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Abstract. Third order ordinary differential equations are classified ac-
cording to the dimension and the structure of their symmetry algebra. We
establish canonical forms of the generators and representatives for all third
order ordinary differential equations possessing 4, 5, 6 or 7 independent
symmetries.

1. Introduction

The concept of symmetries of differential equations is due to Lie. He inves-
tigated groups of point transformations in order to solve differential equations
systematically. The order of an ordinary differential equation (o.d.e.) q(n) =
f(t, q, . . . , q(n−1)) that admits a symmetry can be reduced by transforming this
symmetry in ∂q and then substituting Q for q̇ . The point symmetries of an
o.d.e. generate a Lie algebra of vector fields in two coordinates.

If we are given a classification of o.d.e.-s according to their symmetry alge-
bra and the solutions of the representatives of all classes, solving an o.d.e. will be
reduced to the determination of the symmetry algebra structure and the transfor-
mation of the o.d.e. into the appropriate normal form. This procedure might be
successful for normal forms which do not contain a parameter function.

In this work o.d.e.-s of order three are investigated. Lie [3] proved that a
third order o.d.e. admits at most seven independent symmetries. In a paper of
1988 [4] Mahomed and Leach treat third order o.d.e.-s with a three dimensional
symmetry algebra. Their results and methods are used in Section 2. where we
obtain canonical realizations of four dimensional real Lie algebras in terms of
vector fields in two coordinates and the associated normal forms of invariant third
order o.d.e.-s.

In Section 3. we determine the full symmetry algebra of these representa-
tives. Since any real Lie algebra of dimension 5, 6 or 7 contains a four dimensional
subalgebra, the procedure mentioned above leads to a complete list of normal forms
for third order o.d.e.-s having 4, 5, 6 or 7 independent symmetries.
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2. Equations with four symmetries

Since the symmetry algebra is a Lie algebra, we will first consider the algebraic
description of real four dimensional Lie algebras. A classification of these Lie
algebras including a list of all subalgebras was given by Patera and Winternitz
in [8]. It turns out that any real Lie algebra of dimension four contains a three
dimensional subalgebra.

Furthermore, it can be proven that any real Lie algebra of a dimension
higher than three has a three dimensional subalgebra. Therefore, the treatment of
three dimensional symmetry algebras is fundamental for finding o.d.e.-s with more
than three symmetries (see [4] and [9]).

Linear o.d.e.-s play a particular part and will be treated in a special way.
There is a general criteria for linearizability [5]:

Theorem 2.1. An o.d.e. of order n (n ≥ 3) is linearizable by means of a point
transformation iff its symmetry algebra has an n-dimensional abelian subalgebra.
The symmetry algebra of a linear o.d.e. of order n (n ≥ 3) has dimension n+ 1,
n+ 2 or n+ 4.

Consequently, a third order o.d.e. that admits three independent, commuting
symmetries can be transformed into

...
q= a(t)q̇ . Moreover, this normal form has at

least the four symmetries generated by ∂q , t∂q , h(t)∂q and q∂q where h(t) is a

nonlinear solution of a(t) = h′′′(t)
h′′(t) . [4]

Hence it is sufficient to consider only those Lie algebras L of dimension four
that do not contain a three dimensional commutative subalgebra (see table 1).

In this case we choose a three dimensional subalgebra S of L (see the third
column of table 1), which can be represented in different canonical ways in terms
of vector fields (see table 2). A representation of the fourth generator G of L is
obtained invoking the commutator relations with G. Perhaps further coordinate
transformations will be necessary. Applying the symmetry criteria with G on a
normal form of an o.d.e. of third order which is invariant with respect to S , one
arrives at a normal form of a third order o.d.e. which is invariant under the action
of L.

The procedure will be illustrated by calculating as an example L = A4,7 .
The Lie algebra A4,7 (see table 1) contains a three dimensional subalgebra S which
is generated by G1 , G2 and G3 and isomorphic to A3,1 . There are two canonical
representations of A3,1 (see table 2).

1. Let G1 = ∂q , G2 = ∂t , G3 = α∂t + (t + β)∂q and G4 = ξ(t, q)∂t + η(t, q)∂q .
Since the commutator relations [G1, G4] = 2G1 and [G2, G4] = G2 must be
satisfied, it is immediate that ξ = t + α and η = 2q + β where α and β
are constants. Hence the equation t+ β = 0 resulting from the commutator
[G3, G4] = G2 +G3 cannot be satisfied.

2. Let G1 = ∂q , G2 = α∂t + (−t+β)∂q , G3 = ∂t and G4 = ξ(t, q)∂t + η(t, q)∂q .
The commutator relations [G1, G4] = 2G1 and [G3, G4] = G2 + G3 lead to
the partial differential equations ξq = 0, ξt = α+1, ηq = 2 and ηt = −t+β .
From [G2, G4] = G2 follows α = 0 and ξ = t− β . Obviously it is sufficient
to apply the symmetry criteria with the generator t∂t + (−1

2
t2 + 2q)∂q on
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type nontrivial commutators subalgebra

2A2 [G1, G2] = G2 [G3, G4] = G4 < G1, G2, G4 >
A3,8 ⊕ A1 [G1, G2] = G1 [G3, G2] = G3 < G1, G2, G3 >

[G3, G1] = 2G2

A3,9 ⊕ A1 [G1, G2] = G3 [G2, G3] = G1 < G1, G2, G3 >
[G3, G1] = G2

A4,7 [G1, G4] = 2G1 [G2, G4] = G2 < G1, G2, G3 >
[G3, G4] = G2 +G3 [G2, G3] = G1

A4,8 [G2, G4] = G2 [G3, G4] = −G3 < G1, G2, G3 >
[G2, G3] = G1

Ab4,9 [G1, G4] = (1 + b)G1 [G2, G4] = G2 < G1, G2, G3 >
(0 < |b| < 1) [G3, G4] = bG3 [G2, G3] = G1

A1
4,9 [G1, G4] = 2G1 [G2, G4] = G2 < G1, G2, G3 >

[G3, G4] = G3 [G2, G3] = G1

A0
4,9 [G1, G4] = G1 [G2, G4] = G2 < G1, G2, G3 >

[G2, G3] = G1

A4,10 [G2, G4] = −G3 [G3, G4] = G2 < G1, G2, G3 >
[G2, G3] = G1

Aa4,11 [G2, G4] = aG2 −G3 [G1, G4] = 2aG1 < G1, G2, G3 >
(0 < a) [G3, G4] = G2 + aG3 [G2, G3] = G1

A4,12 [G1, G4] = −G2 [G2, G4] = G1 < G1, G2, G3 >
[G1, G3] = G1 [G2, G3] = G2

Table 1: Real four dimensional Lie algebras without commutative three dimen-
sional subalgebra

type commutators canonical realizations G1, G2, G3

A1 ⊕ A2 [G1, G3] = G1 1. ∂t, ∂q, t∂t + a∂t + b∂q
2. ∂q, t∂q, t∂t + q∂q

A3,1 [G2, G3] = G1 ∂q, ∂t, a∂t + (t+ b)∂q
∂q, a∂t + (−t + b)∂q, ∂t

A3,3 [G1, G3] = G1 1. ∂t, ∂q, (t+ a)∂t + (q + b)∂q
[G2, G3] = G2 2. ∂q, t∂q, q∂q

A3,8 [G1, G2] = G1 1. ∂q, q∂q, q
2∂q

(sl(2,R)) [G2, G3] = G3 2. ∂q, t∂t + q∂q, 2tq∂t + q2∂q
[G3, G1] = −2G2 3. ∂q, t∂t + q∂q, 2tq∂t + (q2 − t2)∂q

4. ∂q, t∂t + q∂q, 2tq∂t + (q2 + t2)∂q
A3,9 [G1, G2] = G3 (1 + t2)∂t + tq∂q, tq∂t(1 + q2)∂q, q∂t + t∂q
(so(3,R)) [G2, G3] = G1

[G3, G1] = G2

Table 2: Representations of real three dimensional Lie algebras in terms of vector
fields of two coordinates
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type normal forms of invariant o.d.e.-s

A1 ⊕ A2 1.
...
q= q̈

3
2ϕ(q̇q̈−2)

2.
...
q= q̈2ϕ(tq̈)

A3,1
...
q= ϕ(q̈)

A3,3 1.
...
q= q̈2ϕ(q̇)

2.
...
q= q̈ϕ(t)

A3,8 1.
...
q= 3

2
q̇−1q̈2 + q̇ϕ(t)

2.
...
q= t−2q̇4ϕ((tq̈ + 1

2
q̇)q̇−3) + 3q̇−1q̈2

3.
...
q= t−2(−1 + q̇2)2ϕ((tq̈ − q̇(1− q̇2))(−1 + q̇2)−

3
2 )

+3q̇(−1 + q̇2)−1q̈2

4.
...
q= t−2(1 + q̇2)2ϕ((tq̈ − q̇(1 + q̇2))(1 + q̇2)−

3
2 )

+3q̇(1 + q̇2)−1q̈2

A3,9
...
q= (1 + q2)−

5
2 (1 + q2 + q̇2)

×ϕ((q + q̈)−
1
3 (1 + q2)−

1
2 (1 + q2 + q̇2)

1
2 )

+3q̇(q + q̈)((1 + q2 + q̇2)−1 − q(1 + q2)−1)− q̇

Table 3: Normal forms of third order o.d.e.-s with symmetry algebra A1 ⊕ A2 ,
A3,1 , A3,3 , A3,8 , or A3,9

...
q= ϕ(q̈) which is the normal form of a third order o.d.e. with symmetry
algebra A3,1 . This results in ϕ̇(q̈) = ϕ(q̈).

We obtain
...
q= Ceq̈ where C is an arbitrary constant as the normal form of a

third order o.d.e. with symmetry algebra A4,7 . It should be noted that invariance
under A1

4,9 implies
...
q= 0. The Lie algebras A3,9 ⊕ A1 , A4,10 and Aa4,11 are not

representable in terms of vector fields of two coordinates.

3. Further symmetries

All normal forms of third order o.d.e.-s derived in the previous section except the
linear o.d.e.

...
q= a(t)q̈ contain an arbitrary constant as parameter but no arbitrary

function of some argument. Therefore it is easy to determine the full symmetry
algebra of these representatives.

We apply the symmetry criteria with the general generator ξ(t, q)∂t +
η(t, q)∂q and obtain a system of linear partial differential equations for ξ and η
called the system of determining equations by comparing coefficients of functionally
independent functions of q̇, . . . , q(n−1) [1]. The dimension of the solution space is
equal to the number of independent symmetries [2]. The Lie algebra structure can
be determined by the calculation of the commutators of independent symmetries.

The symmetry algebra L of
...
q= Cq̇−1q̈2 , which is one normal form implied

by 2A2 , is calculated in detail as an example.
L is already known for C = 0 where L = 〈∂q, t∂q, t2∂q, q∂q, t2∂t + 2tq∂q, t∂t, ∂t〉.
If C = 3

2
the determining system consists of ξq = 0, ξttt = 0, ηt = 0 and ηqqq = 0.

Obviously, L = 〈t2∂t, t∂t, ∂t, q2∂q, q∂q, ∂q〉.
If C = 3 the determining system consists of ηt = 0, ξtt = 0, ηqqq = 0, ξqqq = 0 and
ξtq = ηqq . One can easily verify that ξ = αtq+βt+γq2+δq+ε and η = αq2+µq+ν ,

i.e. dimL = 7 and
...
q= Cq̇−1q̈2 can be transformed into

...
Q (T ) = 0 by means of
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Q = t and T = q .
Provided that C 6= 0, 3

2
, 3 we obtain the determining system ηt = 0, ξtt = 0,

ηqq = 0 and ξq = 0. Evidently L = 〈∂t, t∂t, ∂q, q∂q〉 ∼= 2A2 .

It remains the case
...
q= a(t)q̈ . Linear o.d.e.-s of third order, that we can

assume to be given in this special form, admit four, five or seven independent
symmetries. For which functions a(t) is the symmetry algebra of

...
q= a(t)q̈ five

dimensional?

Theorem 3.1. If a linear third order o.d.e. admits at least five independent
symmetries, it can be transformed into one of the following forms:

...
q= Cq̈ ,

...
q=

(C − 3t)(1 + t2)−1q̈ or
...
q= Ct−1q̈ .

Proof. Any linear third order o.d.e. can be given as
...
q= a(t)q̈ . It follows

from the defining equations that every symmetry of this o.d.e is of the form
b(t)∂t + (d(t) + c(t)q)∂q . Furthermore, any o.d.e.

...
q= a(t)q̈ has three commuting

symmetries ∂q = G1 , t∂q = G2 , h(t)∂q = G3 , where h(t) is a non-linear solution
of h′′′(t) = a(t)h′′(t), and an induced fourth symmetry q∂q .

Let G = b(t)∂t + (d(t) + c(t)q)∂q a fifth independent symmetry. The
commutator [q∂q, G] = c(t)q∂q − (d(t) + c(t)q)∂q = −d(t)∂q is an element of the
symmetry algebra. Since the coefficient function d(t) has to satisfy an o.d.e. of
third order, namely d′′′(t) = a(t)d′′(t), it is contained in the linear span of G1 , G2

and G3 . So we can assume that a further symmetry G commutes with q∂q and
can be written as b(t)∂t + c(t)q∂q .

Similarly, [∂q, G] = c(t)∂q , [t∂q, G] = (tc(t) − b(t))∂q and [h(t)∂q, G] =
(h(t)c(t)−b(t)h′(t))∂q are in the linear span of G1 , G2 and G3 . Hence, 〈G1, G2, G3〉 =
I is an ideal of the full symmetry algebra, and adG and ad(q∂q) are linear oper-
ators on I . Notice that ad(q∂q) = −Id independently of the basis of I . For the
dimension of I is odd, adG possesses a real eigenvalue λ.

We distinguish several cases. Coordinate transformations Q = f(t)q and
T = g(t) that map another basis of 〈G1, G2, G3〉 of 3A1 to {∂q, t∂q, h(t)∂q} and
transform q∂q and b(t)∂t+c(t)q∂q into Q∂Q and B(T )∂T +C(T )Q∂Q , respectively,
will lead to the normal forms listed in the theorem.

1. If λ is a multiple eigenvalue whose eigenspace is of dimension one, the Jordan

matrix with respect to a basis {G1, G2, G3} is




λ 1 ∗
0 λ ∗
0 0 ∗


. Transform-

ing G1 , G2 , G3 to ∂q , t∂q , h(t)∂q , respectively, the commutator relations
[G1, G] = λG1 and [G2, G] = G1 + λG2 lead to c(t) ≡ λ and b(t) ≡ −1.
Invariance under ∂t implies

...
q= Cq̈ .

2. If λ is an multiple eigenvalue whose eigenspace is at least of dimension

two, the Jordan matrix has the form




λ 0 ∗
0 λ ∗
0 0 ∗


 with respect to a basis

{G1, G2, G3}. Proceeding as above the commutator relations containing G1 ,
G2 , G lead to c(t) ≡ λ and b(t) ≡ 0. This implies that G is a real multiple
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of q∂q . So this case can not occur, if the symmetry algebra is at least five
dimensional.

3. If adG possesses another real eigenvalue µ 6= λ, the Jordan matrix is of the

form




λ 0 ∗
0 µ ∗
0 0 ∗


 with respect to a basis {G1, G2, G3}. As above we derive

c(t) ≡ λ and b(t) = (λ− µ)t. Invariance under t∂t implies
...
q= Ct−1q̈ .

4. If adG possesses a complex eigenvalue τ + iσ , σ 6= 0, we are given an
invariant subspace of I . Furthermore we can assume τ = 0 and σ = 1.

Then the Jordan matrix has the form




0 −1 0
1 0 0
0 0 λ


 with respect to a

basis {G1, G2, G3}. The symmetries G1 , G2 , q∂q , G generate the Lie algebra
A4,12 . Transforming G1 , G2 , G3 into ∂q , t∂q , h(t)∂q , respectively, and using
the results of Section 2. it becomes clear that

...
q= (C − 3t)(1 + t2)−1q̈ . From

a(t) = h′′′(t)
h′′(t) follows h(t) =

∫∫
eCarctant(1 + t2)−

3
2dtdt.

The three normal forms obtained in theorem 3.1 have already been exam-
ined for further symmetries in the first part of this section because they are also
representatives of third order o.d.e.-s with four symmetries. It turns out that all
third order o.d.e.-s with seven independent symmetries can be transformed into
...
q= 0.

Finally we show that any real Lie algebra L with 5 ≤ dimL ≤ 7 has
a four dimensional subalgebra. This subalgebra can be transformed to one of
the representatives derived in Section 2.. So we obtained a complete list of
representatives of third order o.d.e.-s with 4, 5, 6 or 7 independent symmetries.

Theorem 3.2. Any real Lie algebra L with 5 ≤ dimL ≤ 7 contains a four
dimensional subalgebra.

Proof. Consider the Levi-decomposition. If L is solvable, nothing remains to
prove. Bear in mind that there are only three real simple Lie algebras of dimension
less than 8; these are sl(2,R), so(3,R), sl(2,C)R . Reasoning with dimensions is
sufficient except for a real five dimensional Lie algebra whose Levi-decomposition
is non-trivial. In that case we invoke that the semi-simple part must be isomorphic
to sl(2,R) [11].

4. Conclusions

The results of the Sections 2. and 3. are summarised in the tables 4, 5, 6.

Some interesting facts can be derived from the classification. Let L be the
symmetry algebra of a third order o.d.e.
It holds dimL = 7 if and only if the o.d.e. can be transformed into

...
q= 0.
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...
q = Cq̇−1q̈2 L =〈∂t, ∂q, t∂t, q∂q〉

(C 6= 0,
3

2
, 3)

...
q = Ct−2q̇−

1
2 (tq̈ +

1

2
q̇)

3
2 + 3q̇−1q̈2 L =〈t∂t, ∂q, q∂q, 2tq∂t + q2∂q〉

(C 6= 0)

...
q = Ceq̈ L =〈∂t, ∂q, t∂q, t∂t + (−1

2
t2 + 2q)∂q〉

(C 6= 0)

...
q = Cq̈γ L =〈∂t, ∂q, t∂q, t∂t + (1 +

γ − 2

γ − 1
)q∂q〉

(C 6= 0, γ 6= 0, 1)

...
q =

C + 3q̇

1 + q̇2
q̈2 L =〈∂t, ∂q, t∂t + q∂q, q∂t − t∂q〉

(C 6= 0)
...
q = a(t)q̈ L =〈∂q, t∂q, h(t)∂q, q∂q〉

(a(t) 6= C,Ct−1,
C − 3t

1 + t2
) h(t) =

∫∫
e
R
a(t)dtdtdt

Table 4: Normal forms of third order o.d.e.-s with four independent symmetries

...
q = 0 L =〈∂q, t∂q, t2∂q, q∂q, t2∂t + 2tq∂q, t∂t, ∂t〉
...
q = q̈ L =〈∂q, t∂q, et∂q, q∂q, ∂t〉
...
q = t−1q̈ L =〈∂q, t∂q, t3∂q, q∂q, t∂t〉
...
q =

C − 3t

1 + t2
q̈ L =〈∂q, t∂q, h(t)∂q, q∂q, (1 + t2)∂t + tq∂q〉

h(t) =

∫∫
(1 + t2)−

3
2 eCarctantdtdt

Table 5: Normal forms of third order o.d.e.-s with five or seven independent
symmetries

...
q =

3

2
q̇−1q̈2 L =〈∂q, q∂q, q2∂q, ∂t, t∂t, t

2∂t〉
...
q = 3

q̇

1 + q̇2
q̈2 L =〈(t2 − q2)∂t + 2tq∂q, 2tq∂t + (q2 − t2)∂q,

t∂t + q∂q, q∂t − t∂q, ∂t, ∂q〉

Table 6: Normal forms of third order o.d.e.-s with six independent symmetries
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If dimL = 5, then the o.d.e. is linearizable.
If dimL = 6, then L is semi-simple.

In contrast to (n ≥ 4), where the existence of the Lie subalgebra (n −
1)A1⊕S A1 of the symmetry algebra implies linearizability of an o.d.e. of order n,
there are nonlinearizable third order o.d.e.-s with symmetry algebra 2A1 ⊕S A1 ,
e.g.

...
q= q̈2 that admits the symmetries ∂t , ∂q and t∂t + q∂q which generate the

Lie algebra 2A1 ⊕S A1 .

It is worth mentioning that there are nonlinearizable third order o.d.e.-s
with a six dimensional symmetry algebra. That means they have more symmetries
than some linear third order o.d.e.-s.

In contrast to second order o.d.e.-s, there exist o.d.e.-s with m independent
symmetries, where m can be any integer (1 ≤ m ≤ 7).
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