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Abstract. The smallest known three-dimensional closed orientable hy-
perbolic manifold M1 , whose volume is equal to 0.94 . . ., was obtained in-
dependently by A. Fomenko and S. Matveev and by J. Weeks. It is known
that the isometry group of the manifold M1 is isomorphic to the dihedral
group D6 of order 12 . The aim of the present paper is to describe the lattice
of the action of the isometry group Isom(M1) on the manifold M1 . We
obtain all orbifolds which arise as quotient spaces of M1 by the action of
the subgroups of Isom(M1) . In particular, we describe the manifold M1 as
the two-fold covering of the 3-sphere branched over the knot 949 and as the
cyclic three-fold covering of the 3-sphere branched over the two-bridge knot
52 .

1. Introduction

In the present paper we study the properties of the smallest known three-dimensional
closed orientable hyperbolic manifold M1 that was constructed independently by
A. Fomenko and S. Matveev [3] and by J. Weeks [13].

A three-dimensional hyperbolic manifold can be defined as a quotient space
M = H3/Γ, where Γ is a discrete group of isometries of the three-dimensional
Lobachevsky space H3 , acting without fixed points. The concept of the volume
in H3 is carried over naturally to M . Further we will consider three-dimensional
orientable hyperbolic manifolds of finite volume.

The structure of the set of volumes of three-dimensional hyperbolic mani-
folds was described by W. Thurston and T. Jørgensen. According to the Thurston–
Jørgensen theorem [12], volumes of three-dimensional hyperbolic manifolds form a
well-ordered non-discrete subset of the real line of the order type ωω . In particular,
there exists a closed manifold with the smallest volume.

The first manifold which pretended to be the smallest closed manifold was
constructed by R. Meyerhoff (see [12]). This manifold was obtained by (5,−1)
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Dehn surgery in the figure-eight knot, and its volume is equal to 0.98 . . .. But
several years later the another pretender appeared.

In [13] J. Weeks calculated volumes of hyperbolic manifolds, obtained by
Dehn surgeries on hyperbolic knots and links of the small order and other cusped
manifolds. It was possible due to his nice computer program SnapPea [11]. As
the result of the calculations, the closed hyperbolic manifold M1 with the volume
equals to 0.94 . . . was found. At the same time, numerous computer calculations
of volumes were given by A. Fomenko and S. Matveev [3]. This manifold also
was appeared in their list (but it was obtained by another way). We remark that
the manifold M1 can be obtained by Dehn surgeries with parameters (5,−2) and
(5,−1) on both components of the Whitehead link. Further the manifold M1 will
be referred to as the Fomenko–Matveev–Weeks manifold.

Moreover, A. Fomenko and S. Matveev [3] conjectured the structure of the
initial segment of the set of volumes of three-dimensional hyperbolic manifolds.
In [6] C. Hodgson and J. Weeks refined the smallest manifolds computing a lot of
volumes by SnapPea program.

In [9] E. Molnar constructed the fundamental polyhedron in H3 for the
fundamental group of the manifold M1 and deduced that the isometry group of
this manifold is the dihedral group D6 of order 12. Independently, using computer
calculations Isom(M1) = D6 was found in [6].

The aim of the present paper is to describe the lattice of the action of the
isometry group Isom(M1) on the manifold M1 . We obtain all orbifolds which
arise as quotient spaces of M1 by the action of the subgroups of Isom(M1). In
particular, we describe the manifold M1 as the two-fold covering of the 3-sphere
branched over the knot 949 and as the cyclic three-fold covering of the 3-sphere
branched over the two-bridge knot 52 .

2. The lattice of the isometry group action

Let us consider the fundamental group Γ = π1(M1) of the Fomenko-Matveev-
Weeks manifold M1 . According to [9], the group Γ has the following presentation:

Γ = 〈 a, b | a b a b2 a−2 b2 = b a b a2 b−2 a2 = 1 〉. (1)

It was observed by E. Molnar [9] that the isometry group Isom(M1) of the
manifold M1 is generated by the following three automorphisms of the group Γ:

{
a → a−1,
b → b−1,

{
a → b,
b → a,

and

{
a → a,
b → a−1b−1.

(2)

By the Mostow rigidity theorem, there exist isometries r , s and t of the
Lobachevsky space H3 such that

{
r a r−1 = a−1,
r b r−1 = b−1,

{
s a s−1 = b,
s b s−1 = a,

and

{
t a t−1 = a,
t b t−1 = a−1b−1.

(3)

From(3) we get the properties of the products of the isometries r , s and t:
{
r2 a r−2 = a,
r2 b r−2 = b,

{
s2 a s−2 = a,
s2 b s−2 = b,

{
t2 a t−2 = a = a−1aa,
t2 b t−2 = a−1ba,
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{
(rs) a (rs)−1 = b−1,
(rs) b (rs)−1 = a−1,

{
(rs)2 a (rs)−2 = a,
(rs)2 b (rs)−2 = b,

{
(rt) a (rt)−1 = a−1,
(rt) b (rt)−1 = ab,

{
(rt)2 a (rt)−2 = a,
(rt)2 b (rt)−2 = b,

{
(st) a (st)−1 = b,
(st) b (st)−1 = b−1a−1,

{
(st)2 a (st)−2 = b−1a−1,
(st)2 b (st)−2 = a,

{
(st)3 a (st)−3 = a,
(st)3 b (st)−3 = b.

Because the centralizer of any discrete cocompact subgroup of the group
Isom(H3) is trivial, we have Inn(Γ) ∼= Γ. Whence, using the above formulae, we
get:

r2 = s2 = (rs)2 = (rt)2 = (st)3 = 1, t2 = a−1. (4)

We recall that the group of isometries of a hyperbolic 3-manifold is cano-
nically isomorphic to the group of outer automorphisms of its fundamental group.
Therefore,

Isom(M1) ∼= N(Γ) /Γ,

where N(Γ) is the normalizer of the group Γ in the isometry group Isom(H3).

Let us consider the cosets R = rΓ, S = sΓ and T = tΓ in the group
N(Γ)/Γ. Then the group Isom(M1) is generated by R , S and T . According to
(4), the group Isom(M1) is a Coxeter group with the following Coxeter diagram:

f f f
R S T

Therefore, the group Isom(M1) is isomorphic to the dihedral group D6 of
order 12. Another proof was given independently by C. Hodgson and J. Weeks [6]
using computer program SnapPea [11]. Thus,

Isom(M1) ∼= G = 〈R, S, T 〉 ∼= D6, (5)

and

N(Γ) ∼= 〈 a, b, r, s, t 〉, (6)

where relations between generators a, b, r , s, and t are given by (1), (3) and (4).

The following theorem describes the action of the group Isom(M1) on the
manifold M1 .

Theorem. The lattice of the action of the isometry group Isom(M1) on the
manifold M1 is presented in Fig. 1, where 949(2), 52(3), 72

1(2, 3), Θ1(2, 2, 3),
Θ2(2, 2, 3), Θ3(2, 2, 2), and T (2, 2, 2, 2, 2, 3) are three-dimensional hyperbolic orb-
ifolds whose underlying space is the 3-sphere and whose singular sets are pictured
in Figures 3 – 9; L5,−1(2) and L5,−2(2) are orbifolds whose underlying spaces are

the lens spaces L5,−1 and L5,−2 . In this diagram notations A −→ B , A
3−→ B

and A
(3)−→ B correspond to a two-fold covering, to a regular three-fold covering

and to an irregular three-fold covering, respectively.
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Fig. 1. The lattice of the action of G.

Proof. The proof of the theorem is the immediate consequence of Proposi-
tions 1 and 2, and Lemmata 1 – 9 given below.

3. The lattice of subgroups of the group G

In this section we consider the subgroup structure of the group G ∼= Isom(M1).
We observe that the group G = 〈R, S, T 〉 ∼= D6 has exactly 10 subgroups up
to conjugations in G. These subgroups are the following: the trivial group 〈 1 〉;
three subgroups 〈R 〉, 〈S 〉 and 〈T 〉 of order 2; the subgroup 〈ST 〉 of order 3;
the subgroup 〈R, S 〉 of order 4; three subgroup 〈S, T 〉, 〈RS,RT 〉 and 〈R,RT 〉
of order 6; and the group G = 〈R, S, T 〉 of order 12. By direct considerations we
see that these subgroups of the group G form the lattice with respect to subgroup

inclusion which is pictured in Fig. 2. In this diagram notations A −→ B , A
3−→ B

and A
(3)−→ B correspond respectively to the case when A is a subgroup of index

2 in B ; to the case when A is a normal subgroup of index 3 in B ; and to the case
when A is a subgroup of index 3 in B , but not normal.
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〈S 〉 〈RS 〉 〈R 〉 〈ST 〉

〈R, S 〉 〈S, T 〉 〈RS, ST 〉 〈R, ST 〉

〈R, S, T 〉

3

3(3)(3)

(3)

Fig. 2. The lattice of the subgroups of G.

We will formulate the above-mentioned property of the group G as the
following
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Proposition 1. The lattice of subgroups of the group G up to conjugation is
presented in Fig. 2.

Recall the well-known close relations between subgroups of the isometry
group G of a manifold M = H3/Γ and its quotient spaces. Denote by ϕ the
canonical epimorphism

ϕ : N(Γ) −→ N(Γ) /Γ ∼= G

defined by
ϕ : r → R, s → S, t → T.

We note that the exact sequence defined by the epimorphism ϕ:

1 −→ Γ −→ N(Γ)
ϕ−→ G −→ 1

does not split.

Proposition 2. Assume that M , Γ, and G are as above. Then the following
properties hold:

(1) Let H < G and ΓH = ϕ−1(H). Then the orbifold M/H is isometric to the
quotient space H3/ΓH and its orbifold group is π1(M/H) ∼= ΓH .

(2) Let H1 < H2 < G. Then the orbifold covering M/H1 → M/H2 induced by
the group inclusion H1 < H2 is regular if and only if H1 / H2 .

(3) Let ΓH be a group such that Γ < ΓH < N(Γ) and H = ϕ(ΓH). Then the
orbifold H3/ΓH is isometric to the orbifold M/H .

4. The orbifolds arising under the group G action

4.1. The orbifold 949(2)

We recall [3], [13] that the Fomenko-Matveev-Weeks manifold M1 can be
obtained by the Dehn surgeries on the components of the Whitehead link with
surgery parameters (5,−1) and (5,−2). The covering properties of the manifolds
obtained by Dehn surgeries on the Whitehead link were studied in [8], where these
manifolds were described as the two-fold branched coverings of the 3-sphere. In
particular, it was shown in [8] that the manifold M1 is the two-fold covering of
the 3-sphere branched over the knot 949 pictured in Fig. 3.
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Denote by 949(2) the orbifold whose underlying space is the 3-sphere and
whose singular set is the knot 949 with index 2. In this case one can say that
the manifold M1 is the two-fold covering of the orbifold 949(2). As we see from
the diagram in Fig. 2, there are three subgroups of order 2 in the group G.

Therefore, the covering M1
2−→ 949(2) can be induced either by the involution

R , by the involution S , or by the involution RS . In these cases we will get either
the orbifold M1/〈R 〉 = H3/〈Γ, r 〉, the orbifold M1/〈S 〉 = H3/〈Γ, s 〉, or the
orbifold M1/〈RS 〉 = H3/〈Γ, rs 〉.

In virtue of the Armstrong theorem [1], the fundamental group of the
underlying space of a orbifold H3/∆ is isomorphic to the factor group ∆/∆0 ,
where ∆0 is the normal subgroup of ∆ generated by all elements of finite order.
Now we will find the fundamental groups of the underlying spaces of three above
orbifolds. Firstly we consider the underlying space of the orbifold M1/〈R 〉 and
its fundamental group 〈Γ, r 〉 /Ncl(r), where Ncl(r) denotes the normal closure
of r in the group 〈Γ, r 〉. Analogously, we use notations Ncl(s) and Ncl(rs) for
normal closures of elements s and rs in groups 〈Γ, s 〉 and 〈Γ, rs 〉, respectively.
From(1) and (3) we have

〈Γ, r 〉 /Ncl(r) = 〈 a, b, r | abab2a−2b2 = baba2b−2a2 = 1,

r a r−1 = a−1, r b r−1 = b−1, r = 1 〉
∼= 〈 a, b | a2 = b2 = 1, aba = bab = 1 〉 = 〈 1 〉. (7)

Analogously, we find

〈Γ, s 〉 /Ncl(s) = 〈 a, b, s | abab2a−2b2 = baba2b−2a2 = 1,

s a s−1 = b, s b s−1 = a, s = 1 〉
∼= 〈 a | a5 = 1 〉 = Z5. (8)

By the same arguments, we get

〈Γ, rs 〉 /Ncl(rs) = 〈 a, b, rs | abab2a−2b2 = baba2b−2a2 = 1,

(rs) a (rs)−1 = b−1, (rs) b (rs)−1 = a−1, rs = 1 〉
∼= 〈 a | a5 = 1 〉 = Z5. (9)

Because just one of the groups (7), (8) and (9) is trivial, we get that the covering

M1
2−→ 949(2) is induced by the involution r .

Let us demonstrate the same by the direct calculation. More exactly, let us
show that the orbifold groups of the orbifold M1/〈R 〉 and of the orbifold 949(2)
are isomorphic. Indeed, from (1) and (3) we get

π1(M1/〈R 〉) = 〈Γ, r 〉 = 〈 a, b, r | abab2a−2b2 = baba2b−2a2 = 1,

r a r−1 = a−1, r b r−1 = b−1, r2 = 1 〉 (10)

If we denote l = ar and m = rb, then from (10) we get

π1(M1/〈R 〉) = 〈 l, m, r | l2 = m2 = r2 = 1, (lm)2 (lr)2 (mr)2 lr = 1,

(rl)2 (rm)2 (lm)2 rm = 1 〉, (11)
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what is the group of the orbifold 949(2), where l , m and r correspond to the
notations in Fig. 3. Because both compact orbifolds M1/〈R 〉 and 949(2) are
hyperbolic and their groups are isomorphic, they are isometric by the rigidity
theorem. Thus, the following statement is proved.

Lemma 1. In the above notations we have

〈Γ, r 〉 ∼= π1(949(2))

and
M1/〈R 〉 ∼= 949(2).

4.2. The orbifold 52(3)

The group G = Isom(M1) contains only one subgroup of order three,
which is generated by the element ST . Let us consider the orbifold group of
the corresponding quotient space:

π1(M1/〈ST 〉) = 〈Γ, st 〉 = 〈 a, b, st | abab2a−2b2 = baba2b−2a2 = 1,

(st) a (st)−1 = b, (st) b (st)−1 = b−1a−1, (st)3 = 1 〉
∼= 〈 a, b, u | abab2a−2b2 = baba2b−2a2 = 1,

u a u−1 = b, u b u−1 = b−1a−1, u3 = 1 〉,
where u = st. Denote v = ua, then a = u−1v and b = vu−1 . Hence,

π1(M1/〈ST 〉) ∼= 〈 u, v | uv−1uv−1u−1vu−1v−1uv−1uvu−1v = 1,

u3 = v3 = 1 〉. (12)

By direct calculations, using the Wirtinger algorithm, we see that the group
(12) is the orbifold group of the orbifold whose underlying space is the 3-sphere
and the singular set is the knot pictured in Fig. 4 with index equals three.

@
@
@
@@

�
��

��

��
@
@
@

@@

�
�
�

�
��
@@

@@
@@

@@�
��

�
�
�

@
@
@
@@��

��@
@
@
@@

�
��

-u

�
v

6

s

- rs

r
�s

Fig. 4. The knot 52 .

Moreover, generators u and v from (12) correspond to the loops in Fig. 4.
The knot diagram in Fig. 4 is non-alternative. Using Reidemeister moves, one
can simplify this diagram to the standard diagram of the knot 52 . Let us denote
by 52(3) the orbifold with the 3-sphere as its underlying space and with the knot
52 with index 3 as its singular set. Because the orbifold 52(3) is hyperbolic [12],
summarizing above considerations we get



58 Mednykh and Vesnin

Lemma 2. In the above notations we have

〈Γ, st 〉 ∼= π1(52(3))

and
M1/〈ST 〉 ∼= 52(3).

4.3. The isometries of the orbifold 52(3)

It was shown in [5] and [7] that the symmetry group of the complement
S3 \ 52 of the knot 52 in the 3-sphere consists of four elements, and all non-
trivial symmetries are involutions. We will show that these involutions induce the
involutions of the orbifold 52(3) which can be lifted to the involutions r , s and
rs on the universal covering space H3 . We recall that the group π1(52(3)) of the
orbifold 52(3) is isomorphic to the group π1(M1/〈ST 〉) and by (12) it has the
following presentation:

π1(52(3)) = 〈 u, v, | uv−1uv−1u−1vu−1v−1uv−1uvu−1v = 1, u3 = v3 = 1 〉,
(13)

where u = st and v = ua = sta. By (4) we have t2 = a−1 , so we get v = st−1 .
Considering the action of the involutions r , s and rs on the generators u and v ,
we will get:

r u r−1 = r st r−1 = st−1 = v, r v r−1 = r st−1 r−1 = st = u, (14)

s u s−1 = s st s−1 = ts−1 = v−1, s v s−1 = s st−1 s−1 = t−1s−1 = u−1, (15)

(rs) u (rs)−1 = r v−1 r−1 = u−1, (rs) v (rs)−1 = r u−1 r−1 = v−1, (16)

where we used (4). Denote isometries of 52(3) defined by (14), (15) and (16)
also by r , s and rs in the correspondence to the notations of the isometries of
H3 . Axes of the involutions s and rs are pictured in Fig. 4, and the axis of the
involution r is perpendicular to both above axes.

We will consider quotient spaces of the orbifold 52(3) by the isometries r ,
s and rs, and denote these orbifolds by

72
1(2, 3) = 52(3) / 〈 r 〉, (17)

Θ1(2, 2, 3) = 52(3) / 〈 s 〉, (18)

Θ2(2, 2, 3) = 52(3) / 〈 rs 〉. (19)

4.4. The orbifold 72
1(2, 3)

By the definition, the orbifold 72
1(2, 3) is the quotient space of the orbifold

52(3) by the action of the involution r . Therefore, the underlying space of 72
1(2, 3)

is the 3-sphere. Because the axis of the involution r and the singular set of 52(3)
are disjoint, the singular set of the quotient space is a two-component link, one
component of which has the branch index 2, and other has the branch index 3.
One can check directly that this two-component singular set is the two-component
link with seven cross-points which is noted by 72

1 in the table of knots and links
[10]. This explains the notation 72

1(2, 3) used for this orbifold.
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Lemma 3. In the above notations we have

〈Γ, r, st 〉 ∼= π1(72
1(2, 3))

and

M1/〈R, ST 〉 ∼= 72
1(2, 3).

Proof. According to the action of the automorphisms r and st on the group
Γ, we have:

〈Γ, r, st 〉 = 〈 a, b, r, st | abab2a−2b2 = baba2b−2a2 = 1, (st)3 = 1,

(st) a (st)−1 = b, (st) b (st)−1 = b−1a−1,

r a r−1 = a−1, r b r−1 = b−1, r2 = 1 〉
∼= 〈 u, v, r | uv−1uv−1u−1vu−1v−1uv−1uvu−1v = 1, u3 = v3 = 1,

r u r−1 = v, r v r−1 = u, r2 = 1 〉,

where u = st, v = ua = st−1 . Whence

〈Γ, r, st 〉 = 〈 u, r | uru−1ruru−1ru−1ruru−1ru−1ruru−1rururu−1rur = 1,

u3 = r2 = 1 〉. (20)

As one can see by direct calculations, the group 〈Γ, r, st 〉 is isomorphic to
the group of the orbifold 72

1(2, 3), where generators u and r correspond to loops
of the same name in Fig. 5.
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Fig. 5. The link 72
1 .

Indeed, by the Wirtinger algorithm, α = r−1u−1r , β = α−1uα , γ = β−1αβ ,
δ = rγr−1 , ε = r−1βr , and from the relation ε−1 = β−1δβ we will get the non-
trivial relation from the presentation (20) for the group 〈Γ, r, st 〉.

Corollary. The following diagram of the regular orbifold coverings is commu-
tative:
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M1

HHHHj
�����

32

949(2) 52(3)
HHHHj

�����3 2

72
1(2, 3)

Proof. We recall that by virtue of lemmata 1 – 3, we have the following de-
scriptions of the orbifolds: 949(2) ∼=M1/〈R 〉, 52(3) ∼=M1/〈ST 〉 and 72

1(2, 3) ∼=
M1/〈R, ST 〉. The commutativity of the above diagram follows from the fact
that the groups 〈R 〉 ∼= Z2 and 〈ST 〉 ∼= Z3 are normal subgroups of the group
〈R, ST 〉 ∼= Z2 ⊕ Z3 of indices 3 and 2 respectively.

4.5. The orbifold Θ1(2, 2, 3)

Let us consider the orbifold Θ1(2, 2, 3) = 52(3)/〈 s 〉.

Lemma 4. In the above notations we have

〈Γ, s, t 〉 ∼= π1(Θ1(2, 2, 3))

and
M1/〈S, T 〉 ∼= Θ1(2, 2, 3).

Proof. The proof of the lemma follows from the definition of the orbifold
Θ1(2, 2, 3) and Proposition 2.

Because the underlying space of the orbifold 52(3) is the 3-sphere and the
isometry s is an involution, we get that the underlying space of the orbifold
Θ1(2, 2, 3) is the 3-sphere also. The singular set Θ1 of Θ1(2, 2, 3) is pictured
in Fig. 6.
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Fig. 6. The Θ1 -curve.

From(1), (3) and (4) we get the following presentation:

〈Γ, s, t 〉 = 〈 a, b, s, t | abab2a−2b2 = baba2b−2a2 = 1, s2 = (st)3 = 1,

t2 = a−1, s a s−1 = b, s b s−1 = a, t a t−1 = a. t b t−1 = a−1b−1 〉.
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Whence
〈Γ, s, t 〉 = 〈 p, s | p3 = s2 =

[
(sp−1)3 (sp)4

]2
= 1 〉, (21)

where p = st. The elements s, p and f = (sp−1)3 (sp)4 correspond to the loops
in Θ1(2, 2, 3) which are shown in Fig. 6. We remark that the singular set of the
orbifold Θ1(2, 2, 3) is a Θ-curve in the terminology of [14], that is a spatial Θ-
graph with 2 vertices and 3 edges. If we delete the edge corresponding to the loop
f , then we will get the torus knot 71 . Hence, we can regard the singular set of the
orbifold Θ1(2, 2, 3) as the knot 71 with a bridge. The relations p2 = 1, s3 = 1,
and f 2 = 1 in the group of the orbifold Θ1(2, 2, 3) correspond to the loops around
the three edges of the spatial Θ-graph.

By the other hand, as we see from the presentation (21), the group 〈Γ, s, t 〉
is a generalized triangle group in the terminology of [2]. We recall that some
connections between generalized triangle groups and 3-orbifolds with a two-bridge
knot with a bridge as the singular set were studied in [4].

4.6. The orbifold Θ2(2, 2, 3)

Let us consider the orbifold Θ2(2, 2, 3) = 52(3)/〈 rs 〉.

Lemma 5. In the above notations we have

〈Γ, rs, st 〉 ∼= π1(Θ2(2, 2, 3))

and
M1/〈RS, ST 〉 ∼= Θ2(2, 2, 3).

Proof. The proof of the lemma follows from the definition of the orbifold
Θ2(2, 2, 3) and Proposition 2.

Because the underlying space of the orbifold 52(3) is the 3-sphere and the
isometry rs is an involution, we get that the underlying space of the orbifold
Θ2(2, 2, 3) is the 3-sphere also. The singular set Θ2 of Θ2(2, 2, 3) is pictured in
Fig. 7.
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Fig. 7. The Θ2 -curve.

From(1), (3) and (4) we get the following presentation:

〈Γ, rs, st 〉 = 〈 a, b, rs, st | abab2a−2b2 = baba2b−2a2 = 1, (rs)2 = 1,

(rs) a (rs)−1 = b−1, (rs) b (rs)−1 = a−1,

(st) a (st)−1 = b, (st) b (st)−1 = b−1a−1, (st)3 = 1 〉. (22)
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In respect to generators α and β pictured in Fig. 7, this group has presen-
tation:

〈Γ, rs, st 〉 = 〈α, β | α3 = β2 =
[
(αβ)2 (α−1β) (αβ)2 (α−1β)2

]2
= 1 〉, (23)

where h = (αβ)2 (α−1β) (αβ)2 (α−1β)2 . We remark that the singular set of the
orbifold Θ2(2, 2, 3) is the two-bridge knot 52 with a bridge; the orbifold group with
the presentation (23) is a generalized triangle group; and the relations α3 = 1,
β2 = 1 and h2 = 1 correspond to the loops around the edges of the spatial
Θ-graph.

4.7. The orbifold Θ3(2, 2, 2)

According to [5] and [7], the symmetry group of the knot 949 is the dihedral
group D3 of order 6. This group consists of three elements which form the cyclic
group of order 3 and of the three mutually conjugated involutions. We will show
that one of these involutions is induced by the involution rs of the space H3 .

Indeed, from (1), (3) and (4), using the relations l = ar and m = rb from
subsection 4.1, we have:

(rs) l (rs)−1 = m, (rs) r (rs)−1 = r, (rs)m (rs)−1 = l,

l2 = m2 = r2 = (rs)2 = 1.

Therefore, the isometry rs induces an isometry of the orbifold 949(2) which
interchange the arcs corresponding to l and m, and preserves the arc corresponding
to r invariant (see Fig. 3).

The quotient space of the orbifold 949(2) = H3/〈Γ, r 〉 by the action of the
isometry rs is the orbifold Θ3(2, 2, 2) whose underlying space is the 3-sphere and
whose singular set, pictured in Fig. 8, is the Θ-curve, each arc of which has index
2 (that is so called π -orbifold).
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Fig. 8. The Θ3 -curve.

Because of (1), (3) and (4), using that

Θ3(2, 2, 2) = 949(2) / 〈 rs 〉 = H3 / 〈Γ, r, rs 〉 = H3 / 〈Γ, r, s 〉,
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the group π1(Θ3(2, 2, 2)) is isomorphic to the group 〈Γ, r, s 〉 and has the following
presentation:

〈Γ, r, s 〉 = 〈 a, b, r, s | abab2a−2b2 = baba2b−2a2 = 1, r2 = s2 = (rs)2 = 1,

r a r−1 = a−1, r b r−1 = b−1, s a s−1 = b, s b s−1 = a 〉
∼= 〈 l, r, s | l2 = r2 = s2 = (rs)2 = (srl)2(rlsl)r(lslr)(lrs)2l = 1 〉,(24)

where generators l = ar , r and s correspond to Fig. 8.

Summarizing above considerations, we get

Lemma 6. In the above notations we have

〈Γ, r, s 〉 ∼= π1(Θ3(2, 2, 2))

and
M1/〈R, S 〉 ∼= Θ3(2, 2, 2).

4.8. The orbifolds L5,−1(2) and L5,−2(2)

It is clear that the group π1(Θ3(2, 2, 2)) = 〈Γ, r, s 〉 with the presentation
(24) has three subgroups of index 2, which can be derived as kernels of the three
epimorphisms ϕs , ϕlr and ϕlrs of the group 〈Γ, r, s 〉 to Z2 = 〈α | α2 = 1 〉.
These epimorphisms are defined by

ϕs(s) = α, ϕs(l) = ϕs(r) = 1, (25)

ϕlr(s) = 1, ϕlr(l) = ϕlr(r) = α, (26)

ϕlrs(l) = ϕlrs(r) = ϕlrs(s) = α. (27)

By the Reidemeister–Schreier method, using formulae (1), (3) and (4), we
have:

Kerϕs ∼= 〈 l, r, sls 〉 ∼= 〈 ar, r, br 〉 ∼= 〈Γ, r 〉, (28)

Kerϕlr ∼= 〈 lr, s 〉 ∼= 〈 a, s 〉 ∼= 〈Γ, s 〉, (29)

Kerϕlrs ∼= 〈 lr, rs 〉 ∼= 〈 a, rs 〉 ∼= 〈Γ, rs 〉. (30)

The singular set Θ3 of the orbifold Θ3(2, 2, 2) is pictured in Fig. 8. Similar
to [14], we can correspond to the Θ-curve Θ3 three constituent knots K1 , K2

and K3 . The first knot K1 , which we will get after deleting from Θ3 the edge
corresponding to r (see Fig. 8), is the trivial knot. The second knot K2 , which
corresponds to the deleting of the edge s, is the torus knot 51 , that is the two-
bridge knot K(−5/1). The third knot K3 , which corresponds to the deleting of
the edge rs, is the figure-eight knot 41 , that is the two-bridge knot K(−5/2).

The corresponding orbifolds H3/Kerϕs = H3/〈Γ, r 〉, H3/Kerϕlr = H3/〈Γ, s 〉
and H3/Kerϕlrs = H3/〈Γ, rs 〉 can be obtained as the two-fold coverings of the
orbifold Θ3(2, 2, 2) branched over the constituent knots K1 , K2 and K3 , respec-
tively. Therefore, the underlying space of the orbifold H3/〈Γ, r 〉 is the 3-sphere,
the underlying space of the orbifold H3/〈Γ, s 〉 is the lens space L5,−1 and the
underlying space of the orbifold H3/〈Γ, rs 〉 is the lens space L5,−2 .
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The singular set of the orbifold H3/〈Γ, r 〉 is the knot 949 with index 2.
Hence H3/Kerϕs = 949(2) (see Lemma 1) and this orbifold was discussed in
subsection 4.1. The singular sets of the orbifolds H3/〈Γ, s 〉 and H3/〈Γ, rs 〉 have
branch index 2, so we denote these orbifolds by L5,−1(2) and L5,−2(2), respectively.
M. Sakuma kindly informed the authors that using his approach, one can describe
the singular sets of the orbifolds L5,−1(2) and L5,−2(2) by lifting them on the
5-fold coverings of L5,−1 and L5,−2 which are already the 3-sphere.

Using Proposition 2, from above discussions we get the following statements.

Lemma 7. In the above notations we have

〈Γ, s 〉 ∼= π1(L5,−1(2))

and

M1/〈S 〉 ∼= L5,−1(2).

Lemma 8. In the above notations we have

〈Γ, rs 〉 ∼= π1(L5,−2(2))

and

M1/〈RS 〉 ∼= L5,−2(2).

4.9. The orbifold T(2, 2, 2, 2, 2, 3)

We remark that the orbifold Θ1(2, 2, 3) has the non-trivial symmetry of
order two. This is the involution which interchanges two vertices of the spatial
Θ1 -curve shown in Fig. 6.

We will prove that one of the liftings of this involution on the universal
covering H3 is the isometry r . Indeed, from (1), (3), (4) and (21), using the
notation p = st, we get

rpr−1 = st−1 = sp−1s−1, r2 = 1. (31)

Whence, the group 〈Γ, s, t 〉 with the presentation (21) is invariant under the
conjugation by r . Therefore, r induces the isometry of the orbifold Θ1(2, 2, 3)
with the quotient space

T (2, 2, 2, 2, 2, 3) = Θ1(2, 2, 3) / 〈 r 〉 = 〈Γ, r, s, t 〉.

Because r is the involution and the underlying space of the orbifold Θ1(2, 2, 3) is
the 3-sphere, the underlying space of the quotient orbifold is also the 3-sphere. The
singular set T of the quotient orbifold is the knotted 1-skeleton of the tetrahedron,
pictured in Fig. 9. One of its edges has the index 3, and all other have indices 2.
This explains the notation T (2, 2, 2, 2, 2, 3) for this quotient orbifold.
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Fig. 9. The spatial graph T .

According to the definition of the orbifold T (2, 2, 2, 2, 2, 3) and by Propo-
sition 2 we get

Lemma 9. In the above notations we have

〈Γ, r, s, t 〉 ∼= π1(T (2, 2, 2, 2, 2, 3))

and
M1/〈R, S, T 〉 ∼= T (2, 2, 2, 2, 2, 3).

Using (4), (21), and (31), one can derive the following presentation for the
fundamental group of the orbifold T (2, 2, 2, 2, 2, 3):

〈Γ, r, s, t 〉 = 〈 p, r, s | s2 = r2 = p3 =
[
(sp)4(sp−1)3

]2
= 1,

rsr−1 = s. rpr−1 = sp−1s−1 〉,

where the generators p, r and s of the group π1(T (2, 2, 2, 2, 2, 3)) are correspond
to Fig. 9.
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