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Abstract. The main thrust of this paper is to investigate the intimate
link between the conformal group and singular integral operators, in par-
ticular, but not exclusively, operators of Calderón–Zygmund type, together
with associated commutators acting on the L2 spaces of surfaces. Clifford
analysis and Dirac operators are the basic tools used to help to unify these
themes. These surfaces lie in euclidean space, the sphere or the hyperbola.
We illustrate how these results extend to a general class of submanifolds
with arbitrary codimension in euclidean space, the sphere or the hyperbola.

1. Introduction

Clifford analysis has been extensively applied to clarify and solve various problems
arising in classical harmonic analysis, see for instance [AuT, GaLQ, LMcQ, LMcS,
Mc, Mi, S]. In these papers Dirac operators and Cauchy kernels are used to study
properties of singular integral operators acting on the Lp spaces associated to
various types of surfaces in Rn . Usually these surfaces are Lipschitz surfaces, or
some minimal smoothness criterion is assumed of the surface. In most cases the
Clifford algebra is used to show that results known for singular integral operators
acting on Lp spaces of minimally smooth curves in the complex plane can be
adapted to higher dimensions, see for instance [10, 9]. In this setting Clifford
analysis has proved to be a powerful tool in extending complex variable techniques
to solving problems in higher dimensions.

Links between Möbius transformations and Dirac operators have been de-
veloped in a number of papers, see for instance [5, 8, 19, 21, 22]. All of these
papers make use of the Vahlen matrices arising from work in [1, 28] and elsewhere.

In particular, in [8, 21] it is shown that if two surfaces in Rn are conformally
equivalent then their L2 spaces are isometric, and there is a simple association
between the operators acting on these L2 spaces. In [21] it is pointed out that the
associated Hardy spaces H2 of solutions to the Dirac equation for the domains
complementing the surfaces are also isometric. This follows from the conformal
invariance of the Clifford analysis analogues of the Plemelj operators.
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The main thrust here is to show that by introducing Clifford algebras and, in
particular, Vahlen matrices one can easily show that many important results known
in classical harmonic analysis on euclidean space possess a conformal covariance.
In other words once one extends from euclidean space and includes the Clifford
algebra generated from that space many traditional results associated with classical
harmonic analysis described in [25] and elsewhere have a rather natural association
with the conformal group, and seem to be intimately related to that structure. For
instance, in [21] it is shown how certain key results on convolution operators acting
on the L2 spaces of Lipschitz graphs, described in [15, 16], can be carried over to
some other surfaces via conformal transformations. In this paper we develop this
theme further. We demonstrate that convolution operators of Calderón–Zygmund
type acting on the L2 space of Rn−1 transform under Möbius transformations
acting on Rn−1 to other operators of Calderón–Zygmund type. We are also able
to show that the commutators of such operators with multiplier operators are
preserved in the sense that the resulting operators are also the commutators of
operators of Calderón–Zygmund type with multiplier operators. This analysis
leads us to show that a considerable part of the key results in [15, 16] naturally
lend themselves to invariance under the action of the Lie group V (n − 1), the
group of Vahlen matrices over Rn−1 . In particular, when viewed as operators the
left and right monogenic functions defined on sector domains in [15, 16] possess an
extremely simple and elegant conformal invariance which we describe here on the
sphere and hyperbola. This makes use of various results and constructions made
in [22] for Dirac operators on spheres and hyperbolae.

We also consider the intimate link between the conformal group and the
Riesz potentials described in [25] and elsewhere.

We conclude the paper by illustrating that many of the results appearing in
the earlier part of the paper also hold for a wide class of submanifolds of euclidean
space, the sphere or hyperbola. With this objective in mind we establish Plemelj
formulae for such manifolds. Plemelj formulae for general manifolds are described
in [7]. Here we explicitly use vector space structures to set up the formulae.

Most of the proofs in this paper follow by similar arguments to those used in
[19, 21, 22]. For this reason we primarily indicate how the results can be deduced
rather than repeat details from those references.

2. Background on Clifford Algebras

In this section we set up most of the background material on Clifford algebras that
we will need for the rest of the paper. We shall use the real Clifford algebra, Cln
and its complexification Cln(C). We will assume that Rn is embedded in Cln ,
and that Cln is the 2n -dimensional algebra with basis

1, e1, . . . , en, . . . , ej1 . . . , ejr , . . . , e1 . . . , en,

where e1, . . . , en is an orthonormal basis for Rn , 1 ≤ r ≤ n, and the basis vectors
e1, . . . , en satisfy the anti-commutation relationship eiej + ejei = −2δi,j , where
δi,j is the Kronecker delta function. From the anti-commutation relationship it
follows that each non-zero vector x ∈ Rn has a multiplicative inverse x−1 = −x

‖x‖2 .
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Up to the minus sign this inverse corresponds to the Kelvin inverse of a vector.
It follows that the unit sphere, Sn−1 , of Rn , is the generator of a group in Cln .
This group is called the pin group and it is denoted by Pin(n). We will need to
use the anti-automorphism

˜ : Cln → Cln : (ej1 . . . , ejr)˜ = ejr . . . , ej1 .

For each a ∈ Cln we denote a˜ by ã. When a ∈ Pin(n) the action axã corresponds
to an orthogonal transformation on Rn , where x is a variable in Rn . This can be
seen by considering the action yxy where y ∈ Rn , and decomposing x into vectors
parallel to y and perpendicular to y . By using the anti-commutation relationship
it may be observed that this action gives a reflection of x in the direction of y .
It may be observed that the set {a ∈ Pin(n) : a = y1 . . . , ym with m even} is a
subgroup of Pin(n). This is the spin group, which is denoted by Spin(n). In [20]
and elsewhere it is observed that Pin(n) is a double covering of the orthogonal
group O(n) while Spin(n) is a double covering of the special orthogonal group
SO(n).

The conformal group of the one point compactification, Rn ∪ {∞}, of Rn

is the group of diffeomorphisms generated by orthogonal transformations, transla-
tions, dilations and Kelvin inversion. Under the first three types of transformations
that we just mentioned, the point at infinity remains fixed, while under Kelvin in-
version the origin and the point at infinity are interchanged.

Following [1, 28] we note that each conformal transformation can be ex-
pressed as (ax + b)(cx + d)−1 , where a, b, c and d ∈ Cln and satisfy:
(i) a, b, c and d are all products of vectors from Rn .
(ii) ac̃, cd̃, db̃, and bã ∈ Rn .
(iii) ad̃− bc̃ = ±1.

A matrix
(
a b
c d

)
, with a, b, c and d satisfying (i)–(iii) is called a Vahlen

matrix. The set of all such matrices form a group under matrix multiplication.
This group is a covering group of the conformal group and it is denoted by V (n).
If in condition (iii) we insist that ad̃− bc̃ = 1 then we obtain a subgroup of V (n)
which we denote by V+(n).

For each natural number m we can consider the Clifford algebra Clm , and
the Vahlen groups V (m) and V+(m). When m = n−1 the Möbius transformation
(ax + b)(cx + d)−1 preserves upper half space, Rn,+ = {x = x1e1 + . . . + xnen :
xn > 0} and lower half space, Rn,− = {x = x1e1 + . . . xnen : xn < 0}, whenever(
a b
c d

)
∈ V+(n− 1). V+(n− 1) also preserves the boundary Rn−1 ∪ {∞} of Rn,± .

When m = n+ 1 the Cayley transformation

K1(x) = (x− en+1)(−en+1x + 1)−1

transforms Rn onto the punctured sphere, Sn\{en+1}.
Besides the anti-automorphism ˜ we shall also need the anti-automorphism

: Cln → Cln : (ej1 . . . ejr) = (−1)rejr . . . ej1 .

For a ∈ Cln we denote (a) by a . This anti-automorphism is the analogue
of conjugation on the complex and quaternionic algebras. In particular, if a =
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a0 + . . .+ a1...ne1 . . . en , then the real part of aa gives (a2
0 + . . .+ a2

1...n), the square
of the norm ‖a‖ of a.

Besides the Clifford algebra Clm we shall also need the Clifford algebra Cln,1
generated from the Minkowski, or Krein, space Rn,1 = {x1e1+. . .+xnen+yn+1fn+1 :
x1, . . . , xn, yn+1 ∈ R}. On identifying fn+1 with ien+1 one can see that Cln,1 is a
real 2n+1 -dimensional subalgebra of Cln+1(C), that the vector fn+1 anticommutes
with each ej for 1 ≤ j ≤ n, and f 2

n+1 = 1.

It may be observed that there is a Cayley transformation

K2 : Rn\Sn−1 → Hn\{−fn+1} : K2(x) = (−x + fn+1)(fn+1x + 1)−1,

where Hn comprises the hyperbola {y ∈ Rn,1 : y2 = 1}. Hn has two components
H+
n and H−n . The hyperbola H+

n contains the vector fn+1 while the hyperbola
H−n contains the vector −fn+1 . Also, K−1

2 (H+
n ) = D(0, 1), the open unit disc in

Rn , while K−1
2 (H−n \{−fn+1}) = {x ∈ Rn : ‖x‖ > 1}.

Further results on Clifford algebras can be found in [20] and elsewhere.

3. Some Clifford Analysis

We begin by developing some background on Clifford analysis. The Dirac operator
that we shall use here is the differential operator D =

∑n
j=1 ej

∂
∂xj

. One simple but

important feature of this operator is that D2 = −4n , where 4n is the Laplacian
on Rn . For U a domain in Rn and f a Cln valued C1 function defined on U we
say that f is left monogenic if Df = 0. Similarly if g : U → Cln is a C1 function
satisfying gD = 0 then g is said to be right monogenic. Here gD =

∑n
j=1

∂g
∂xj
ej .

It should be noted that f is left monogenic if and only if f is right monogenic.

Many results on monogenic function theory can be found in [6, 14] and in
many other texts. In particular, there are the following analogues of Cauchy’s
theorem and Cauchy’s integral formula.

Theorem 3.1. Suppose that f and g are respectively left and right monogenic
functions on U and that S is a compact Lipschitz surface bounding a subre-
gion V of U , and such that cl(V ), the closure of V , is contained in U . Then∫
S g(x)n(x)f(x)dσ(x) = 0, where n(x) is the outward normal vector to S at x,

and σ is the Borel measure on S .

Theorem 3.2. Suppose that f , V and S are as in the previous theorem, and
that y ∈ V . Then f(y) = 1

ωn

∫
S G(x − y)n(x)f(x)dσ(x), where ωn is the surface

area of the unit sphere in Rn and G(x) = −x
‖x‖n .

It should be noted that as the surface S is a Lipschitz surface then, as a
consequence of a theorem of Rademacher, the outward normal vector function on
S is defined almost everywhere on S and is an L∞ function. It should also be
noted that the function G is both left and right monogenic.

Using the local arguments presented in [13] one also has the following
analogues of the Plemelj formulae, see also [15, 16].
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Theorem 3.3. Suppose that S is a Lipschitz surface in Rn and η ∈ L2(S).
Then:
(i) If S+ is the component of Rn\S into which the normal vector function of S
points, y(t) ∈ S+ for t ∈ [0, 1), and y(t) approaches y ∈ S non-tangentially as t
tends to 1, then

lim
t→1

∫

S
G(x− y(t))n(x)η(x)dσ(x) =

1

2
η(y) + pv

1

ωn

∫

S
G(x− y)n(x)η(x)dσ(x).

(ii) If S− is the other component of Rn\S , w(t) ∈ S− for t ∈ [0, 1), and w(t)
approaches w ∈ S non-tangentially as t approaches 1, then

lim
t→1

∫

S
G(x− w(t))n(x)η(x)dσ(x) =

−1

2
η(w) + pv

1

ωn

∫

S
G(x− w)n(x)η(x)dσ(x).

In Theorem 3.3 we use the L2 space of S , which is defined to be the set of
all Cln valued functions, f , defined on S such that ‖ ∫S f(x)f(x)dσ(x)‖ < +∞.

The bounded operators

1

2
I ± CS : L2(S)→ L2(S) : (

1

2
I ± CS)η =

1

2
η ± pv 1

ωn

∫

S
G(x−)n(x)η(x)dσ(x)

are projection operators onto the Hardy spaces H2(S±) of left monogenic functions
defined on S± respectively and which extend continuously in the L2 sense to S .
See for instance [15, 16] and elsewhere.

By using the generators of the group V (n) and arguments presented in
[22, 26] it may be observed that if y = ψ(x) = (ax + b)(cx + d)−1 is a Möbius
transformation, and f(y) is a left monogenic function, then J(ψ, x)f(ψ(x)) is left

monogenic in the variable x, where J(ψ, x) = ˜(cx+ d)‖cx + d‖−n . Moreover, in
[8, 21] it is observed that if S1 and S2 are surfaces and ψ(S1) = S2 in Rn ∪ {∞},
then for each pair of functions η , ν ∈ L2(S2) we have that

∫

S2

η(y)ν(y)dσ(y) =
∫

S1

η(ψ(x))ν(ψ(x))
1

‖cx + d‖2n−2
dσ(x).

As 1
‖cx+d‖2n−2 = J(ψ, x)J(ψ, x), it follows that the right Cln linear trans-

form
Is2,1 : L2(S2)→ L2(S1) : Is2,1η(y) = J(ψ, x)η(ψ(x))

is an isometry. It is also a consequence of the previous remarks that
Is2,1H

2(S+
2 ) = H2(S±1 ) while Is2,1H

2(S−2 ) = H2(S∓1 ).

As G(ψ(x)−ψ(w)) = J(ψ,w)−1G(x−w)J̃(ψ, x)−1 and the volume element
n(y)dσ(y) on S2 pulls back to J̃(ψ, x)n(x)J(ψ, x)dσ(x) on S1 , then

J(ψ, x)(
1

2
I ± CS2)η(ψ(y))) = (

1

2
I ± CS1)J(ψ, x)η(ψ(x)),

where, as usual, y = ψ(x). Consequently the Plemelj projection operators are
preserved via conformal transformations, when acting on L2 spaces of surfaces.
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We shall denote the operators 1
2
I ±CS by C±S respectively. Besides the operators

C±S we shall need the operators C±?S , where

C±?S (ν)(w) =
1

2
ν(w)± n(w)

1

ωn

∫

S
G(x− w)ν(x)dσ(x),

where ν ∈ L2(S).

From the previous remarks it may be noted that the orthogonal projection
operators

P+
S : L2(S)→ H2(S+),

and
P−S : L2(S)→ H2(S−)

are conformally covariant.

Lemma 3.4. Suppose that S1 and S2 are surfaces and that ψ(S1) = S2 for
some Möbius transformation y = ψ(x) = (ax + b)(cx+ d)−1 . Then

J(ψ, x)P±S2
ν(y) = P±S1

J(ψ, x)ν(ψ(x))

for each ν ∈ L2(S2).

The orthogonal projection operators P±S are usually referred to as Szegö
projections. Lemma 3.4 demonstrates the conformal covariance of the Szegö
projection operators.

Strictly speaking the operators C±?S do not have the same conformal co-
variance as the operators C±S and P±S . However, for each pair ν , µ ∈ L2(S2) it
may be observed that

〈µ(y), C±?S2
(ν)(y)〉S2 = 〈J(ψ, x)µ(ψ(x)), C±?S1

(J(ψ, x)ν)(ψ(x))〉S1 ,

where 〈ν, µ〉S =
∫
S ν(x)µ(x)dσ(x) for any pair ν , µ ∈ L2(S). Consequently, the

bilinear form 〈ν, C±?S µ〉S is covariant under Möbius transformations. It follows
that the Kerzman–Stein kernels C±S − C±?S have a bilinear form covariance given
by

〈ν(y), (C±S2
− C±?S2

)(µ)(y)〉S2 =

〈J(ψ, x)ν(ψ(x)), (C±S1
− C±?S1

)(J(ψ, x)µ)(ψ(x))〉S1 .

In [3, 23] it is noted that P±S = C±S P
±
S , P±S = P±?S = P±?S C±?S = P±S C

±?
S ,

and C±S = P±S C
±
S , where P±?S is the adjoint of P±S . Following [3, 23] it may be

observed that P±S − C±S = P±S (C±?S − C±S ). Consequently

P±S (I + (C±?S − C±S )) = C±S . (1)

The conformal covariance of this formula is an immediate consequence of our
preceding remarks.

So far we have tacitly assumed that we have been working solely in euclidean
space. However, using the Cayley transformations K1 and K2 and the results in
[22] one can transfer all results so far mentioned in this section to surfaces in
the sphere Sn and on the hyperbola Hn . In these cases one uses the Cayley
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transformations as chart maps to construct vector bundles over Sn and Hn where
each fiber is isomorphic as a vector space to Cln . We denote the bundle over Sn

by (Sn, Cln) and the bundle over Hn by (Hn, Cln). If U is a domain in either Sn

or Hn then we denote the restriction of the appropriate bundle to U by (U,Cln).
Similarly if S is a surface in Sn or Hn then the restriction of the appropriate
bundle to S is denoted by (S,Cln). We shall denote the bundle of square integrable
sections on (S,Cln) simply by L2(S), and the corresponding bundle of sections of
solutions to the Dirac equation over the complementary domains S± which extend
continuously in the L2 sense to the boundary, S , by H2(S±) respectively. The
Dirac operator DSn over Sn is set up in [22], see also [27]. The Dirac operator
DHn over Hn is set up in [22]. It should be noted that Hn has two components.
So one does need to clarify what is meant by the domains S± in the context of
Hn .

Definition 3.5. An open subset U of Hn is called a domain if there is a domain
V ⊂ Rn such that K2(V \(V ∩ Sn−1)) = U .

It follows that U can have two components.

From [24, 26] it may be observed that the H2 decomposition of L2(Sn−1) is
an orthogonal decomposition. It follows that if S is a surface that is conformally
equivalent to Sn−1 ⊂ Rn then the H2 decomposition of L2 is also an orthogonal
decomposition. This happens when S = Rn−1 , or when S is a sphere in Sn

of codimension 1. It also happens when S = Sα = Hn ∩ (Rn + αfn+1), where
either α ∈ (1,∞) or α ∈ (−∞,−1). When S = aSαã the decomposition is
also orthogonal, where a = a1 . . . am with aj ∈ Hn and 1 ≤ j ≤ m for some
arbitrary positive integer m. The orthogonal decomposition also happens when
S = Hn−1 , where Hn−1 is the restriction of Hn to Rn−1,1 . In this last case S has
two components. The decomposition is also orthogonal when S = aHn−1ã where
a as before is equal to a1 . . . am with aj ∈ Hn for 1 ≤ j ≤ m. Again in these
circumstances the surface has two components.

Via Möbius transformations we may now obtain orthogonal bases or or-
thonormal bases for L2(S) and H2(S±) for each one of these surfaces. They are
simply obtained from the orthogonal and orthonormal bases for L2(Sn−1) and
H2(Sn−1,±) respectively. Details for the special case where S = Rn−1 are worked
out in [21], the other cases follow similarly.

4. Operators of Calderón–Zygmund Type

Consider a Lipschitz continuous function λ : Rn−1 → R where Rn−1 is spanned
by e1, . . . , en−1 . Now consider the graph Σ′ = {x + λ(x)en : x ∈ Rn−1} of
λ. Besides the Lipschitz graph Σ′ we also shall consider the Lipschitz graph
Σ = aΣ′ã for any a ∈ Spin(n). Σ is just an orthogonally transformed copy of Σ′ .
If the Lipschitz continuous function λ has Lipschitz constant c ∈ (0,∞), so that
‖λ(u)−λ(v)‖ ≤ c‖u−v‖, then there is a θ ∈ (0, π

2
) such that c = tan θ . Following

[15, 16, 17] we may introduce the open cone N ′(Σ′) = {x + xnen : x ∈ Rn−1 and
xn > tan ‖x‖}. We shall denote the open cone aN ′(Σ′)ã by N(Σ). One important
property of N(Σ) is that for each u ∈ Σ the cone u+N(Σ) has empty intersection
with Σ\{u}.
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Definition 4.1. An L2 bounded operator TK,k : L2(Σ) → L2(Σ) is said to be
of Calderón–Zygmund type if

TK,k(φ)(y) = lim
ε→0

(
∫

Σ(x,ε)
K(x, y)n(x)φ(x)dσ(x) + k(εn(y)φ(y))

for almost all y ∈ Σ, where K(x, y) is a smooth Cln(C) valued function defined
on (Σ× Σ)\diag(Σ× Σ) and satisfying

‖K(x, y)‖ ≤ C‖x− y‖−n+1,

for some C ∈ R+ . Moreover, k is a Cln(C) valued L∞ function defined on N(Σ),
while Σ(x, ε) = {y ∈ Σ : ‖y − x‖ ≥ ε}.

Definition 4.1 gives a minor modification of various types of singular integral
operators considered in [16] and elsewhere. In [16] the function K(x, y) is consid-
ered to be equal to be a function K ′(x − y). The formulation given here is more
amenable under conformal transformation than that given in [16] and elsewhere.

Theorem 4.2. Suppose that TK,k : L2(Σ)→ L2(Σ) is as in definition 4.1, and
that Σ = ψ(Ψ), where y = ψ(u) = (au+ b)(cu+ d)−1 . Then the operator

SH,h : L2(Ψ)→ L2(Ψ)

is L2 bounded, where

H(v, u) = J(ψ, v)K(ψ(v), ψ(u))J̃(ψ, u),

h(v) =
(cv + d)k(ψ(v)) ˜(cv + d)

‖cv + d‖2

and
SH,h(η)(v) = lim

δ→0

∫

Ψ(v,δ)
H(v, u)n(u)η(u)dσ(u) + h(δn(v))η(v))

for almost all v ∈ Ψ, with Ψ(v, δ) = {w ∈ Ψ : ‖w − v‖ ≥ δ}.

It should be noted that ‖H(v, u)‖ ≤ C ′‖v − u‖n−1 for some C ′ ∈ R+ and
that h is an L∞ function on ψ−1(N(Σ)) = N(Ψ).

We shall also call the operator SH,h appearing in Theorem 4.2 an operator
of Calderón–Zygmund type. One important reason for considering the function
K(x, y) to not necessarily be equal to K ′′(x − y) for some function K ′′ is that
the difference x− y is not in general preserved under Möbius transformations. An
interesting case to consider is when the Lipschitz surface Σ is Rn−1 . In this case
L2(Rn−1) is transformed isometrically to itself, and so:

Proposition 4.3. The family of operators of Calderón–Zygmund type described
in Definition 4.1 and acting on L2(Rn−1) is transformed to itself under the action
of V+(n− 1).

This gives another reason for not considering K(x, y) to be equal to K ′′(x− y).

Let us now turn to look at commutators of multiplier operators with oper-
ators of Calderón–Zygmund type. We begin with:
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Theorem 4.4. Suppose that g : Σ→ Cln(C) is such that the commutator

[TK,k,Mg] : L2(Σ)→ L2(Σ)

is L2 bounded for each operator TK,k of Calderón–Zygmund type, where Mg is
the multiplier operator Mg(µ) = g(x)µ(x). Then for each Möbius transformation
y = ψ(u) = (au+ b)(cu+ d)−1 the operator [TK,k, g] is conformally pulled back to
the L2 bounded operator

[SH,h,Mp] : L2(Ψ)→ L2(Ψ),

where SH,h is as in Theorem 4.2 and

p(v) =
˜(cv + d)g(ψ(v))(cv + d)

‖cv + d‖2

Theorem 4.4 shows us that commutators of operators of Calderón–Zygmund
type with multiplier operators are preserved under conformal transformations. For
the special case where the surface Σ is Rn−1 we have:

Proposition 4.5. The class of commutators

[TK,k,Mg] : L2(Rn−1)→ L2(Rn−1) (2)

is preserved under the action of V+(n− 1).

In [11] it is noted that the operator given in (2) is bounded if and only if
g ∈ BMO(Rn−1). It follows that in this case p ∈ BMO(Rn−1).

It should be pointed out that Propositions 4.3 and 4.5 hold equally well if
Rn−1 is replaced by the unit sphere Sn−1 in Rn , or the unit sphere K1(Rn−1) ∪
{en+1} in Rn+1 or the hyperbola Hn−1 = K2(Rn−1\Sn−2), where Sn−2 is the unit
sphere in Rn−1 . In these cases the group V+(n − 1) is replaced by the groups
KV+(n− 1)K−1 , K1V+(n− 1)K−1

1 , and K2V+(n− 1)K−1
2 respectively.

By similar observations to those used to derive Theorem 4.4 and the use of
induction we may also arrive at:

Proposition 4.6. Suppose that TK,k, SH,h, g and p are as in Theorem 4.4 and
the n-fold commutator

[. . . [TK,k,Mg], . . . ,Mg] : L2(Σ)→ L2(Σ)

is bounded. Then under the Möbius transformation y = ψ(u) = (au+ b)(cu+ d)−1

this operator pulls back to the bounded operator

[. . . [SH,h,Mp], . . . ,Mp] : L2(Ψ)→ L2(Ψ).

Within Propositions 4.5 and 4.6 we have a description of the conformal
covariance of the multiplier operator Mg . This conformal covariance can easily be
applied to describe the conformal covariance of the following Hankel operators on
conformally equivalent surfaces S1 and S2 .
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Lemma 4.7. Suppose that y = ψ(v) = (av + b)(cv + d)−1 and ψ(S1) = S2 .
Suppose also that g ∈ L∞(S2). Then the Hankel operator

(I − P±S2
)Mg : L2(S2)→ L2(S2)

pulls back to the operator

(I − P±S1
)Mp : L2(S1)→ L2(S1),

where p(v) =
˜(cv+d)g(ψ(v))(cv+d)

‖cv+d‖2 ∈ L∞(S1).

In all the preceding work the surface Ψ is assumed to lie in Rn , Sn or Hn .
In order to adequately cope with the situations where Ψ is in Hn we shall assume
that Σ ∩ Sn−1 , seen as a subset of Sn−1 , is a set of measure zero.

One important reason why in [15, 16, 17] and elsewhere the function K(x, y)
is seen to be equal to K ′′(x− y) for some function K ′′(x) is because it is assumed
that K ′′ is a right monogenic function on the sector domain Sθ = {x+ xnen : x ∈
Rn−1 and |xn| < ‖x‖ tan θ}. Moreover, ‖K ′′(x)‖ ≤ C‖x‖−n+1 on Sθ .

In [21] it is observed that sector domains are transformed by Möbius trans-
formations on Rn−1 to sector domains. For each x ∈ Rn and each Möbius trans-
formation ψ we shall denote the sector domain ψ−1(Sθ + x) by Qθ(v) where
ψ(v) = x. Each Qθ(v) is a domain in Rn , Sn or Hn . So for each v ∈ Ψ the
function H(u, v) = J(ψ, v)K ′′(ψ(u) − ψ(v))J̃(ψ, u) is right monogenic on Qθ(v)
and ‖H(u, v)‖ ≤ C ′‖u − v‖−n+1 for some C ′ ∈ R+ . In [16] it is shown that
K ′′ = K ′′+ + K ′′− where K ′′± is a right monogenic function on S±θ = Sθ ∪ Rn,±

and ‖K ′′±(x)‖ ≤ C±‖x‖−n+1 . Consequently, H(u, v) = H+(u, v) + H−(u, v)
where H± is a right monogenic function on Q±θ (v) = ψ−1(S±θ + x), for each
v = ψ−1(x) ∈ Ψ. Moreover, H±(u, v) = J(ψ, v)K ′′±(ψ(u) − ψ(v))J̃(ψ, u), and
‖H±(u, v)‖ ≤ C ′±‖u− v‖−n+1 .

In [16, 15] a specific construction is given for the L∞ function k defined on
Nθ(Σ), and associated to the right monogenic function K ′′ . Via this construction
k is defined uniquely up to a constant. In [15, 16] it is shown that k(x) =
k+(x) + k−(x) where k± ∈ L∞(Nθ(Σ)). Moreover explicit constructions of these
functions are given in [15, 16]. Under the Möbius transformation ψ these functions

are pulled back to the functions h±(v) =
˜(cv+d)k±(ψ(v))(cv+d)

‖cv+d‖2 . Furthermore it is

easily seen that h(v) = h+(v) + h−(v). In [15, 16] conditions are given for the
functions K ′′± to be left monogenic on Σ±θ as well as right monogenic, under the
assumption that K ′′ is also left monogenic on Σθ . Under these assumptions it is
shown that TK′′,k = TK′′+,k+

+ TK′′−,k− and that TK′′±,k± : H2(Σ±) → H2(Σ±), is a

bounded operator and TK′′±,k±(H2(Σ∓)) = {0}. Consequently we have

Theorem 4.8. Suppose that TK′′,k , TK′′±,k± are as in the previous paragraph.
Then the operators

TK′′±,k± : H2(Σ±)→ H2(Σ±)

pull back via the Möbius transformation ψ to the bounded operators

SH±,h± : H2(Ψ±)→ H2(Ψ±).

Moreover, SH±,h±(H2(Ψ∓)) = {0}.

When Ψ ⊂ Rn , Theorem 4.8 has previously been described in [21].
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5. Other Conformally Covariant Operators

For U a domain in Rn, Sn or Hn , we will denote by S(U) the space of Cln(C)
valued C∞ functions on U with compact support. In the special cases where
U ⊂ Sn or U ⊂ Hn then each φ ∈ S(U) is a section on (U,Cln(C)).

For each γ = α + iβ ∈ C and for each φ ∈ S(U) we may at least formally
consider the convolutions

Gγ(φ)(y) =
∫

U
(x− y)‖x− y‖γφ(x)dxn

and
Iγ(φ)(y) =

∫

U
‖x− y‖γ+1φ(x)dxn.

We shall only consider the cases where these operators are well defined on S(U)
and when cl(U), the closure of U , is compact. This happens when the real part
of γ belongs to (−n+ 1,∞).

Let us denote the image space Gγ(S(U)) by Pγ(U) and the image space
Iγ(S(U)) by Qγ(U).

Theorem 5.1. Suppose that y = ψ(v) = (av + b)(cv + d)−1 is a Möbius
transformation. Then ∫

U
(x− y)‖x− y‖γφ(x)dxn =

Jγ(ψ, v)−1
∫

ψ−1(U)
(u− v)‖u− v‖γJ̃γ+2n(ψ, u)−1φ(ψ(u))dun,

and ∫

U
‖x− y‖γ+1φ(x)dxn =

Kγ(ψ, v)−1
∫

ψ−1(U)
‖u− v‖γ+1Kγ+1+2n(ψ, u)−1φ(ψ(u))dun,

where Jγ(ψ, v) = ˜(cv + d)‖cv + d‖γ and Kγ(ψ, v) = ‖cv + d‖−γ−1 .

Outline of Proof: The result follows from noting that

(ψ(u)− ψ(v))‖ψ(u)− ψ(v)‖γ = Jγ(ψ, v)−1(u− v)‖u− v‖γJ̃(ψ, u)−1,

that
‖ψ(u)− ψ(v)‖γ+1 = Kγ(ψ, v)−1‖u− v‖γ+1Kγ(ψ, u)−1,

and the Jacobian of the transformation is ‖cv + d‖−2n .

We shall denote the function space {J̃γ+2n(ψ, v)−1φ(ψ(v)) : φ ∈ S(U)}
by Sγ,J(ψ−1(U)). We denote the function space {Kγ+1+2n(ψ, v)−1φ(ψ(v)) : φ ∈
S(U)} by Sγ,K(ψ−1(U)). Moreover the space GγSγ,J(ψ−1(U)) will be denoted by
Rγ(ψ

−1(U)) while the space IγSγ,K(ψ−1(U)) will be denoted by Wγ(ψ
−1(U)).

Theorem 5.1 tells us that the multiplier operators Jγ(ψ, ) and J̃γ+2n(ψ, )−1

intertwine the convolution operator Gγ and the multiplier operators Kγ(ψ, ) and
Kγ+1+2n(ψ, )−1 intertwine the convolution operator Iγ . So the transforms

Jγ(ψ, )Gγ : S(U)→ Rγ(ψ
−1(U)) (3)
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and
GγJ̃γ+2n(ψ, )−1 : S(U)→ Rγ(ψ

−1(U)) (4)

are the same, and the transforms

Kγ(ψ, )Iγ : S(U)→Wγ(ψ
−1(U)) (5)

and
IγKγ+1+2n(ψ, )−1 : S(U)→Wγ(ψ

−1(U)) (6)

are the same.

For −n < γ < 0 and U a subset of Rn the operators Iγ correspond to the
Riesz potentials described in [25] and elsewhere. Following the Fourier analysis
arguments given for Rn in [25] it may be observed that for these values of γ the
operator Iγ is invertible. From Theorem 5.1 it follows that for these values of
γ the operators Iγ acting on the function spaces set up in Theorem 5.1 for the
domain ψ−1(U) are invertible. When γ = −n + 2 the Riesz potential on Rn is
the fundamental solution to the Laplacian. This operator has 4n as its inverse.

When γ = −n + 1 then as observed in [25] the inverse of Iγ is 4
1
2
n = ‖D‖. It

follows from Theorem 5.1 that each one of these inverse operators have analogues
on the appropriate function spaces on the domain ψ−1(U).

From Theorem 5.1 and equations 3–6 it follows that when the operators
Gγ : S(U)→ Pγ(U) and Iγ : S(U)→ Qγ(U) are invertible then

G−1
γ Jγ(ψ, )

−1 : Rγ(ψ
−1(U))→ S(U)

and
J̃γ+2nG

−1
γ : Rγ(ψ

−1(U))→ S(U)

are the same, and the transforms

I−1
γ Kγ(ψ, )

−1 : Wγ(ψ
−1(U))→ S(U)

and
Kγ+1+2nIγ(ψ, )

−1 : Wγ(ψ
−1(U))→ S(U)

are the same.

As a consequence of the preceding remarks one may introduce analogues of

the pseudo-differential operator 4
1
2
n , acting on function spaces S(U) where U is

a domain in Sn or Hn .

In [25] and elsewhere it is shown that when −n + 1 < γ < 0 then

Iγ : Lp(Rn−1)→ Lq(Rn−1)

is a bounded operator if and only if 1
q

= 1
p
− α

n
, where α = n−γ , and 1 < p <∞.

First let us note:

Lemma 5.2. The function φ(y) ∈ Lp(Rn−1) if and only if

K−2n+2
p
−1(ψ, v)φ(ψ(v)) ∈ Lp(Rn−1)

for each ψ ∈ V+(n− 1), and 1 < p <∞.

Similarly φ(y) ∈ Lp(Rn−1) if and only if J−2n+2
p

(ψ, v)φ(ψ(v)) ∈ Lp(Rn−1)

for each ψ ∈ V+(n− 1) and 1 < p <∞.

Consequently one may deduce:
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Theorem 5.3. Suppose that 1 < p < ∞ and 1
p

+ 1
q

= 1 then the multiplier

operators K( 1
p
−1)(2n−2)+1(ψ, ) and K( 1

p
+1)(2n−2)+1(ψ, ) intertwine the operator

I 2−2n
p

+1 : Lp(Rn−1)→ Lq(Rn−1)

while the multiplier operators J( 1
p
−1)(2n−2)(ψ, ) and J( 1

p
+1)(2n−2)(ψ, ) intertwine the

operator

G 2−2n
p

: Lp(Rn−1)→ Lq(Rn−1)

for each ψ ∈ V+(n− 1).

In fact most of the previous material from this section can be reformulated
for arbitrary smooth orientable manifolds in Rn , Sn or Hn . Consider a p-
dimensional smooth and orientable manifold Mp in Rn , Sn or Hn , and Mp is
such that cl(Mp) is compact. Then we may introduce the space S(Mp) of smooth
sections on Mp with compact support. These sections will take their values in
the bundle (Mp, Cln(C)), where (Mp, Cln(C)) is the appropriate sub-bundle of
(Sn, Cln(C)) when Mp ⊂ Sn . It is a sub-bundle of (Hn, Cln(C)) when Mp ⊂ Hn

and it is the bundle Mp × Cln(C) when Mp ⊂ Rn .

In these circumstances we may formally introduce the convolution oper-
ators Gγ,Mpφ(y) =

∫
Mp

(x − y)‖x − y‖γφ(x)dν(x) and Iγ,Mpφ(y) =
∫
Mp
‖x −

y‖γ+1φ(x)dν(x), where φ ∈ S(Mp) and ν is the Borel measure on Mp . These op-
erators are well defined and bounded when the real part of γ belongs to (−p,∞).
We shall denote the image space Gγ,MpS(U) by Pγ(Mp) and the image space
Iγ,MpS(U) by Qγ(Mp).

Theorem 5.4. Suppose that y = ψ(v) = (av + b)(cv + d)−1 is a Möbius
transformation then for each φ ∈ S(U)

∫

Mp

(x− y)‖x− y‖γφ(x)dν(x) =

Jγ(ψ, v)
∫

ψ−1(Mp

(u− v)‖u− v‖γJ̃γ+2p(ψ, u)−1φ(ψ(u))dν(u)

and ∫

Mp

‖x− y‖γ+1φ(x)dν(x) =

Kγ(ψ, v)−1
∫

ψ−1(Mp)
‖u− v‖γ+1Kγ+2p(ψ, u)−1φ(ψ(u))dν(u).

The result follows from noting that the Jacobian of this transformation is
‖cv + d‖−2p and by applying the same arguments used to deduce Theorem 5.1.

Theorem 5.4 tells us that the multiplier operators Jγ(ψ, ) and J̃γ+2p(ψ, )
−1

intertwine the operator Gγ,Mp and also its inverse when that exists, and that
Kγ(ψ, ) and Kγ+1+2p(ψ, )

−1 intertwine the operator Iγ,Mp and also its inverse when
that exists.
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6. Generalised Plemelj Formulae

When regarded as a principal value integral, the convolution operator G−p+1,Mp is
also well defined on S(Mp). We shall consider the case where Mp is compact and
is the boundary of a smooth orientable manifold M . We shall also assume that
∂Mp is Liapunov, so that Mp is C1 and has Hölder continuous first derivative. So
the function n : Mp → Sn−1 is Hölder continuous, where the function n assigns to
each x ∈ Mp the unit vector n(x) in TMx normal to TMp(x) and pointing out
from the manifold M , where TM(x) is the tangent space to M at x and TMp(x)
is the tangent space to Mp at x.

Let L2(Mp) denote the class of L2 integrable functions defined on Mp and
with values in the bundle (Mp, Cln(C)). It is a simple matter to follow the classical
arguments presented in [4] and elsewhere on compact Liapunov surfaces in Rn to
deduce

Theorem 6.1. The convolution operator

G−p+1,Mp,M : L2(Mp)→ L2(Mp) :

1

ωp
G−p+1,Mp,Mφ(y) = pv

1

ωp

∫

Mp

(x− y)

‖x− y‖pn(x)φ(x)dν(x)

is an L2 bounded operator, where ωp is the surface area of the unit sphere in Rp .

It should be noted that the the normal function n(x) to Mp depends on the
choice of M . Consequently the operator G−p+1,Mp,M also depends on M . Also,
when p = n the operator G−p+1,Mp,M is the same as the Cauchy kernel G.

Using the Dirac operator over each tangent space TMx with x ∈ Mp we
obtain the following Plemelj formula, which also follows by the same reasoning as
that presented for surfaces in Rn in [4].

Theorem 6.2. For each y ∈Mp and each y(t) ∈M such that y(t) approaches
y non-tangentially as t approaches 1 then

lim
t→1

1

ωp

∫

Mp

(x− y)

‖x− y‖pn(x)φ(x)dν(x) =

1

2
φ(y) + pv

1

ωp

∫

Mp

(x− y)

‖x− y‖pn(x)φ(x)dν(x),

for almost all y ∈Mp and each φ ∈ L2(Mp).

We may denote the Hilbert space ( 1
2

+G−p+1,Mp)L
2(Mp,M) by H2(M).

It is an easy matter to mimic the arguments used earlier here to show
that if ψ is a Möbius transformation and for two manifolds Mp,1 and Mp,2 with
ψ(Mp,1) = Mp,2 then the Hilbert spaces L2(Mp,1) and L2(Mp,2) are isometric.
In particular, each φ ∈ L2(Mp,2) is transformed to J−p+1(ψ, )φ ∈ L2(Mp,1). Via
this isometry it may be deduced that H2(Mp,1) is isometric to H2(Mp,2). Also
the multiplier operator J−p+1(ψ, ) intertwine the operator G−p+1 and also the
operator 1

2
+ G−p+1 . Consequently, a significant part of the results mentioned

earlier for L2 spaces of surfaces in Rn , Sn and Hn go through automatically
to the setting described in this section. Though we have assumed the manifold
Mp,2 is compact and Liapunov it does not follow that the manifold Mp,2 is either
compact or Liapunov.
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