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Crofton formulae and geodesic distance in hyperbolic spaces
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Abstract. The geodesic distance between points in real hyperbolic space
is a hypermetric, and hence is a kernel negative type. The proof given here
uses an integral formula for geodesic distance, in terms of a measure on the
space of hyperplanes. An analogous integral formula, involving the space
of horospheres, is given for complex hyperbolic space. By contrast geodesic
distance in a projective space is not of negative type.

Introduction

Motivated by problems in harmonic analysis on homogeneous spaces, J. Faraut
and K. Harzallah showed in [7] that the geodesic distance d on a real or complex
hyperbolic space of dimension n ≥ 2 is a kernel of negative type. Equivalently,√
d is a Hilbert space distance [HV: Chapter 5]. On the other hand, in the real

hyperbolic plane, there is an explicit Crofton integral formula for the length L of a
rectifiable curve C in terms of a measure µ on the space of geodesics [18, Section
3], [9, Section 4.4]. The formula has the form

∫
n(γ)dµ(γ) = 2L, where n(γ) is

the number of times the geodesic γ meets C and the integral is over the space of
all geodesics. (M.W. Crofton proved the corresponding formula for the euclidean
plane in 1868.)

This paper proves a Crofton formula for geodesic distances in real hyperbolic
space of dimension n, from which one obtains an explicit geometric proof of the
result of Faraut and Harzallah, in the real case. In this case the measure µ is
defined on the space of totally geodesic submanifolds of codimension one. There
is also a Crofton formula in the complex case. However, the measure is defined on
the space of horospheres, and it is not clear how to deduce that d is of negative
type.

Hyperbolic spaces Hn
F can be defined over R, C, H and (in the case

n = 2) the octonions O. In each case the space is two point homogeneous: if
d(x, y) = d(x′, y′) then there is an isometry g of Hn

F such that gx = x′ , gy = y′

[11, Chapter IX, Proposition 5.1, p.355]. It turns out that this property, together
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with the existence of a certain invariant measure is at the heart of the Crofton
formulae. We note that the noncompact riemannian manifolds which are two
point homogeneous are exactly the euclidean spaces and hyperbolic spaces [11].

The Crofton formula that we prove for Hn
R has the consequence that the

geodesic distance d is a hypermetric in the sense of [1]. It follows that any finite
subset of Hn

R , endowed with the metric
√
d, embeds isometrically in a euclidean

sphere (Corollary 3.2).

Finally, we complete the investigation of Faraut and Harzallah [7] for sym-
metric spaces of rank one, by showing explicitly that the geodesic distance on a
projective space is not of negative type, although it can be expressed by means of
a Crofton formula.

1. Motivation and preliminaries

In the course of the proof of [17, Proposition 1.4], a geometric argument was
given to show that the euclidean distance d(x, y) between points x, y ∈ Rn is a
kernel of negative type. In retrospect, the basis of that argument is seen to be
the classical Crofton formula asserting that d(x, y) equals the measure of the set
of euclidean hyperplanes which meet the line segment [xy]. The relevant measure
is the appropriately normalized measure on the space of hyperplanes which is
invariant under isometries of Rn . This measure lifts to a measure µ on the space
of half spaces of Rn . Then d(x, y) = µ(Sx4Sy), where Sx denotes the set of half
spaces which contain x. It is natural to try to extend this argument to the rank
one symmetric spaces considered by J. Faraut and K. Harzallah [7]. It turns out
that the only such spaces for which the geodesic distance is a kernel of negative
type are real or complex hyperbolic spaces, and euclidean spheres.

Let F be one of the (skew-) fields R, C or H. Regard Fn+1 as a right
vector space over F and define a hermitian form on Fn+1 by means of the formula

〈z, w〉 = −z0w0 + z1w1 + · · ·+ znwn.

The hyperbolic space Hn
F is the image in the projective space P n

F of the set
of negative vectors {z ∈ Fn+1 : 〈z, z〉 < 0}.

It is convenient to use the same notation for a negative vector x ∈ Fn+1

and its equivalence class in P n
F . The geodesic distance between points x, y in X

is given by cosh d(x, y) = |〈x,y〉|
(〈x,x〉〈y,y〉) 1

2
.

The octionic hyperbolic plane H2
O requires a more involved definition [15].

2. Real hyperbolic space

Denote by X the hyperbolic space Hn
R [CG]. Then X is the image in the projective

space RPn of the set of negative vectors

{
x ∈ Rn+1 : 〈x, x〉 = −(x0)2 + (x1)2 + . . . (xn)2 < 0

}
.
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The orthogonal group G = O(1, n) is the subgroup of GL(n+1,R) which preserves
the form 〈·, ·〉, and G acts isometrically and transitively on X . The stabilizer in
G of the point x0 = (1, 0, . . . , 0) ∈ X is the compact group K = O(1) × O(n).
Thus X is isomorphic to the topological homogeneous space G/K . The hyperbolic
space Hn−1

R embeds naturally into X = Hn
R as the subspace S0 consisting of all

points with last coordinate equal to zero.

Every totally geodesic submanifold of codimension one in X is a G–
translate of S0 [5, Proposition 2.5.1]. It is convenient simply to refer to such
a submanifold as a hyperplane. The space S of all hyperplanes may therefore be
identified with the topological homogeneous space G/G(S0), where G(S0) is the
subgroup of G consisting of elements which leave S0 globally invariant. By [5,
Lemma 4.2.1], we have G(S0) ∼= O(1, n− 1)×O(1). The groups G and G(S0) are
both unimodular [11, Chapter X, Proposition 1.4]. (A direct proof is given in [4,
Proposition C.4.11].) It follows [16, Chapter 3, p.140, Corollary 4] that there is a
nonzero positive G-invariant measure µS on the space S of hyperplanes.

We also consider the space H of half spaces in X . These are the G–
translates of the half–space H0 consisting of points with last coordinate positive.
The group G(H0) ∼= O(1, n − 1) is unimodular and there is a corresponding
invariant measure µH on H = G/G(H0).

There is a natural double covering π : H → S and so by uniqueness of
the measures (up to a positive multiple) [16, Chapter 2, p.95, Corollary] we may
assume that µS = π∗ ◦ µH .

Let [xy] denote the (unique) geodesic between points x, y ∈ X . We first
prove the following Crofton formula.

Proposition 2.1. There is a constant k > 0 such that, if x, y ∈ X then

µS {S ∈ S : S ∩ [xy] 6= Ø} = kd(x, y).

For the purposes of the proof, we introduce the notation

m(x, y) = µS {S ∈ S : S ∩ [xy] 6= Ø} .

Lemma 2.2. If x, y ∈ X then

(a) {S ∈ S : S ∩ [xy] 6= Ø} is compact;

(b) m(x, y) <∞.

Proof: (a) Let g, h ∈ G. We claim that the point gx0 lies on the
hyperplane hS0 if and only if gK ∩ hG(S0) 6= Ø. The crucial fact used in the
proof is that G(S0) acts transitively on S0 . Therefore

gx0 ∈ hS0 ⇐⇒ h−1gx0 ∈ S0

⇐⇒ h−1gx0 = g0x0, for some g0 ∈ G(S0)

⇐⇒ g−1
0 h−1g ∈ K, for some g0 ∈ G(S0)

⇐⇒ h−1g = g0k0, for some g0 ∈ G(S0), k0 ∈ K
⇐⇒ gK ∩ hG(S0) 6= Ø.
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This proves our assertion. Furthermore, since [xy] is compact, there exists a
compact subset J ⊂ G such that Jx0 = [xy], by [16, p.137, Lemma 1]. A
hyperplane hS0 meets [xy] if and only if JK∩hG(S0) 6= Ø, that is h ∈ JKG(S0).
The set of such hyperplanes hS0 is therefore compact, being the image of the
compact set JK under the quotient map G→ G/G(S0).

(b) This follows immediately from (a).

Proof of Proposition 2.1. We must prove that m(x, y) = kd(x, y)
where k > 0 is constant. This is based on the following facts: (a) X is two-point
homogeneous with respect to the action of G; (b) the measure µS is G-invariant.
It follows that m(x, y) = m(x′, y′) whenever d(x, y) = d(x′, y′). Moreover, by
considering a large number of pairwise disjoint geodesic segments of equal length
in some fixed geodesic segment [ab], we see that m(x, y) → 0 as d(x, y) → 0. In
particular m(x, x) = 0. If we divide [xy] into s segments [xixi+1] of equal length
(1 ≤ i ≤ s), then m(x, y) = sm(x1, x2). In this way, if d(x′, y′) = qd(x, y) where q
is rational, then m(x′, y′) = qm(x, y). Now m(x, y) <∞, by Lemma 2, and so by
continuity there is a constant k ≥ 0 such that m(x, y) = kd(x, y) for all x, y ∈ X .
We must check that k > 0. For this, it is enough to show that m(x, y) > 0 for
some x, y . Take x = (1, 0, 0. . . . , ε), y = (1, 0, 0. . . . ,−ε). Then the hyperplane
S0 meets [xy] transversally at the interior point x0 = (1, 0, . . . , 0) of the geodesic

segment [xy]. There is an open neighbourhood Ṽ of the identity in G such that

gS0 meets [xy] at an interior point for all g ∈ Ṽ . The image V of Ṽ in G/G(S0)
is an open set which is contained in the set of all hyperplanes meeting [xy]. Since
V has positive measure, this implies that m(x, y) > 0, as required.

Remark 2.3. Unlike the case n = 2 in [18, Section 3], [9, Section 4.4], the
above proof of the Crofton formula in hyperbolic space is not constructive. How-
ever it gives a geometric explanation of why the result is true.

We now re-interpret Proposition 1, replacing µS by µH , the invariant
measure on the space of all half-spaces. This will allow us to use the method
of [17] to show that the metric on X is of negative type. Given x ∈ X , let Σx

denote the set of half-spaces containing X .

Lemma 2.4. If x, y ∈ X then

µH(Σx 4 Σy) = µS {S ∈ S : S ∩ [xy] 6= Ø} .

Proof: The double covering π : H → S is given by π(H) = ∂H ,
the boundary of H . Since a hyperplane S is totally geodesic we have either
# ([xy] ∩ S) ≤ 1 or [xy] ⊆ S . Therefore

Σx4 Σy = π−1 {S ∈ S : S ∩ [xy] 6= Ø and [xy] 6⊆ S} .

Now µS {S ∈ S : [xy] ⊆ S} = 0. The result follows, since µS = π∗ ◦ µH .
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Corollary 2.5. If x, y ∈ X then d(x, y) = kµH(Σx 4 Σy) where k > 0 is
constant. Hence d is a kernel of negative type.

Proof: The first assertion is immediate from Lemma 2.4. The second
assertion follows by embedding X into L2(H, µH) via x 7→ vx where vx = χx−χx0 ,
and χx is the characteristic function of Σx . Then µH(Σx4Σy) = ‖vx − vy‖2

2 and

so
√
d is a Hilbert space distance. (c.f. [17, Proposition 1.1].)

Remark 2.6. Faraut and Harzallah show [7] that the distance function on
real or complex hyperbolic space is a kernel of negative type. See [10, Chapitre
6, Théorème 21]. The corresponding result for quaternionic Hilbert space is false,
because the group of isometries Sp(1, n) has Kazhdan’s property (T ) [7, Théorème
6.4]. It would be interesting to have a direct proof of this fact, avoiding the use of
property (T ).

Remark 2.7. Corollary 2.5 is stronger than the result of Faraut and Harzallah.
It asserts that the distance d is a measure definite kernel, in the sense of [17], a
concept which is in general strictly stronger than that of negative type. See the
next section.

Remark 2.8. Since G(H0) is a closed noncompact subgroup of G, it follows
from Moore’s ergodicity Theorem [20, Theorem 2.2.6] that any lattice subgroup
Γ of G acts ergodically on H = G/G(H0). Note that the group Γ does not have
property (T ). Fix an element x ∈ X then µH(Σx 4 gΣx) = µH(Σx 4 Σgx) is a
positive constant multiple of d(x, gx), and hence unbounded. The action of Γ in
[17, Theorem 2.1] may therefore be chosen to be ergodic. Whether one can find
an ergodic action with similar properties for all groups without property (T ) is an
open question.

Remark 2.9. Consider any Coxeter system (W,S), where W is a Coxeter
group and S is the canonical generating set. Let ∆ denote the associated Coxeter
complex. By a result of J. Tits [3, Chap. IV, p.41], the natural distance d(c, c′)
between chambers c and c′ is equal to the number of walls of ∆ separating c and
c′ . This is precisely the Crofton formula for distance, relative to counting measure
on the space of walls.

Let H denote the space of half spaces (“roots”) of ∆ with counting measure.
If c is a chamber of ∆, let Hc be the set of roots containing c. Then 2d(c, c′) =
#(Hc4Hc′). (See the proof of [10, Proposition 6.14].) The argument proceeds as
before, showing that d is a kernel of negative type.

The same type of argument is applied in [2, Proof of Theorem 3] to a
polygonal complex X , which is locally finite, simply connected and of type (4, 4)
or (6, 3). Let B denote the set consisting of all barycentres of faces of X or of
edges of X which are not adjacent to faces. An unbounded negative definite kernel
N of the above form is defined on B. The kernel N is equivalent to the geodesic
distance between elements of B and is invariant under automorphisms of X . This
is used in [2] to show that a properly discontinuous group of automorphisms of X
does not have property (T).
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3. The hypermetric property for real hyperbolic space

A semimetric space (X, d) is said to be hypermetric if it satisfies the following
property: for each finite subset {x1, x2 . . . , xm} of X and integers {t1, t2 . . . , tm}
such that

∑m
i=1 ti = 1, we have

∑m
i,j=1 titjd(xi, xj) ≤ 0. The corresponding

statement, with t1, t2 . . . , tm real numbers satisfying
∑m

i=1 ti = 0, says that d
is a kernel negative type. It is easy to see that if d has the hypermetric property
then d is a kernel negative type [1, 1.2].

Suppose that (W, µ) is a measure space and that a semimetric d on a set
X is defined by the formula d(x, y) = µ(Sx4 Sy), where for each x ∈ X , Sx is a
measurable set. It was proved in [14, Theorem 3.1] that d is then a hypermetric.
The next result is therefore an immediate consequence of Corollary 2.5.

Corollary 3.1. The geodesic distance d on Hn
R is a hypermetric.

Finite hypermetric spaces have been characterized up to isometry in [1],
and there is a detailed exposition of their properties in [6]. In view of the fact
that the space (Hn

R, d) has constant negative curvature, the next result may seem
slightly surprising.

Corollary 3.2. Let {x1, x2 . . . , xm} be any finite subset of Hn
R , endowed with

the metric
√
d. Then ({x1, x2 . . . , xm},

√
d) embeds isometrically in a euclidean

sphere in Rp , where p ≥ log2 m.

Proof: Since d is of negative type (being hypermetric) it follows from [10,
Proposition 5.14] that ({x1, x2 . . . , xm},

√
d) embeds isometrically in Rp , for some

p. The fact that the image is contained in a euclidean sphere is then a consequence
of [1, Lemme 1.12]. The estimate p ≥ log2 m is provided by [1, Proposition 1.18].

4. Complex hyperbolic space

Complex hyperbolic space Hn
C is constructed in a manner similar to that of Hn

R
[5]. The bihermitian form 〈z, w〉 = −z0w0 + z1w1 + · · ·+ znwn on Cn defines a set
of negative vectors in Cn+1 , defined by the condition 〈z, z〉 < 0, which projects to
the subspace Hn

C of CPn .

One might try to mimic the arguments of the preceding section in the
complex case. The space Hn

C is two point homogeneous with respect to the
isometry group U(1, n). Natural analogues of hyperplanes are the equidistant
hypersurfaces [8, Section 4], also known as spinal surfaces in [15]. These are, by
definition, subspaces of the form S = {z ∈ Hn

C : d(z, z1) = d(z, z2)}, where z1, z2 ∈
Hn
C . There is a natural invariant measure on the space of equidistant hypersurfaces,

but we cannot prove an analogue of Lemma 2.2, because the group G(S0) of
elements of U(1, n) which leave a given equidistant hypersurface S0 globally
invariant does not act transitively on S0 [15, Section 3.2]. An additional problem
is that equidistant hypersurfaces are not totally geodesic and a geodesic segment
can meet an equidistant hypersurface more than once, without being contained
in the hypersurface. However, even in the complex case, it is possible to prove a
Crofton formula if we consider horospheres instead of equidistant hypersurfaces.
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Horospheres in complex hyperbolic space are described geometrically in [8,
Section 1]. From a group-theoretic point of view they may be described as follows
[12, Chapter II.1]. Let G = U(1, n), so that Hn

C = G/K where K = U(1)×U(n).
Let G = KAN be the Iwasawa decomposition and M the centralizer of A in K .
Thus MAN is a minimal parabolic subgroup. Let x0 be the origin K in G/K and
ξ0 = Nx0 Then ξ0 is a horosphere and the subgroup of G which maps ξ0 to itself
equals MN . The homogeneous space G/MN is the space of horocycles. Note
that N is isomorphic to the complex Heisenberg group [12, Chapter 2, p.215].
The groups G and MN are therefore unimodular [11, Chapter X, Proposition
1.4], and there is a G-invariant measure on G/MN . Since MN acts transitively
on ξ0 , the set of horospheres which meet a geodesic segment [xy] is compact, as
in Lemma 2.2. Consider the expression m(x, y) =

∫
G/MN

n(h)dµ(h), where n(h)

is the number of times a horocycle h ∈ G/MN meets the geodesic segment [xy].
Since Hn

C is two-point homogeneous, and µ is G-invariant, m(x, y) depends only
on d(x, y). The same argument as in the proof of Proposition 2.1 establishes the
following Crofton formula.

Proposition 4.1. There is a constant k > 0 such that, for all x, y ∈ Hn
C ,

∫

G/MN

n[x, y](h)dµ(h) = kd(x, y)

where n[x, y](h) is the number of times that h meets [xy].

Remark 4.2. Because it is possible to have 1 < n[x, y](h) <∞, it is not clear
how to use this result to prove that d(x, y) is of negative type, as we did for the
real case in Corollary 2.5. In fact, the example in the next section indicates that
a Crofton formula alone is not enough. Note that a Crofton formula involving
horospheres is clearly also valid in real hyperbolic space.

5. Projective space

The purpose of this section is twofold. Firstly we give an example to show that
the existence of a Crofton formula for a distance function does not in general
imply that the distance is of negative type. Secondly, this example completes the
classification of riemannian symmetric spaces of rank one for which the geodesic
distance is of negative type.

The projective spaces P n
F of dimension n ≥ 2 over R, C, H and (in the

case n = 2) the octonions O, are compact two-point homogeneous spaces.

Proposition 5.1. The geodesic distance d on P n
F is not of negative type.

The projective spaces all contain P 2
R as a geodesic subspace, and so it is

enough to consider the case of P 2
R . As usual, the same notation is used for a vector

x ∈ R3 and its equivalence class in P 2
R . The geodesic distance between points x, y

in P 2
R is given by cos d(x, y) = |(x,y)|

((x,x)(y,y))
1
2

, where (x, y) is the usual inner product

on R3 .
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Proposition 5.2. The geodesic distance d on P 2
R is not of negative type.

Proof: We show that the metric d is not of negative type by exhibiting
points x1, x2 . . . , x6 ∈ P 2

R and real numbers t1, t2 . . . , t6 satisfying
∑6

i=1 ti = 0 such
that

∑6
i,j=1 titjd(xi, xj) > 0. In fact we choose (t1, t2 . . . , t6) = (1, 1, 1,−1,−1,−1)

and for notational convenience put (x1, x2, x3, x4, x5, x6) = (p1, p2, p3, q1, q2, q3). It
is enough to choose these points so that

∑
d(pi, pj) +

∑
d(qi, qj) >

∑
d(pi, qj). (1)

We make the following choices. Let p1 = (1, 0, 1), p2 = (1, 0,−1), p3 = (0, 1, 0),
and q1 = (0, 1, 1), q2 = (0, 1,−1), q3 = (1, 0, 0). Then d(pi, pj) = π/2,
d(qi, qj) = π/2, for i, j ∈ {1, 2, 3}. Moreover

d(pi, qj) =





π/3 if both i, j ∈ {1, 2},
π/4 if exactly one of i, j equals 3,

π/2 if i = 3 and j = 3.

We therefore obtain
∑
d(pi, pj) +

∑
d(qi, qj) = 3π/2 + 3π/2 = 3π and∑

d(pi, qj) = 4π/3 + 4π/4 + π/2 = 17π/6, which proves the inequality (1).

Example. There is a Crofton formula for geodesic distance d on the space
P n
R , but as we have just seen, this distance is not of negative type. The proof of a

Crofton formula for d(x, y) in terms of totally geodesic hypersurfaces which meet
the segment [xy] is exactly the same as for real hyperbolic space in Section 2.,
except that by compactness there is no need for an analogue of Lemma 2.2. The
reason that the analogue of Corollary 2.5 fails is that a totally geodesic hypersurface
does not separate P n

R into two parts.

Remark 5.3. Two point homogeneous riemannian manifolds have been classi-
fied completely [11, Chapter IX §5]. They are the euclidean spaces, the circle, and
the symmetric spaces of rank one. The symmetric spaces of rank one for which
the geodesic distance is of negative type are the spheres and the real or complex
hyperbolic spaces. This follows from the results of [7], together with our result
for projective spaces. Note that it is easy to give a new proof that the geodesic
distance on a sphere is of negative type along the lines of Corollary 2.5, using a
measure on the space of half-spaces.

Remark 5.4. There is a naturally occurring invariant metric of negative type
on the projective space P n

F [13]. For there is an embedding of P n
F as the set of

primitive idempotents in the formally real Jordan algebra A of hermitian n × n
matrices over F. The trace form defines a euclidean distance dE on A which
induces a metric of negative type on P n

F . It follows from [13] that P n
F is also two

point homogeneous relative to this metric.
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