroup Sym(µ•)〈CeS〉
of Dec(µ•) is a direct product and Dec(µ•)/ Sym(µ•)〈CeS〉 is a cyclic
group of order e .

Proof. (I) It follows from 3.4 that im(fµ•) is a closed subgroup of R×+ ; it is
proper since µ• is properly semistable and nondegenerate since µ• is semistable.
Therefore it is infinite cyclic discrete. Thus im(fµ•) is free in the category of
topological groups and (I) follows.

(II) By (I) there is an element T ∈ Dec(µ•) such that Dec(µ•) =
Sym(µ•)〈T 〉 with 〈T 〉 = {Tn : n ∈ Z} , and T normalizes Sym(µ•). By 3.4 we
may consider Dec(µ•) as a subgroup of Aut(g) and thus as a closed subgroup of
GL(g). Therefore the assumptions of Corollary D are fulfilled, and the assertion
follows from Corollary D(ii).

(III) Moreover, since fµ•(〈T 〉) = im fµ• is infinite cyclic in R×+ , it
follows that Dec(µ•)/ Sym(µ•) is infinite cyclic discrete. Thus the assertion
follows from Corollary D.

(IV) If we take C = T with T as in the proof of (II), then (II) applies
and yields the assertions straightforwardly.

This theorem was an original motivation for the theory presented in
Sections 1 and 2. In the remainder of the paper we illustrate situations in
which we have a Convergence of Types Theorem so that 3.4 and its corollaries,
notably 3.9 become applicable. Firstly, all simply connected nilpotent Lie groups
admit a Convergence of Types Theorem with B = Aut(G), generalizing the
well-known Convergence of Types Theorem for vector groups Rd . A precise
formulation will be given below. However, there are other types of Lie groups
admitting a Convergence of Types Theorem, e.g., certain connected Lie groups
without central tori of positive dimension or certain algebraic groups where
the automorphisms are supposed to be algebraic [3]. Yet we shall restrict our
considerations to simply connected nilpotent Lie groups. This is justified since
the existence of a semistable continuous convolution semigroup on a connected
Lie group causes these Lie groups to come into focus as was shown in [10]; we
will overview this fact now.

Reduction to simply connected nilpotent Lie groups

We begin on a purely topological group theory level by considering a
topological group G and an automorphism A ∈ Aut(G) of topological groups.
Set

C(A)
def
= {x ∈ G : lim

n→∞
An(x) = 1}.

Then C(A) is an A -invariant subgroup of G . Let L be a compact subgroup

of G with A(L) ⊆ L . We take x ∈ C(A) and g ∈ L . The space S
def
=
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{Ax,A2x, . . .} ∪ {1} is compact. For each n ∈ N we write gn = AngA−n and
get An(gxg−1) = gn(Anx)g−1

n . Assume that n(j) is a subnet of the sequence of
natural numbers such that h = limj A

n(j)gxg−1 in the compact space LSL−1 .
Since L is compact, there is a subnet n(jk), such that c = limk gn(jk) exists.
Thus we obtain h = c1c−1 = 1. Hence limn→∞ An(gxg−1) = 1 and gxg−1 ∈
C(A). Therefore every A-invariant compact subgroup L of G normalizes C(A) .

For a finite dimensional real vector space g and an endomorphism α we
write g0(α) = {X ∈ g : limn→∞ αn(X) = 0} . Now assume that G is a Lie group
with Lie algebra g = L(G) and that A ∈ Aut(G) is an automorphism. Denote
by L(A) ∈ Aut(g) the automorphism induced on the Lie algebra. As is shown
in [10], C(A) is an analytic subgroup with Lie algebra L

(
C(A)

)
= g0

(
L(A)

)
.

For a compact subgroup L of G we shall also consider the homogeneous
space G/L = {xL : x ∈ G} and define the subgroup

CL(A)
def
= {x : lim

k→∞
Ak(x)L = L in G/L},

the L -contractible part of G . Clearly C(A) ⊆ CL(A). If A(L) = L , then L
normalizes C(A) and A induces an autodiffeomorphism AL of the homogeneous
space G/L in such a way that x ∈ CL(A) iff limk→∞AkL(xL) = L in G/L . In
particular, L ⊆ CL(A) and thus C(A)L ⊆ CL(A). In Theorem 2.4 of [10]
equality is shown. The normalizer of C(A) ∩ L contains C(A)L = CL(A), and

thus D
def
= C(A) ∩ L is a compact normal subgroup of CL(A).

The case G = CL(A) . This suggests that the hypothesis G = CL(A) which we
assume now is of particular interest. Then D is a compact normal subgroup of
G and we can form the Lie groups

G def
= G/D,

L def
= L/D, and the autmorphism

A ∈ Aut(G) induced by A ∈ Aut(G).

The analytic subgroup C(A)D/D of G becomes a Lie group when it is endowed
with its intrinsic Lie group structure; this Lie group we shall call N , and the
inclusion morphism yields an injective morphism of Lie groups jN :N → G with
bijective image C(A)D/D . The automorphism A ∈ Aut(G) induces on N an
automorphism AN such that C(AN ) = N . It is shown in [10] that N is a
simply connected nilpotent Lie group. The inner automorphisms implemented by
elements of L on C(A)D/D implement automorphisms of N and thus provide
us with a morphism of Lie groups β:L → Aut(N ). This allows us to form

the Lie group Γ
def
= N ×βL . Since L as a compact Lie group has finitely many

components, the Lie group Γ has finitely many components. We let C denote the
subgroup CL(A)/D of G . The definition of D implies C(A)D/D∩L/D = {D} .
By Theorem 2.4 of [10] we have CL(A) = C(A)L . Hence the morphism of
topological groups p:Γ → C ⊆ G , p(n, x) = jN (n)x is bijective. The subgroup
p(Γ0) ⊆ C of G is analytic and has finite index in C . The group C is σ -
compact (i.e. is a countable union of compact subspaces) since it is a continuous
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image of the σ -compact space Γ; hence C is Borel measurable, and the inverse
map p−1: C → Γ is Borel measurable. In passing we remark from the fact that
D and CL(A)/D have finitely many arc components, that CL(A) has finitely
many arc components. The arc component CL(A)0 of the identity is an analytic
subgroup of G which is dense in G0 . In particular, CL(A) is Borel measurable.
Thus G/G0 is finite and (G0)′ , the commutator subgroup of G0 , is contained
in CL(A)0 .

The desintegration of convolution semigroups. Now assume that µ• is a con-
volution semigroup of probability measures on G . Then µ0 is an idempotent
probability measure and therefore is a Haar measure ωL of a compact sub-
group L of G . In addition we assume that µ• is semistable with A ∈ Dec(µ•),

0 < a = fµ•(A) < 1. Then L
def
= supp µ0 is an A -invariant compact subgroup.

It is no loss of generality if we restrict our attention to the smallest closed A-
invariant subgroup supporting µ• . The smallest closed subgroup supporting µ•
is H

def
= 〈⋃t>0 supp(µt)〉 . If

(+) H = 〈
⋃

t>0

supp(µt ∗ µ̃t)〉,

then H is A -invariant and thus agrees with G by our assumption. With the
methods of [10] it follows that for any t > 0 µt ∗ µ̃t is concentrated on the Borel
measurable subgroup CL(A). Thus CL(A) is dense in G if (+) holds. In [10] it
is shown that, if µ• is strictly (A, a)-semistable (see 3.2(v)), then, more strongly,

(++) µt
(
CL(A)

)
= 1 for all t ≥ 0.

Thus again CL(A) is dense in G in this case. We observe that the condition

1 ∈ supp(µt) for all t > 0

implies both (+) and (++); it therefore implies in particular, that CL(A) is a
dense subgroup of G .

The bimeasurable homomorphism p defines an injective weakly contin-
uous homomorphism M1(Γ ) → M1(G) of convolution semigroups. Indeed,
p establishes a bijection between the set of measures ν × ωL , where ν is
an L -invariant measure on the subgroup N of Γ , and the set of measures
λ = ωL ∗ λ ∗ ωL in M1(G) with the property λ(C) = 1. This applies, in
particular, to semistable continuous convolution semigroups on Γ and on G , re-
spectively. Let π:G→ G denote the quotient morphism. For a measure ν on G
we write π(ν) for its image on G .

The significance of these structural results for the semigroup µ• is sum-
marized in the following proposition ([10]). We denote the automorphism induced
by A on N by AN ∈ Aut(N ).

Let µ• be an (A, a)-semistable convolution semigroup on a connected
Lie group G in which we consider a compact subgroup L . For the sake of the
formulation of the following proposition let us say that µ• satisfies hypothesis
(S) if
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(i) µ0 = ωL
(ii) µ• is strictly semistable, or 1 ∈ supp(µt) for all t ≥ 0.

The property (S) guarantees that CA(L) is dense and the results we discussed
apply. We have seen that for a µ• satisfying (S), µ• and π(µ•) are concentrated
on CL(A) and on CL(A), respectively. The notation introduced in the preceding
discussion is maintained.

Proposition 3.10. Let G be a connected Lie group G . Then the following
conclusions hold.

(i) For each convolution semigroup µ• on G satisfying hypothesis (S),
there is a continuous, L-invariant, and (AN , a)-semistable convolution semi-
group λ• = (λt)t≥0 on N such that λ0 = ε1 and

(#) π(µ•) = p(λ• × ωL) = jN (λ•) ∗ ωL = jN (λ•) ∗ π(ωL)

(ii) Conversely, given an L-invariant (AN , a)-semistable convolution
semigroup λ• = (λt)t≥0 on N , then t 7→ λt × ωL lifts uniquely to an (A, a)-
semistable convolution semigroup µ• on G in the sense that (#) holds.

Proof. After the preceding comments, only the last assertion needs proof.
Note that D ⊆ L and thus π sets up a bijection between L -biinvariant measures
on G and L -biinvariant measures on G .

The following consequence of Proposition 3.10 collects relevant conclu-
sions.

Corollary 3.11. For a given connected Lie group G , an A ∈ Aut(G) , the
compact subgroup L of G , and the corresponding simply connected nilpotent
Lie group N defined by A and L , there is a bijective correspondence between
strictly (A, a)-semistable convolution semigroups µ• on G with µ0 = ωL on the
one hand, and strictly (AN , a)-semistable, and hence L-invariant convolution
semigroups λ• with λ0 = ε1 on the simply connected nilpotent Lie group N on
the other.

Therefore, in order to investigate (strictly) semistable convolution semi-
groups on Lie groups G it is largely sufficient to investigate semistable convolu-
tion semigroups on simply connected nilpotent Lie groups N . We aim to apply
Theorem 3.9 to this situation.

Convergence of Types Theorem on simply connected nilpotent Lie groups

Let G be a simply connected nilpotent Lie group. The subsequent remarks follow
[9]. We define π be the homomorphism resulting from the composition

G
quot
−−→G/[G,G]

∼=−−→g/[g, g].

Recall that in the classical situation a probability measure on a vector space Rd
is called full if supp(µ) is not concentrated on a coset of a proper linear subspace.
A probability convolution semigroup µ• on G is said to be full if π(µ•) is a full
probability convolution semigroup on the vector space g/[g, g] . Let F denote the
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set of full measures and B def
= Aut(G). In this case an analog of the Convergence

of Types Theorem for Vector Spaces ([9], Theorem 2.3, [7]) holds. In particular,
for full convolution semigroups µ• on G , the morphism fµ• is a proper map,
and the group Sym(µ•) is compact. (The above description implies directly that
µt , t > 0 is full iff µ1 is full.)

An application of Theorem 3.9 to this situation yields

Theorem 3.12. Let G be a simply connected nilpotent Lie group and µ• a full
convolution semigroup of probability measures on G . Assume that µ• is properly
semistable. Then there exists a natural number e with the following property. For

each C ∈ Dec(µ) there is an S ∈ Sym(µ)0 such that A
def
= CeS is a commuting

normalization. Accordingly, the subgroup Sym(µ•)〈CeS〉 of Dec(µ•) is a direct
product and Dec(µ•)/ Sym(µ•)〈CeS〉 is a cyclic group of order e .

We set c = fµ•(C) and note that µ• is (A, ce)-semistable in these
circumstances.

The case G = Rd

We assume now that µ is a full probability on Rd , a special case of what we
discussed in Theorem 3.12. Nevertheless, from the point of view of applications
we prefer to reformulate Theorem 3.11 in the context of semistable laws on finite
dimensional vector spaces. In this context, (semi-)stable probabilities µ are
traditionally called operator (semi-)stable (see [16], [17], [18], [25]).

On Rd infinitely divisible probabilities µ are uniquely embeddable into
continuous convolution semigroups µ• such that µ = µ1 . Therefore, semista-

bility is a property of a probability µ = µ1 , and the notations fµ
def
= fµ• ,

Sym(µ)
def
= Sym(µ•), and Dec(µ)

def
= Dec(µ•) are justified.

For simply connected nilpotent Lie groups only a weaker result is avail-
able: Let µ• and µ•′ be convolution semigroups on G which are strictly
semistable and assume µ1 = µ′1 . Then µt = µ′t for all t ≥ 0 (see [8]). Hence
strict semistability is a property of a probability µ = µ1 , and then again the

notations fµ
def
= fµ• , Sym(µ)

def
= Sym(µ•), and Dec(µ)

def
= Dec(µ•) are justified.

Several remarks are in order. Firstly,

Remark 3.13. Semistable, respectively, stable laws are frequently defined as
limit laws of operator-normalized sums of i.i.d. random variables. In the case of
full measures these definitions coincide.

Secondly, for a probability µ on Rd the decomposability semigroup is
defined as

D(µ) := {A ∈ End(Rd) :
(
∃ν ∈ M1(Rd)

)
µ = A(µ) ∗ ν}.

If A ∈ Dec(µ) and fµ(A) < 1, then µt = A(µt) ∗ µt−at for any t > 0 . Thus we
have
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Remark 3.14. The subset Dec(µ)+ := {A ∈ Dec(µ) : a = fµ•
(
A) ∈ ]0, 1]} is

a subsemigroup of the decomposability semigroup D(µ).

The semigroup D(µ) is an important tool for investigations of selfdecom-
posable (or Lévy’s) probabilities. See e.g., [17] or [12].

On Rd one-parameter groups τ :R×+ → Aut(Rd) = GL(Rd) with τst =

τsτt are all of the form τt = tE
def
= exp

(
(log t)·E

)
, E ∈M(R, d). Now Corollary

3.7 applies to the present situation and yields instantly

Remark 3.15. For full operator stable laws there exist commuting exponents,
i.e., there exists a one-parameter group (tEc)t>0 with exponent Ec ∈ GL(Rd)
such that tEc ∈ Dec(µ) with fµ(tEc) = t for all t > 0 and such that tEc

commutes with all S ∈ Sym(µ).

For a direct proof see e.g. [17]. For the corresponding result for groups
see e.g. [5] or [6]. Recall that according to Definition 3.8 an automorphism
A ∈ Dec(µ) is called commuting normalization if AS = SA for all S ∈ Sym(µ).
In particular, for full stable laws the existence of commuting exponents provides
commuting normalizations tEc for all t > 0.

In contrast with the situation of stable laws, for properly semistable laws
on Rd , up to now, only partial results were known, namely, under the hypothesis
that the symmetry group Sym(µ) is finite [19] or that d ≤ 3 [20], Theorem 7.

As a corollary of 3.12 we obtain now:

Corollary 3.16. Let µ be a full semistable law on Rd . Then there is a natural
number e depending only on Sym(µ) such that for each C ∈ Dec(µ) there exists

an S ∈ Sym(µ)0 for which A
def
= CeS is a commuting normalization.

It can easily be shown that, in contrast with the stable case, the exponent
e in Theorem 3.12, will in general not be 1. Thus in general Dec(µ) itself does not
split as a direct product. We saw in Example 1.2.1 that a semidirect extension of a
compact group K by Z is in general not a direct product even if K is a Lie group;
however, not every compact subgroup of GL(Rd) is representable as Sym(µ).
For a discussion see [21]. Thus we shall now exhibit examples K ⊆ GL(Rd)
representable as the symmetry group K = Sym(µ) of a full semistable law µ
with a semidirect nonsplitting extension:

Example 3.17. Consider R2 and let K
def
= {±I,±D} , where D =

(
1 0
0 −1

)
.

Then A :=

(
0 α
β 0

)
normalizes K , but the centralizer Z(K,GL(Rd)) of K is

the group of diagonal matrices. Therefore AC /∈ Z(K,GL(Rd)) for all C ∈ K ,
but of course A2 = αβI is central. Hence we have e = 2.

Remark 3.18. If 0 < α < β and αβ < a < 1 then there exist (A, a)-
semistable laws µ on Rd with Sym(µ) = K .

Proof. We see this easily by constructing a suitable K -invariant Lévy measure
η on the union of orbits

⋃
X∈K{XAke1 : k ∈ Z} , ei denoting the i -th unit
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vector, such that A(η) = aη . Note that Spec(A) = {±(αβ)1/2} . Hence such
Lévy measures η exist, cf. [16].

Theorem 3.12 illuminates the fine structure of the decomposability group
Dec(µ) and has various applications. As an example we briefly sketch one par-
ticular result which we now derive easily from Theorem 3.12. (For corresponding
results in the situation of stable laws cf. [22], Theorem 2.1 and Corollary 2.1.)

Proposition 3.19. Let µ be a full semistable law. Assume A ∈ Dec(µ) and
fµ(A) = a . Then the absolute values of the eigenvalues of A , thus the spectral
radii ρ(A) and ρ(A−1) , and therefore the rate of decay of ‖An‖ depend only on
a = fµ(A) and not on the particular choice of A .

Proof. (1) For T ∈ GL(Rd) let T = STUT be the (multiplicative) Jordan
decomposition, ST and UT denoting the semisimple and unipotent part of T ,
respectively. Assume P, Q ∈ Dec(µ) such that Q is a commuting normalization
and that fµ(P ) = fµ(Q). Then, since PQ−1 ∈ Sym(µ) = ker fµ , we obtain
that Q and PQ−1 commute, hence PQ = QP and thus SP , SQ , UP , and UQ
commute. Therefore PQ−1 = (SPS

−1
Q )(UPU

−1
Q ) is the Jordan decomposition.

From the fact that Sym(µ) is compact we conclude UPU
−1
Q = I , hence UP = UQ .

Moreover, SPS
−1
Q = S−1

Q SP ∈ Sym(µ) is semisimple and therefore Spec(P ) =
Spec(Q) up to multiplication with unimodular constants.

(2) Let now A ∈ Dec(µ). According to Theorem 3.12, let e ∈ N and

C ∈ Sym(µ) such that Q
def
= AeC ∈ Z(Sym(µ),GL(Rd)). We apply Part (1)

to P
def
= Ae and find that the absolute values of the eigenvalues of Ae and of

Q are equal, r1, . . . , rd , say. Therefore, by the Spectral Mapping Theorem, the

absolute values of the eigenvalues of A are r
1/e
i , i = 1, . . . , d . The assertion

follows.

Appendix: Vague Convergence.

Let µ• a continuous convolution semigroup on a second countable locally compact
group G . Then the vague limit limt→∞ µt ∗ µ̃t exists.

Proof. (1) According to a theorem by Csiszàr [2] for any sequence νn in

M1(G), there exists a sequence xn in G such that for λn
def
= ν1∗· · ·∗νn either λn∗

εxn converges weakly or the concentration function supx∈G λn(Kx) converges
to 0 for all compact K ⊆ G . In either case we obtain weak, respectively, vague
convergence of λn ∗ λ̃n .

(2) We apply this to continuous convolution semigroups µ• : For any increasing

sequence tn ↗ ∞ put νn
def
= µtn−tn−1

; hence λn = ν1 ∗ · · · ∗ νn = µtn , and we

obtain that the vague limit limn→∞ µtn ∗ µ̃tn
def
= ρ exists.

Assume ρ and σ to be the limits for sequences sn and tn ↗∞ . Without losing
generality we may assume that tn ≤ sn < tn+1 . Combining these sequences we
obtain a new sequence rn , and again the limit exists. We conclude that ρ = σ .
This proves our assertion.
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