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Large automorphism groups of 16-dimensional planes

are Lie groups
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Abstract. It is a major problem in topological geometry to describe all

compact projective planes P with an automorphism group Σ of sufficiently

large topological dimension. This is greatly facilitated if the group is known
to be a Lie group. Slightly improving a result from the first author’s

dissertation, we show for a 16-dimensional plane P that the connected
component of Σ is a Lie group if its dimension is at least 27.

Compact connected projective planes P of finite topological dimension exist
only in dimensions d = 2`|16, see [1], 54.11. In the compact-open topology,
the automorphism group Σ of such a plane P is locally compact and has a
countable basis [1], 44.3, its topological dimension dim Σ is a suitable measure
for the homogeneity of P . The so-called critical dimension c` is defined as the
largest number k such that there exist 2` -dimensional planes with dim Σ = k
other than the classical Moufang plane over R , C , H , or O respectively, compare
[1], § 65. Analogously, there is a critical dimension c̃` for smooth planes, and
c̃` ≤ c` − 2 by recent work of Bödi [3].

The classification program requires to determine all planes P admitting a
connected subgroup ∆ of Σ with dim ∆ sufficiently close to c` ; most results that
have been obtained so far fall into the range 5` − 3 ≤ dim ∆ ≤ c` . Additional
assumptions on the structure of ∆ or on its geometric action must be made
for smaller values of dim ∆ . The cases ` ≤ 4 are understood fairly well. For
` = 8, however, results are still less complete, and we shall concentrate on 16-
dimensional planes from now on. It is known that c8 = 40, and all planes with
dim Σ = 40 can be coordinatized by a so-called mutation of the octonion algebra
O , see [1], 87.7. All translation planes with dim Σ ≥ 38 have been described
explicitly by their quasi-fields [1], 82.28. If P is a proper translation plane,
then Σ is an extension of the translation group T ∼= R16 by a linear group, in
particular, Σ is then a Lie group.

In her dissertation, the first author proved the following result under the
hypothesis dim Σ ≥ 28. With only minor modifications, her proof yields
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Theorem L. If dim Σ ≥ 27 , then the connected component Σ1 of Σ is a Lie
group.

This covers all known examples and all cases in which a classification
might be hoped for. A weaker version of Theorem L is given in [1], 87.1, for
8-dimensional planes see also Priwitzer [5]. Here we shall present a proof of
Theorem L. The whole structure theory of real Lie groups then becomes available
for the classification of sufficiently homogeneous 16-dimensional planes. How
such a classification can be achieved has been explained in [1], § 87, second
part. Two of the results mentioned there have been improved considerably in
the meantime:

Theorem S. Let ∆ be a semi-simple group of automorphisms of the 16-
dimensional plane P . If dim ∆ > 28 , then P is the classical Moufang plane, or
∆ ∼= Spin9(R, r) and r ≤ 1 , or ∆ ∼= SL3H and P is a Hughes plane as described
in [1], § 86 .

The proof can be found in Priwitzer [6, 7].

Theorem T. Assume that ∆ has a normal torus subgroup Θ ∼= T . If
dim ∆ > 30 , then Θ fixes a Baer subplane, ∆′ ∼= SL3H , and P is a Hughes
plane.

To prove Theorem L, we will use the approximation theorem as stated in
[1], 93.8. The proof distinguishes between semi-simple groups and groups having
a minimal connected, commutative normal subgroup Ξ , compare [1], 94.26. A
result of Bödi [2] plays an essential role:

Theorem Q. If the connected group Λ fixes a quadrangle, then Λ is isomorphic
to the compact Lie group G2 , or dim Λ ≤ 11 . Moreover, dim Λ ≤ 8 if the fixed
points of Λ form a 4-dimensional subplane.

The last assertion follows from Salzmann [10], § 1, Corollary.

In translation planes, the stabilizer Λ of a quadrangle is compact. Pre-
sumably, the same is true for compact, connected planes in general, but for 25
years all efforts have failed to prove compactness of Λ without additional as-
sumptions. This causes some of the difficulties in the following proofs.

Consider any connected subgroup ∆ of Σ . If the center Z of ∆ is
contained in a group of translations with common axis (or with common center),
then ∆ is a Lie group by Löwen – Salzmann [4] without any further assumption.
Assume now that ∆ is not a Lie group. By the approximation theorem, there
is a compact, 0-dimensional central subgroup Θ such that ∆/Θ is a Lie group.
In particular, Θ ≤ Z is infinite. The elements of Z can act on the plane in
different ways. This leads to several distinct cases. We say that the collineation
η is straight if each orbit x〈η〉 is contained in a line, and η is called planar if
the fixed elements of η form a proper subplane. By a theorem of Baer [1], 23.
15 and 16, a straight collineation is either planar or axial. Hence Theorem L is
an immediate consequence of propositions (a—d) which will be proved in this
paper.
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(a) If ∆ leaves some proper closed subplane F invariant (in particular, if Z
contains a planar element), or if ∆ is semi-simple, then dim ∆ < 26 .

(b) If ζ ∈ Z is not straight, or if Z contains axial collineations with different
centers, then dim ∆ ≤ 26 .

(c) If dim ∆ > 26 , then Z is contained in a group ∆[a,W ] of homologies.
Moreover, a minimal connected, commutative normal subgroup Ξ of ∆ is also
contained in ∆[a,W ] .

(d) If ΞZ ≤ ∆[a,W ] as in (c), then dim ∆ ≤ 26 , i.e. case (c) does not occur.

The following criteria will be used repeatedly:

Theorem O. If Σ has an open orbit in the point space, or if the stabilizer ΣL

of some line L acts transitively on L, then Σ is a Lie group. (An orbit having
the same dimension as the point space P is open in P .)

For proofs see [1], 53.2 and 62.11. The addendum is a consequence of [1],
51.12 and 96.11(a).

From Szenthe’s Theorem [1], 96.14 and again [1], 51.12 and 96.11(a) we
infer

Lemma O. If the stabilizer ∆L of a line L has an orbit X ⊆ L with dimX =
dimL , then X is open in L , and the induced group ∆L|X ∼= ∆L/∆[X] is a Lie
group.

The next result holds without restriction on the dimension of the group:

Theorem P. The full automorphism group of any 2- or 4-dimensional com-
pact plane is a Lie group of dimension at most 8 or 16 respectively.

Proofs are given in [1], 32.21 and 71.2.

In conjunction with Theorem Q we need

Proposition G. If Σ contains a subgroup Γ ∼= G2 , and if Γ fixes some element
of the plane, then Σ is a Lie group.

Proof. Assume that Σ is not a Lie group and that Γ fixes the line W . Being
simple, Γ acts faithfully on W by [1], 61.26. There are commuting involutions α
and β in Γ , and all involutions in Γ are conjugate, see [1], 11.31. Each involution
is either a reflection or a Baer involution [1], 55.29, and conjugate involutions are
of the same kind. In the case of reflections, one of the involutions α, β , and αβ
would have axis W by [1], 55.35, and Γ would not be effective on W . Hence all
involutions are planar [1], 55.29. Because of [1], 55.39, the fixed subplanes Fα
and Fβ intersect in a 4-dimensional plane F . By [1], 55.6, Note, the lines are
8-spheres, and repeated application of [1], 96.35 shows that the fixed elements of
Γ form a 2-dimensional subplane E < F . Moreover, each point z ∈W \E has an
orbit zΓ ≈ S6 . By the approximation theorem [1], 93.8, some open subgroup of
Σ contains a compact central subgroup Θ which is not a Lie group. According
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to Theorem P, the group Θ induces a Lie group on F , and the kernel K = Θ[F ]

is infinite. Now choose z ∈ W such that z belongs to F but not to E . Then
zK = z , and K fixes each point of zΓ ≈ S6 (note that Γ ◦Θ = 1l). Since F and
zΓ together generate the whole plane, we get K = 1l. This contradiction proves
the proposition.

Finally, we mention a result of M. Lüneburg [1], 55.40 which excludes
many semi-simple groups as possible subgroups of ∆ :

Lemma R. The group SO5R is never contained in Σ .

A group Λ of automorphisms is called straight if each point orbit xΛ is
contained in some line. Baer’s theorem mentioned above is true in general for
groups which are straight and dually straight. In compact planes of finite positive
dimension 2` it holds in the following form:

Theorem B. If Λ is straight, then Λ is contained in a group Σ[z] of central
collineations with common center z , or the fixed elements of Λ form a Baer
subplane FΛ .

Proof. If all fixed points of Λ with at most one exception lie on one line, then
the unique fixed line through any other point must pass through the same point
z . If, on the other hand, there is a quadrangle of fixed points and Λ 6= 1l, then
FΛ = (F,F) is a closed proper subplane. Suppose that FΛ is not a Baer subplane.
By definition, this means that some line H does not meet the (Λ -invariant ) fixed
point set F . For each x ∈ H the line Lx containing xΛ is the unique fixed line
through x . Choose p ∈ H and λ ∈ Λ with pλ 6= p . Then ppλ = Lp ∈ F and
Lp 6= H 6= Hλ (since H∩F = Ø and H /∈ F). There is a compact neighbourhood
V of p in H such that V ∩V λ = Ø. The map (x 7→ xxλ) : V → F is continuous
and injective. Hence dim F = ` . This condition, however, characterizes Baer
subplanes, see [1], 55.5.

In the following, ∆ will always denote a connected locally compact group
of automorphisms of a 16-dimensional compact projective plane P = (P,L). We
assume again that Θ is a compact, 0-dimensional subgroup in the center Z of
∆ such that ∆/Θ is a Lie group but Θ is not. Groups of dimension ≥ 35 are
known to be Lie groups [1], 87.1. Hence only the cases 25 < h = dim ∆ < 35
have to be considered.

Proof of (a) (1) Assume that dim ∆ ≥ 26 and that F is any ∆ -invariant
closed proper subplane. ∆ induces on F a group ∆∗ = ∆/Φ with kernel Φ . If
dimF ≤ 4, then Theorems P and Q imply dim ∆ ≤ 24. Hence dimF = 8 and F
is a Baer subplane. Moreover, the kernel Φ is compact and satisfies dim Φ < 8,
see [1], 83.6. Consequently, dim ∆∗ ≥ 19, and then F is isomorphic to the
classical quaternion plane P2H , cf. Salzmann [11] or [1], 84.28. In particular,
∆∗ is a Lie group, and we may assume Θ ≤ Φ . A semi-simple group ∆∗ in the
given dimension range is, in fact, one of the simple motion groups PU3(H, r).
This is proved in Salzmann [9], for almost simple groups cp. also [1], 84.19.
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In all other cases, it has been shown in Salzmann [8] (4.8) that ∆ fixes some
element of F , say a line W . The lines of P are homeomorphic to S8 because
the point set of F is a manifold [1], 41.11(b) and 52.3. Any k -dimensional orbit
in a k -dimensional manifold M is open in M , see [1], 92.14 or 96.11. Since ∆
is not a Lie group, Theorem O implies dim p∆ < 16 for each point p . Moreover,
we conclude from Lemma O that the stabilizer of a line of F has only orbits
of dimension at most 7 on this line. The points and lines of F will be called
“ inner ” elements, the others “ outer ” ones. There are outer points p and q not
on the same inner line such that dim ∆/∆p,q ≤ dim p∆ + dim q∆ ≤ 15 + 7. (If ∆
fixes the inner line W , choose q ∈W ; if ∆∗ is a motion group corresponding to
the polarity π of F ∼= P2H , and if p is on the inner line L = aπ , choose q on the
line ap .) Hence the connected component Λ of ∆p,q satisfies dim Λ > 3. Because
the infinite group Θ acts freely on the set of outer points, Λ ∩Θ = Θp = 1l, and
Λ is a Lie group. The orbits pΘ and qΘ consist of fixed points of Λ , and all
fixed elements of Λ form a proper subplane E . Since each outer line meets F in
a unique inner point, E ∩ F is infinite. Any collineation group of P2H with 3
distinct fixed points on a line fixes even a point set homeomorphic to a circle on
that line [1], 13.6 and 11.29. Therefore, dim E ∈ {2, 4, 8} . In the first two cases,
Θ would be a Lie group by Theorem P. In the last case it follows from [1], 83.6
and 55.32(ii) that Λ is a compact Lie group of torus rank 1, and dim Λ ≤ 3.
Thus, dim ∆ > 25 has led to a contradiction.

(2) If ∆ is even almost simple, i.e. if ∆∗ = ∆/Z is simple, then ∆ is a
projective limit of covering groups of ∆∗ , see Stroppel [12] Th. 8.3. In particular,
the fundamental group π1∆∗ must be infinite. In the range 25 < h < 35
the last condition is satisfied only by ∆∗ ∼= PSO8(R, 2). Let Φ be a maximal
compact subgroup of ∆ . The commutator subgroup Φ′ covers PSO6R . Lemma
R implies Φ′ ∼= Spin6R ∼= SU4C . In SU4C there are 6 pairwise commuting
diagonal involutions conjugate to α = diag (1, 1,−1− 1). Let β be one of these
conjugates. From [1], 55. 34b and 39 together with [1], 55.29 it follows that
the common fixed elements of α and β form a 4-dimensional subplane F . By
Theorem P, the kernel K of the action of Θ on F is infinite. The subplane
Q < P consisting of all fixed elements of K is ∆ -invariant (because Θ ≤ Z). On
the other hand, it has been proved in [1], 84.9 that Φ′ cannot act on any proper
subplane of P . This contradiction shows that a semi-simple group ∆ has at
least two almost simple factors, cp. [1], 94.25.

(3) Consider an almost simple factor A of ∆ of minimal dimension such
that A is not a Lie group, and denote the product of all other factors by B . We
will find successively smaller bounds for dim B . Write A∗ for the simple image
of A in ∆∗ = ∆/Z . Let Φ be a maximal compact subgroup of A . The Mal’cev-
Iwasawa theorem [1], 93.10 shows that A is homeomorphic to Φ×Rk , and Φ is
not a Lie group. By Weyl’s theorem [1], 94.29, a compact semi-simple Lie group
has only finitely many coverings. Hence Φ∗ cannot be semi-simple and has a
central torus [1], 94.31(c). In fact, this central torus is one-dimensional as can
be seen by inspection of the list of simple Lie groups [1], 94.33. Consequently,
the connected component Υ of Z(Φ) is a 1-dimensional solenoid. In particular,
A 6= Φ and A is not compact. In the next steps we will apply Theorem B to Υ
and to Z .
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(4) Assume first that Υ is straight, and let 1l 6= ζ ∈ Υ ∩ Z . If FΥ

is a Baer subplane, then Fζ = FΥ would be a ∆ -invariant proper subplane
in contradiction to (1). If Υ ≤ ∆[z] , then the center z of ζ is ∆ -invariant.

In particular, zA = z . Because A is almost simple and Υ is contained in the
normal subgroup A[z] , we get A ≤ ∆[z] . Homologies and elations with center z
or homologies with different axes and the same center do not commute. Hence Υ
consists of elations only or of homologies with the same axis. If Υ is an elation
group, so is A , and all elements in A have the same axis, because A is not
commutative, cp. [1], 23.13. If Υ ≤ ∆[z,L] , then L is the axis of ζ , and LA = L .
Consequently, A[z,L] is a normal subgroup of A , and A ≤ ∆[z,L] . For z ∈ L the
connected group A would be a Lie group [1], 61.5, and in the case z /∈ L it would
follow from [1], 61.2 that A is compact. This contradicts the last statement in
(3).

(5) Therefore, Υ is not straight, and there is some point c such that
cΥ generates a connected subplane. We shall write 〈cΥ〉 = F for the smallest
closed subplane containing cΥ . If dimF ≤ 4, then Υ induces a Lie group on
F by Theorem P, and there is an element ζ ∈ Z such that F ≤ Fζ < P , but
this contradicts (1). Thus, F is a Baer subplane or F = P . Since BΦ and
Υ commute elementwise, (BΦ)c induces the identity on F , and dim(BΦ)c ≤ 7
by [1], 83.6. From Theorem O it follows that dim c∆ ≤ 15. If dim c∆ > 8,
then 〈c∆〉 = P and Zc = 1l. Hence, (BΦ)c is a Lie group and we have even
dim(BΦ)c ≤ 3 as at the end of (1). In any case, the dimension formula [1],
96.10 gives dim B + dim Φ ≤ 18 and dim A ≥ 8. Now the classification of simple
Lie groups [1], 94.33 shows that dim Φ ≥ 4, and dim B ≤ 14. Consequently,
dim A ≥ 12. The remarks in (3) and again the classification [1], 94.33 imply
dim A ∈ {15, 21, 24} , and then dim Φ ≥ 7. We conclude that dim B ≤ 11, and
B is a Lie group by the minimality assumption on dim A .

(6) Suppose that Z is straight. FZ cannot be a Baer subplane by (1).
Hence Z ≤ ∆[a] for some center a . If each element of Z is an elation, ∆ would
be a Lie group by the dual of (2.7) in Löwen – Salzmann [4]. Therefore, the
center Z is contained in a group ∆[a,W ] of homologies (note that homologies in
∆[a] with different axes do not commute). We can now show that ∆ has torus
rank rk ∆ < 4. Else, it would follow from [1], 55.35 and 39 (a) that there are
Baer involutions α and β in ∆ such that Fα,β is a 4-dimensional subplane.
As a group of homologies, Z would act faithfully on Fα,β , but this contradicts
Theorem P. At the end of step (5) we have seen that B is a Lie group of dimension
at most 11. This implies dim A ≥ 15 and then rk A ≥ 2, see [1], 94. 32(e) or 33.
If dim B = 11, then B is a product ΨΩ of two almost simple Lie groups such
that dim Ψ = 8 and dim Ω = 3. It follows that rk Ψ = 1 and rk Ω = 0. Hence
Ω is the universal covering group of SL2R , and Ω is not compact [1], 94.37.
Since any almost simple subgroup of ∆[a,W ] is compact by [1], 61.2, the group

Ω acts non-trivially on W , and there is a point x such that 〈xΩZ〉 = B is a
connected subplane of P . Because Z consists of homologies, Z acts faithfully on
B , and Theorem P shows that dimB ≥ 8, i.e. B is a Baer subplane, or B = P .
The stabilizer Λ = (AΨ)x fixes B pointwise, moreover, Λ ∩ Z = 1l, and Λ is a
Lie group. From [1], 83.6 and 55.32(ii) we conclude again that Λ is compact,
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that rk Λ ≤ 1, and hence dim Λ ≤ 3. With dim Ψ = 8 we get dim A < 11, a
contradiction. The only remaining possibility dim B < 11 and dim A ≥ 21 can be
excluded by similar arguments: If B acts non-trivially on W , then B = 〈xBZ〉 is
a subplane of dimension at least 8, and dim Ax ≤ 3, dim A < 20. If B ≤ ∆[a,W ] ,
however, then B is compact by [1], 61.2. At the end of (5) it has been stated that
B is a Lie group, and we know also that rk B ≤ 1. Consequently, dim B = 3,
dim A = 24, and rk A = 3, but we have proved above that rk ∆ < 4.

(7) Finally, we consider the case that Z is not straight. There is a point
c such that the orbit cZ is not contained in a line. In particular, 〈c∆〉 is a ∆ -
invariant subplane, and 〈c∆〉 = P by step (1). Hence Zc = 1l, and 〈cZ〉 is a
non-degenerate subplane. By Theorems Q and G, we have dim ∆c ≤ 11, and
we conclude from Theorem O that dim c∆ < 16. The dimension formula gives
dim ∆ = 26. If dim A > 15, then dim A ∈ {21, 24} and dim B ∈ {5, 2} , and B
would not be semi-simple. Consequently, dim B = 11, and we have again that
B is a product of two almost simple factors Ψ and Ω with dim Ω = 3. Let
C be the set of all points x such that xZ is not contained in any line. Then
C is an open neighborhood of c , and Ω|C 6= 1l. We may assume that cΩ 6= c .
Consider the subplane B = 〈cΩZ〉 . Because Zc = 1l, it follows as in step (6) that
dimB ≥ 8, and then dim(AΨ) < 20. This contradiction completes the proof of
(a).

Proof of (b) By Theorem B and (a), each assumption implies that Z is
not straight. As in step (7) above, some orbit cZ contains a quadrangle, and from
Theorems Q and G we get dim ∆c ≤ 11. Theorem O shows that dim c∆ < 16,
and the dimension formula gives dim ∆ ≤ 26.

Proof of (c) (1) Let dim ∆ ≥ 27. Then ∆ cannot be semi-simple by (a).
This means that ∆ has a minimal commutative connected normal subgroup Ξ ,
and Ξ is either compact, (and then Ξ is contained in the center Z , see [1], 93.19),
or Ξ is a vector group Rt , (and ∆ induces an irreducible representation on Ξ).
The proof of (b) shows that Z is straight. The dual statement is also true. Z is
not planar by (a), and Theorem B implies that Z is contained in a group ∆[a,W ] .
As mentioned in the introduction, Z does not consist of elations, and a /∈ W .
This proves the first assertion of (c) . In particular, Ξ ≤ ∆[a,W ] if Ξ is compact.

(2) Assume now that Ξ is a vector group and that Ξ|W 6= 1l. Choose
z ∈ W such that zΞ 6= z , and let c ∈ az \ {a, z} . The group Ξ induces on
the orbit zΞ a sharply transitive Lie group Ω ∼= Ξ/Ξz of dimension at most 8.
Consider an element ω ∈ Ω which belongs to a unique one-parameter subgroup
Π of Ω . Denote the connected component of ∆c∩Cs ω by Λ . Then Λ centralizes
each element of Π and fixes zΠ pointwise. Hence the fixed elements of Λ form a
connected subplane FΛ . Moreover, Λ is a Lie group since Λ ∩ Z ≤ Zc = 1l, and
dim Λ ≥ 27− dim c∆ − dim Ω > 3 by Theorem O. The center Z acts effectively
on FΛ because Z consists of homologies. If dimFΛ ≤ 4, then Z would be a Lie
group by Theorem P. Therefore, FΛ is a Baer subplane, and we conclude from
[1], 83.6 and 55.32(ii) that Λ is a compact Lie group of torus rank at most 1.
Hence Λ ≤ SU2 and dim Λ ≤ 3. This contradiction proves that Ξ ≤ ∆[a,W ] as
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asserted. If Ξ is not compact, then Ξ ∼= R by [1], 61.2. Together with the first
part of (1) this implies that dim ∆/Cs Ξ ≤ 1.

Proof of (d) (1) Whenever a 6= c /∈ W , then ∆c is a Lie group because
∆c ∩ Z = 1l. If Λ denotes the stabilizer of a quadrangle and Φ = Λ ∩ Cs Ξ , then
dim Λ/Φ ≤ 1 by the last remark in (c). Moreover, Φ is a Lie group, and the
fixed elements of Φ form a ΞZ -invariant connected subplane F . Since Z acts
effectively on F and Z is not a Lie group, it follows from Theorem P that F is
a Baer subplane or F = P . Consequently, Φ is a compact Lie group of torus
rank at most 1, and dim Φ ≤ 3. Thus, the existence of Ξ implies dim Λ ≤ 4.
Letting ac ∩W = z , we conclude from Lemma O that dim c∆z < 8.

(2) Assuming again that dim ∆ ≥ 27, we now study the action of ∆ on
W . For v∆ ⊆W and dim v∆ = k > 0, the dimension formula [1], 96.10 and the
last remarks in (1) imply 27 ≤ dim ∆ ≤ 3k+7+4 and k > 5. Similarly, if ∆ fixes
a point z ∈W , then ∆ has only 8-dimensional orbits on W \ z , and ∆ is even
doubly transitive on W \ z . In this case, the action of ∆v on v∆ ≈ R8 is linear
[1], 96.16(b), and the stabilizer Λ of a quadrangle has a connected subplane of
fixed elements. With the arguments of (c) step (2), we would obtain dim Λ ≤ 3,
but dim Λ ≥ 27−2 ·8−7 = 4. If, on the other hand, dim v∆ = 8 for each v ∈W ,
then ∆ would be transitive on W ≈ S8 . Consequently, dim ∆ ≥ 36 by [1], 96.
19 and 23, and ∆ would be a Lie group, either by [1], 87.1 or by the dual of [1],
62.11. Hence there is some v ∈ W with dim v∆ = k ∈ {6, 7} .

Suppose that ∆ is doubly transitive on V = v∆ . By results of Tits
[1], 96. 16 and 17, either V is a sphere, or V is an affine or projective space
and the stabilizer of two points fixes a real or complex line. In the latter case,
the stabilizer Ω of three “collinear” points of V would have dimension at least
27−15, but the remarks at the end of (1) show that dim Ω ≤ 11. If V ≈ S6 , then
∆ has a subgroup Γ ∼= G2 , see [1], 96. 19 and 23, and ∆ would be a Lie group
by Theorem G. Therefore, V ≈ S7 , and the Tits list [1], 96.17(b) shows that ∆
induces on V a group PSU5(C, 1) or PU3(H, 1). In the first case, ∆ contains a
subgroup SU4C . As in the proof of (a) step (2), the element diag(1, 1,−1,−1)
and its conjugates are Baer involutions. Two of these involutions fix a 4-
dimensional subplane F . The center Z acts effectively on F and hence would
be a Lie group by Theorem P. In the only remaining case, ∆ has a subgroup Ψ
which is locally isomorphic to U3(H, 1), compare [1], 94.27. Consider a maximal
compact subgroup Φ of Ψ and its 10-dimensional factor Υ . From Lemma R
we conclude that Υ ∼= U2H ∼= Spin5R and that the central involution σ of Υ
is not planar. Thus, σ is a reflection [1], 55.29, and σ fixes only the points on
the axis and the center. Moreover, the map Υ → PU3(H, 1) is injective and σ
acts freely on V . Therefore, W is not the axis of σ , and σ fixes exactly two
points on W . Hence Cs σ = ∇ is the stabilizer of a triangle. Let K be the
connected component of the kernel ∆[V ] . Then dim ∆/K = dim U3(H, 1) = 21,
and dim K ≥ 6. On the other hand, K acts effectively on the line av , and
dim K ≤ 7 by Lemma O. Any representation of Ψ in dimension < 12 is trivial,
see [1], 95.10. Therefore, Ψ induces the identity on the Lie algebra of K , and
Ψ ◦ K = 1l. Consequently, KΦ ≤ ∇ , and dim∇ ≥ 6 + 13, but step (1) implies
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dim∇ ≤ 2 ·7 + 4 = 18. This contradiction shows that ∆ is not doubly transitive
on V .

(3) Choose v ∈ W such that v∆ = V has dimension < 8, and let
c ∈ av \ {a, v} . The connected component Γ of ∆c is not transitive on V \ {v}
and hence has an orbit uΓ = U ⊂ V of dimension ≤ 6. By the last remarks
in (1), we have dim Γ ≥ 13 and dimU ≥ 5. Consequently, Γ acts effectively
on U . Assume that dimU = 6 and that Γ is doubly transitive on U . Step (1)
implies that dim Γ ≤ 2 · 6 + 4 = 16, and Γ cannot be simple by [1], 96.17. From
[1], 96.16 we conclude that U ≈ R6 and that Γu has a subgroup Φ ∼= SU3C .
The representation of Φ on U ≈ C3 shows that each involution in Φ fixes a
2-dimensional subspace of U and so is planar. Two commuting involutions fix a
4-dimensional subplane, and Z would be a Lie group by Theorem P. Therefore,
the connected component Ω of Γu has an orbit in U of dimension < 6. By
step (1), we obtain dim Ω ≤ 9 and dim Γ ≤ 15. If ζ is in the center of Γ , and
zζ 6= z ∈ U , then Γz = Γzζ fixes a quadrangle, and dim Γz ≤ 4 by step (1), but
dim Γz ≥ 13− 6. Because Γ acts effectively on U , this shows that the center of
Γ is trivial. Either Γ has a minimal normal subgroup X ∼= Rs , or Γ is a direct
product of simple Lie groups, cp. [1], 94. 26 and 23. We will discuss the two
possibilities separately in the next steps.

(4) Let Γ be semi-simple. Any reflection α ∈ Γ has axis av , and αΓ 6= α
since Γ has trivial center. The set αΓα is contained in the connected component
E of the elation group Γ[v,av] , and E is a normal subgroup of Γ . Hence E is
itself a product of simple Lie groups, and E contains a non-trivial torus, but
an involution is never an elation [1], 55.29. This contradiction shows that each
involution in Γ is planar. Because dim Γ > 8, there exists a pair of commuting
involutions. Their common fixed elements form a 4-dimensional subplane [1],
55.39, and Z would be a Lie group by Theorem P. Therefore, Γ cannot be semi-
simple.

(5) We use the notation of (3) and determine the action of Ω on X . Note
that uX 6= u because Γ acts effectively on U . If u 6= z ∈ uX , then zΩ ⊂ uX .
By step (1), we have dim Ωz ≤ 4. From dim Γ ≥ 13 it follows that dim Ω ≥ 7
and hence 3 ≤ dim zΩ ≤ dimuX . The stabilizer Xu fixes each point of the
connected subplane 〈a, c, uX〉 , and this subplane has dimension at least 8, since
uX is contained in a line and dimuX > 2. From [1], 83.6 we infer that Xu is
compact, and then Xu = 1l since X is a vector group. Because Ω acts linearly
on X , the fixed elements of the connected component Λ of Ωz form a connected
subplane F . As a group of homologies, the non-Lie group Z acts effectively on
F , and Theorem P implies that F is a Baer subplane. As at the end of (c)
step (2) it follows that Λ is isomorphic to a subgroup of SU2 . We know that
dim Ω ≥ 7, and we conclude from (3) that there is a point z with dim zΩ < 6.
This gives dim Λ ≥ 2 and then Λ ∼= SU2

∼= Spin3 . In particular, dim Λ = 3 and
dim zΩ ≥ 4. Therefore, any minimal Ω -invariant subgroup of X has dimension
at least 4. Calling such a subgroup X from now on, we may assume that Ω
acts irreducibly on X ∼= Rs , where 4 ≤ s ≤ 6. These three possibilities will be
discussed in the last steps. Each case will lead to a contradiction.

(6) The connected component Λ of Ωz acts reducibly on X by its very
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definition. If s = 4, then Λ induces on X either the identity or a group SO3 .
Each non-trivial orbit of Ω on X is 4-dimensional, and Ω is transitive on X\{1l} .
In particular, Ω is not compact, and a maximal compact (connected) subgroup
Φ of Ω has dimension at most 6. A theorem of Montgomery [1], 96.19 shows that
Φ is transitive on the 3-sphere consisting of the rays in X ∼= R4 . Let r denote
the ray determined by z . Then Λ ≤ Φr and Φ/Φr ≈ S3 . This implies dim Φ = 6
and dim Φr = 3. Moreover, Φr is connected by [1], 94.4(a), and hence Φr = Λ is
simply connected. The exact homotopy sequence [1], 96.12 shows that Φ is also

simply connected. Consequently, Φ ∼= Spin4
∼= (Spin3)

2
, compare [1], 94.31(c),

and Φ contains exactly 3 involutions. If dimwΦ = 6 for some w ∈ U , then wΦ

is open in U by [1], 96.11. Since wΦ is also compact and U is connected, Φ
would be transitive on U , but uΩ = u . Hence, each stabilizer Φw has positive
dimension and contains a (planar) involution γ . Let Fγ = {x ∈ W | xγ = x} .
Then U is covered by the 3 sets Fγ , and these are homeomorphic to S4 . The
sum theorem [1], 92.9 implies dimU ≤ 4, but we have seen at the beginning of
(3) that dimU ≥ 5. This contradiction excludes the case s = 4.

(7) If s = 5, then Ω acts effectively on X , and Ω′ is irreducible and
simple, see [1], 95. 5 and 6(b). A table of irreducible representations [1], 95.10
shows that dim Ω′ ∈ {3, 10} , but we know from step (5) that 6 ≤ dim Ω′ ≤ 8.

(8) Finally, let s = 6. Then Ω′ is semi-simple by [1], 95.6(b), and
dim Ω′ ∈ {6, 8} . Note that SU2

∼= Λ < Ω′ . Either Ω′ is even almost simple,
or Ω′ has a factor Φ ∼= SU2 . By [1], 95.5, any Φ -invariant subspace of X
has a dimension d dividing 6, but effective irreducible representations of SU2

exist only in dimensions 4k , compare [1], 95.10. Therefore, Ω′ is almost simple.
The table [1], 95.10 shows that Ω′ must be one of the groups SO3C , SL3R ,
or SU3(C, r). The first two have no subgroup SU2 and can be discarded. The
two unitary groups contain 3 diagonal involutions. Each one of these has an
eigenvalue 1 and thus is planar. By [1], 55.39 their common fixed elements form
a 4-dimensional subplane F . The center Z acts effectively on F , and Z would
be a Lie group by Theorem P. This completes the proof of (d) and hence of
Theorem L.
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