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Normalizers and centralizers of reductive subgroups
of almost connected Lie groups

Detlev Poguntke

Communicated by K. H. Hofmann

Abstract. If M is an almost connected Lie subgroup of an almost
connected Lie group G such that the adjoint group M is reductive then
the product of M and its centralizer is of finite index in the normalizer. The
method of proof also gives a different approach to the Weyl groups in the
sense of [6].

An almost connected Lie group is a Lie group with finitely many connected compo-
nents. For a subgroup U of any group H denote by Z(U,H) and by N(U,H) the
centralizer and the normalizer of U in H , respectively. The product UZ(U,H) is
always contained in N(U,H). By Theorem A of [3], if H is an almost connected
Lie group and U is compact, the difference is not too ”big,” i.e., UZ(U,H) is of
finite index in N(U,H). While from the point of view of applications, for instance
to probability theory of Lie groups, the hypothesis of the compactness of U may
be the most interesting one, this short note presents a theorem, which shows that,
from the point of view of the proof, it is not the topological property of compact-
ness which is crucial, but an algebraic consequence of it, namely, the reductivity
of the adjoint group. Moreover, we provide additional information on the almost
connectedness of certain normalizers. Finally, there are comments on the finiteness
of certain generalized “Weyl groups” in the sense of [6]. A few words about our
notion of Lie (sub)groups are in order. By defintion we shall assume that a Lie
group is paracompact, i.e., has countably many components. A subgroup M of
a Lie group G is called a Lie subgroup if M is endowed with the structure of a
smooth manifold such that M is a Lie group and that the inclusion M → G is an
immersion. The smooth structure of M is uniquely determined by the Lie group
G and the abstract subgroup M . For instance, denoting by Ad:G → GL(g) the
adjoint representation of G, we observe that the subgroup Ad(M) is a Lie sub-
group of GL(g) which may, as a Lie group, be identified with the quotient Lie
group M/(Z(G0, G) ∩M); the uniqueness theorem tells us that this is the only
way to view Ad(M) as a Lie subgroup. If M is not closed in G then the Lie group
topology is properly finer than the relative topology. In the sequel, when we speak
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of topological properties of M such as almost connectedness, we shall refer to the
intrinsic Lie group topology of M .

A connected Lie subgroup H of some general linear group is called reductive
if it can be written as a product of a semisimple Lie group and a central connected
Lie subgroup consisting of semisimple automorphisms. Because linear semisimple
Lie groups are closed this condition is equivalent to the statement that H̄ is
reductive; moreover, the commutator subgroup [H̄, H̄] is contained in H , indeed
[H̄, H̄] = [H,H].

Theorem 1. Let G be an almost connected Lie group with Lie algebra g, and
let M be an almost connected Lie subgroup of G such that Ad(M0) ≤ Aut(g) ≤
GL(g) is reductive. Then MZ(M,G) is of finite index in N(M,G).

Remark 2. The assumption on Ad(M0) implies that the Lie algebra m of
M is itself reductive as an “abstract Lie algebra,” i.e., is the direct sum of its
center and a semisimple ideal. To see this one observes that the reductive Lie
subgroup Ad(M0) acts on m and yields a direct decomposition of m into simple
ideals and central ideals. While Z(M,G) is closed and thus is a Lie subgroup
of G, the subgroup MZ(M,G) is not necessarily closed. However, it is a Lie
subgroup inheriting its differentiable structure from the product M×Z(M,G) via
the obvious surjective group homomorphism M × Z(M,G) → MZ(M,G). As a
consequence of Theorem 1, also N(M,G) is a Lie subgroup containing MZ(M,G)
as an open submanifold. By the known structure of compact connected Lie groups
the assumptions are satisfied if Ad(M) is relatively compact. In particular, this
holds if M itself is compact, which is the case treated in [3].

If Ad(M) is relatively compact one has a stronger result:

Corollary 3. Let G, g, and M be as in the Theorem. If Ad(M) is relatively
compact, then N(M,G) and Z(M,G) are almost connected Lie subgroups. For
the connected component N(M,G)0 one has

N(M,G)0 = M0Z(M,G)0.

To deduce the Corollary from the Theorem it is sufficient to show that
Z(M,G) is almost connected, which follows from the subsequent proposition.

Proposition 4. For an almost connected Lie group G with Lie algebra g,
let d: Aut(G) → Aut(g) denote the standard homomorphism assigning to each
automorphism its differential at the origin. Let F be a subgroup of Aut(G) such
that d(F ) is relatively compact. Then the closed subgroup GF of fixed points is
almost connected.

Proof. W.l.o.g. we assume that G is connected. Since GF is not changed
when we replace F by its closure, we may as well assume that F is a compact Lie

group. Then we form the almost connected Lie group H
def
= F nG. By [4, p. 180]

there exists a maximal compact subgroup K of H with F ⊂ K . We claim that
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then K ∩ G is a maximal compact subgroup of G. If L is a compact subgroup
of G containing K ∩ G then choose a maximal compact subgroup Q of H with
L ⊂ Q. Since maximal compact subgroups of the almost connected Lie group H
are conjugate, there exists an element x ∈ H with K = xQx−1 . Using that G is
normal in H we obtain

L ⊃ K ∩G = (xQx−1) ∩G = x(Q ∩G)x−1 ⊃ xLx−1.

Hence L = xLx−1 = K ∩G, and this proves the claim. This argument applies to
any closed normal subgroup of an almost connected Lie group H and a maximal
compact subgroup of H . However, in the case at hand, the homogeneous spaces
G/(K∩G) and H/K are diffeomorphic and indeed are diffeomorphic to a euclidean
space. Actually, we use the more precise information that there exist K –invariant,
in particular F –invariant vector subspaces v1, . . . , vr of g such that the map

(K ∩G)× v1 × . . .× vr → G,

given by (k,X1, . . . , Xr) 7−→ k expX1 · . . . · expXr , is a diffeomorphism. Since
this map is F –invariant, GF corresponds to

(K ∩G)F × vF1 × . . .× vFr ,

which has finitely many connected components.

We now turn to the theorem and consider first the case that M is connected and
abelian, which indeed is the most interesting one. Let us briefly stop for looking
an example which comes to mind and illustrates well why the theorem and its
corollary should hold. Why does the natural semidirect product SL2(Z)n T2 not
allow a faithful representation into some GLn(R)? If H were the image of such a
representation we would take the Zariski closure G of H , and G would then be
almost connected. The image of T2 would be Zariski closed as a compact group.
Its normalizer in GLn(R) would be Zariski closed and would contain H , hence G.
In particular G0 would normalize the image of T2 and thus would yield a connected
group of automorphisms of the torus T2 , whose automorphism group is discrete.
Thus G0 would centralize T2 , giving a contradiction to H ≤ G and the finiteness
of G/G0 . What is essential in this illustration is the fact that algebraic groups
are almost connected, and this will also be crucial in the proof of the following
proposition.

Proposition 5. Let G be an almost connected Lie group and V a connected
Lie subgroup of G such that Ad(V ) is abelian and consists of semisimple auto-
morphisms. Then the quotient group N(V,G)/Z(G0, G) is almost connected and
Z(G0, G)N(V,G)0 is of finite index in N(V,G). Moreover, N(V,G)0 centralizes
V , whence Z(V,G) is of finite index in N(V,G).

Proof. Again we may assume that G is connected. As we observed in Remark
2, the subgroup V itself is abelian. By [2, Proposition 10, p. 24] there exists
a Cartan subalgebra h of g containing the Lie algebra v of V as a central
subalgebra. Set H = exp h, and let G′ denote the commutator subgroup of
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G. Then g = h + [g, g] and G = HG′ since any Cartan subalgebra supplements
[g, g]. The Lie algebra of Ad(G′) = Ad(G)′ is ad([g, g]) = [ad g, ad g], which, as
the commutator algebra of a linear Lie algebra is an algebraic Lie algebra (see e.g.
[1, (7.9) Corollary, p. 195]. Hence Ad(G′) is the connected identity component of
an algebraic subgroup A of Aut(g). In particular, Ad(G′) is of finite index in A.

The group B
def
= {α ∈ A | α(v) = v} is an algebraic subgroup of A and thus is

almost connected. Therefore, Ad(G′)∩B = Ad(G′∩N(V,G)) is almost connected
as well. From H ⊂ N(V,G) and G = HG′ it follows that N(V,G) = HN(V,G′)
and thus Ad(N(V,G)) = Ad(H) Ad(G′ ∩ N(V,G)), which is almost connected.
Since Ad(N(V,G)) is isomorphic to N(V,G)/Z(G,G) this latter group is almost
connected. This implies immediately that Z(G,G)N(V,G)0 has finite index in
N(V,G). For each X in the Lie algebra n of N(V,G) one has [X, v] ⊂ v, hence
ad(Y )(X) ∈ v for all Y ∈ v. As v is abelian it follows that ad(Y )2(X) = 0.
Since all the ad(Y ), Y ∈ v, are semisimple, we conclude that ad(Y )(X) = 0, i.e.,
[n, v] = 0. Therefore, N(V,G)0 centralizes V .

Remark 6. If Ad(V ) happens to be even a compact torus, the above argu-
ments can be simplified, and one obtains in addition that N(V,G) is almost con-
nected, in accordance with Corollary 3. In these circumstances, choose a maximal
torus T in Ad(G) containing Ad(V ); we still assume G to be connected for sim-

plicity. The subgroup U
def
= Ad−1(T ) is abelian and connected, it clearly contains

Z(G,G) and there is a Cartan subalgebra h containing the Lie algebra u of U as
a central subalgebra; for all this compare [8, p. 634, 635]. Here, H contains the
center which is not true in general. Therefore the homogeneous space N(V,G)/H
is an image of Ad(G′ ∩N(V,G)) = Ad(G′) ∩ Ad(N(V,G)). Given that the latter
group is almost connected, N(V,G)/H has only finitely many connected compo-
nents, whence N(V,G) is almost connected.

When we now turn to the proof of the theorem in full generality we shall need
some results on Aut(M), when M satisfies the hypotheses of the theorem. The
following is implicit, if not explicit, in [7] or in [3], so we may be brief. If the Lie
algebra m of an almost connected Lie group M is reductive, then the commutator
subgroup (M0)′ of M0 is a (not necessarily closed) semisimple Lie group and

M0 = (M0)′Z(M0,M0) = (M0)′Z(M0,M0)0.

Denote by I:M → Aut(M) the canonical homomorphism given by I(x)(m) =
xmx−1 . Let
A = {α ∈ Aut(M) | α|Z(M0,M0)0

= identity},
A1 = {α ∈ A | α induces the identity on M/M0}, and
A2 = {α ∈ A1 | α|M0 = identity}.

Proposition 7. The following quotients are finite:
(i) A/A1 , (ii) A1/A2I((M0)′), (iii) A2/I(Z(M0,M0)), and (iv) A/I(M0).

Proof. The finiteness of M/M0 gives case (i). Case (ii) results from the fact
that the automorphism group of a semisimple Lie algebra contains the group of
inner automorphisms as a subgroup of finite index. Case (iv) follows from (i)–(iii),
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thus we are left with (iii). Each α ∈ A2 can be written as α(x) = xγ(x), x ∈ M ,
with a map γ:M →M0 satisfying

γ(M0) = {1}, and γ(xy) = y−1γ(x)yγ(y) for all x, y ∈M.

Choosing x ∈M0 one finds that γ may be considered as a map on the finite group
M/M0 , choosing y ∈ M0 we get γ(M/M0) ⊂ Z(M0,M0). Writing the abelian

group Z
def
= Z(M0,M0) additively for the moment and denoting by ẋ ∈M/M0 the

coset of x ∈M we see that A2 is isomorphic to the (abelian) group C of all maps
γ:M/M0 → Z with

(∗) γ(ẋẏ) = y−1γ(ẋ)y + γ(ẏ).

The subgroup I(Z) of A2 corresponds to the subgroup B def
= {γz | z ∈ Z} of

C where γz(ẏ) = y−1zy − z . As Z is isomorphic to Rd × Tm × Zk × F with
finite F , for each natural number n the subgroup nZ is of finite index in Z , and
Torn(Z) = {z ∈ Z | nz = 0} is finite. This applies in particular to the order n of
M/M0 , from which one easily deduces that H1(M/M0, Z) = C/B is finite, which
concludes the proof.

Proof of Theorem 1. The reductivity of AdM0 implies that with the semi-
simple group (M0)′ we have

M0 = (M0)′Z(M0,M0)0.

Set V
def
= Z(M0,M0)0 ; then N(M,G) is contained in N(V,G). From Proposition 5

we know that Z(V,G)∩N(M,G) is of finite index in N(M,G). With the notations
of Proposition 7, considering also I:N(M,G)→ Aut(M), we have

I(M0) ⊂ I(Z(V,G) ∩N(M,G)) ⊂ I(N(M,G)), and
I(M0) ⊂ I(Z(V,G) ∩N(M,G)) ⊂ A.

As A/I(M0) and I(N(M,G))/I(Z(V,G) ∩ N(M,G)) are finite, all four groups
above are commensurable, in particular, I(N(M,G))/I(M0) is finite, whence
M0Z(M,G) is of finite index in N(M,G).

Our approach differs from that one given in [3] essentially in the treatment of
the torus–case, Proposition 5. While we give an (almost) self-contained proof the
authors of [3] refer to [6] where, among others, the finiteness of certain “generalized
Weyl groups” is studied in more generality. Actually, as we shall explain in the last
part of this article, our proof of Proposition 5 can be used to reprove some of the
results in the beginning of [6]. Both methods rest on the theory of algebraic groups,
but while we use that Ad(G)′ is almost algebraic, the authors in [6] apply Ado’s
theorem and take then the “algebraic hull,” which is a less canonical procedure.
Recall the situation of [6]. Let G be a connected Lie group with Lie algebra g, let
h be a Cartan subalgebra of g, and let a be an ideal in h. Then define

N(a, G) = {x ∈ G | Ad(x)(a) = a},
C(a, G) = {x ∈ N(a, G) | Ad(x) induces the identity on a/[a, a]},
Z(a, G) = {x ∈ N(a, G)|Ad(x)|a = identity on a},

and the corresponding Lie subalgebras n(a, g), c(a, g), and z(a, g) of g. Clearly,
one has Z(a, G) ⊂ C(a, G) ⊂ N(a, G).
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Proposition 8. With the above assumptions and notations the following asser-
tions hold true.

(a) N(a, G)/Z(G,G) is almost connected,

(b) N(a, G)0Z(G,G) is of finite index in N(a, G),

(c) n(a, g) = h + z(a, g),

(d) HZ(a, G) is of finite index in N(a, G), where H = exp h.

Proof. Concerning (a) and (b), the arguments in the proof of Proposition 5
apply here as well without any alteration worth mentioning; still H normalizes a
and exp a. Concerning the centralizing property the situation is different, as the
“semisimplicity argument” is no longer available. To see (c) consider the Fitting
decomposition g = h⊕ g+ relative to h (or a regular element in h). To prove the
nontrivial inclusion n(a, g) ⊂ h + z(a, g) decompose an X ∈ n(a, g) accordingly,
X = Xh + X+ . Since Xh ∈ h ⊂ n(a, g), also X+ has to be in n(a, g), hence
[X+, a] ⊂ a ⊂ h. On the other hand, as a ⊂ h, one has [a, X+] ⊂ g+ , whence
[a, X+] = 0, i.e., X+ ∈ z(a, g). Claim (d) is an immediate consequence of (b) and
(c).

So far the group C(a, G) hasn’t appeared yet. In order to introduce Weyl groups,
the authors of [6] impose a stronger condition on a than just being an ideal, namely
that [a, h] ⊂ [a, a] or, in other words, that a/[a, a] is central in h/[a, a] or that h
is contained in c(a, g). Then clearly H Z(a, G) is contained in C(a, G), so that
from (d) we deduce the following consequence.

Corollary 9. If a ≤ h satisfies [a, h] ⊂ [a, a] then N(a, G)/C(a, G) is a finite
group.

References

[1] Borel, A., “Linear algebraic groups,” W. A. Benjamin, New York, 1969.
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